
Scalable Leader Election

Valerie King ∗ Jared Saia † Vishal Sanwalani † Erik Vee ‡

Abstract

In the leader election problem, there are n processors
of which (1− b)n are good. The problem is to design a
distributed protocol to elect a good leader from the set
of all processors. In this paper, we present a scalable
leader election protocol. Our protocol is scalable in the
sense that each good processor sends and processes a
number of bits which is only polylogarithmic in n. (We
assume no limit on the number of messages sent by
bad processors.) For b < 1/3, our protocol elects a
good leader with constant probability and ensures that
a 1 − o(1) fraction of the good processors know this
leader.

We assume a point-to-point full information model.
This is similar to the full information model, but harder
in the sense that in a given round, a bad processor may
send different messages to different processors, rather
than having to broadcast the same message to every
processor.

To the best of our knowledge, we present the first
leader election protocol that ensures that each good
processor sends and processes a sublinear number of
bits. Having reduced the problem of leader election
to one of informing all good processors of a bit held
by 1 − o(1) fraction of good processors, we conjecture
that the solution to this problem is not possible within
polylogarithmic message bounds.

Our techniques can be used to provide scalable
solutions to Byzantine agreement and other problems.

1 Introduction

Leader election is a fundamental problem in distributed
computing. We consider this problem in the setting
where there are n processors, bn of which are bad (or
corrupt), and (1−b)n of which are good, for some fixed b.
Our goal is to design an algorithm that ensures a good

∗Department of Computer Science, University of Victoria, P.O.
Box 3055, Victoria, BC, Canada V8W 3P6; email: val@cs.uvic.ca.
This research was supported by NSERC.

†Department of Computer Science, University of New Mexico,

Albuquerque, NM 87131-1386; email: {saia,vishal}@cs.unm.edu.
This research was partially supported by NSF grant CCR-0313160

and Sandia University Research Program grant No. 191445.
‡IBM Almaden Research Center, 650 Harry Road, San Jose,

Ca. 95120; email: vee@almaden.ibm.com

processor will be elected with constant probability, no
matter which set of bn processors are bad. This problem
was first formally described and addressed by Ben-Or
and Linial [4, 5] about twenty years ago. Since then,
many papers have been published giving leader election
algorithms that successively improve on the number of
rounds required and on the fraction b of bad processors
that can be tolerated [18, 1, 2, 7, 6, 9, 15, 17, 12] (see also
surveys by Ben-Or, Linial and Saks [3] and Linial [14]).

In this paper, we describe a leader election algo-
rithm which is scalable, in the sense that each good
processor sends and processes a number of bits which
is only polylogarithmic in n. Our motivation for this
problem is the emergence of large-scale networks (e.g.
peer-to-peer) where n can be on the order of hundreds
of thousands.

1.1 The model The standard model for communi-
cation in the leader election problem is the full infor-
mation model1 [4, 5]. In this model, all communication
occurs by broadcast and is known publicly to all pro-
cessors. Every processor has a unique identity known to
everyone and the identity of the sender of any message
is explicitly known by all processors. Communication
occurs in rounds. In each round, every processor may
communicate with all other processors. The bad proces-
sors are assumed to have received the messages of all the
good processors before they broadcast their own mes-
sages. The processors are synchronized between rounds
so that all messages in round i are assumed to be re-
ceived before any messages in round i + 1 are sent out.
Each processor has access to private random bits that
are not known to other processors or the adversary.

The adversary picks which processors will be bad
before the algorithm begins and controls the actions
of all bad processors so as to maximize the chance of
getting a bad processor elected. Also the adversary is
computationally unbounded which disallows the use of
cryptographic assumptions.

The full information model rules out from the very
start any possibility of designing an algorithm where
each processor sends a sublinear number of bits. In

1This is sometimes also referred to as the perfect information
model.

particular, since all communication is by broadcast,
every time a node communicates in this model, it sends
out Ω(n) bits. To avoid this problem, we introduce the
point-to-point full information model. In this model,
all communication occurs between a single sender and
a single receiver. The bad processors see all messages
but the good processors only see messages that are sent
directly to them. Everything else is the same as in the
full information model. In particular, each processor
has a unique identity that is known explicitly to anyone
to whom it sends messages. Further, communication
occurs in rounds and the bad processors see all messages
before they need to send their own. This new model is
strictly harder than the standard full information model
in the following sense. In the standard model, in a
single round, a bad processor is forced to send the same
message to all processors (since communication is by
broadcast). However, in the new model, a bad processor
can send different messages to different processors.

Our goal is to limit the number of bits sent and
processed by every good processor. We assume that
a processor can choose to ignore (not process), without
cost, messages received from any other processor during
any round of the algorithm. We do not assume a limit
on the number of messages sent by a bad processor.

1.2 Our Results In this paper, we relax the require-
ment that all good processors know the leader at the
end of the protocol to the requirement that a 1 − o(1)
fraction of good processors know the leader. Our main
result is stated as Theorem 1.1 below. To the best of
our knowledge, this is the first result for the leader elec-
tion problem where each processor sends and processes
a sublinear number of bits.

Theorem 1.1. Suppose there are n processors and
strictly less than a 1/3 fraction of these processors are
bad. Then there exists an algorithm that elects, with
constant probability, a leader from the set of good pro-
cessors and has the following properties.

• Exactly one good processor considers itself the
leader.

• A 1−o(1) fraction of the good processors know this
leader.

• Every good processor sends and processes only a
polylogarithmic (in n) number of bits.

• The number of rounds required is polylogarithmic in
n.

Given that almost all processors know the leader, a
natural followup step is to have each good processor

sample the other processors and then determine the
leader from the majority of the responses. With high
probability, such sampling would work, except for one
issue– the good processors which are sampled may be
swamped with requests from bad processors and may
not know which queries to respond to. It is easy to
get around this problem if we restrict the number of
messages sent by bad processors and assume private
communication channels between all pairs of processors.
However, we see no way to get around the problem
without making additional assumptions and thus we
propose the following:

Conjecture 1. Suppose 1−b fraction of processors are
good, for any constant b < 1/2, and 1− o(1) fraction of
good processors agree on a bit. In the point-to-point full
information model which allows the bad processors to
send an unlimited number of messages and limits each
good processor to sending o(n) bits, there is no protocol
which will ensure that with constant probability all good
processors learn that bit.

We note that our scalable leader election algorithm
directly leads to a scalable algorithm for the more
general selection task problem [12] (which includes e.g.
collective coin flipping). In addition, a modification to
our scalable leader election algorithm leads to a scalable
algorithm for the Byzantine agreement problem which
we now sketch 2. First we modify our leader election
algorithm to elect a set, S, of Θ(ln n) processors such
that, with high probability, S contains at least a 2/3
fraction of good processors. Next, the processors in S
use a polynomial time Byzantine agreement algorithm,
e.g., [10], to come to consensus on a bit. Finally, this
bit is sent out to all but a 1− o(1) fraction of the good
processors using techniques similar to those described
in Section 4. Full details of the modifications required
are omitted from this extended abstract.

The algorithm we use in Theorem 1.1 constructs a
structure we call a communication tree. The communi-
cation tree allows messages to be passed from the leader,
sitting at the root, to a 1 − o(1) fraction of the proces-
sors. It also allows messages from these processors to
be sent to the leader. Since the communication tree
appears to have applications beyond leader election, we
include a theorem describing its properties.

The tree consists of nodes, and each node is assigned
a set of processors. For now, call a node good if the
set of processors assigned to it has a majority of good
processors. [We will use a somewhat stricter notion of
good in section 6.] Say a node has a good path to the root

2We thank Jonathan Katz and Chiu-Yuen Koo for pointing
out this modification.

node if the path from the node to the root [including the
root and the node itself] consists entirely of good nodes.

Theorem 1.2. Suppose there are n processors, and a
b < 1/3 fraction of these processors are bad. Then
there is an algorithm operating in a number of rounds
that is polylogarithmic in n and in which each good
processor sends and processes only a polylogarithmic (in
n) number of bits, that creates a communication tree
with the following properties.

(1) The tree has height `∗, where `∗ is the minimum
integer such that n/ ln`∗ n ≤ ln10 n. (Note that
`∗ = O(lnn/ ln lnn).) The tree is rooted at the
single node at level `∗. A non-root node x from
level ` > 0 has as its children lnn nodes from layer
`− 1.

(2) Each leaf node of the tree is assigned a set of
ln5 n processors. Each processor is assigned to
O(ln4 n) leaf nodes. All processors know exactly
which processors participate in which leaf nodes.

(3) Each internal node of the tree other than the root is
assigned a set of ln3 n processors. Each processor
is assigned to at most O(ln4 n) internal nodes per
level. The root node is assigned a single processor.

(4) With probability 1 − o(1/n), at most a 3/ ln2 n
fraction of the nodes in the tree are bad, and all
but a 3/ lnn fraction of the leaf nodes have a good
path to the root node.

(5) With constant probability, the single processor at
the root node is good.

(6) Suppose there is a good path from A to the root,
and let B be the parent of A. Then all processors
in A know all processors in B, and all processors
in B know all processors in A.

1.3 Related Work The first results for leader elec-
tion in the full information model are due to Ben-Or and
Linial [4, 5]. They give a one round protocol which is ro-
bust against up to a 1/ lnn fraction of bad processors.
Later results [13, 18, 1] improved the fraction of bad
processors that could be tolerated, culminating with a
protocol due to Alon and Naor [2] which was shown by
Boppana and Narayanan [7, 6] to be robust to bn bad
processors for all b < 1/2− ε and positive ε. A result by
Saks [18] shows that no protocol can be robust against
dn/2e bad processors.

The protocol due to Alon and Naor has optimal
resilience but requires a linear number of rounds. Sev-
eral subsequent papers focused on reducing the number

of rounds [9, 15, 19, 17]. These papers culminated in
protocols which are resilient against b < 1/2 − ε bad
processors and require only ln∗ n rounds [16, 12]. A re-
sult by Russell, Saks and Zuckerman [16] shows that
Ω(ln∗ n) rounds are necessary if in every round the cor-
rect processors each send one unbiased random bit. We
emphasize again that all of these protocols require each
processor to send and process Ω(n) messages.

Our scalable leader election algorithm makes use of
several past results. First, we make use of the concept
of a committee which is a subset of processors. The
notion of a committee was introduced by Bracha [8] and
used in e.g. [9, 15, 17]. Second, our algorithm uses an
adaptation of Feige’s leader election algorithm [12] as
a subroutine, as described in Lemma 2.1. Finally, we
make use of a Byzantine Agreement algorithm designed
by Dolev et al. [10]; details of how this algorithm is used
are described in Lemma 2.1.

The notion of almost-everywhere Byzantine agree-
ment in which not all but almost all correct processors
are required to come to agreement was introduced in
a paper by Dwork, et. al. [11] on fault tolerance in
bounded degree networks.

1.4 Overview Throughout the paper, we will use
the phrase with high probability (or simply w.h.p.) to
mean that an event happens with probability at least
1− o(n−c) for some c > 2. For readability, we treat lnn
as an integer.

We now give a high-level sketch of how our algo-
rithm works. In its simplest form, we divide the proces-
sors into groups of polylogarithmic size; each processor
is assigned to multiple groups. In parallel, each group
then elects a small number of processors from within
their group to move on. We then recursively repeat this
step on the set of elected processors until the number of
processors left is polylogarithmic. At this point, the re-
maining processors run one more election to determine
the leader.

Although this approach is intuitively simple, there
are several complications that must be addressed.

(1) Each group must be able to robustly hold an
election.

(2) The groups must be determined in such a way that
the election mechanism cannot be sabotaged by the
bad processors.

(3) After each step, each elected processor must deter-
mine the identities of certain other elected proces-
sors, in order to hold the next election.

(4) Election results must be communicated to the
processors.

(5) To ensure load balancing, a processor which wins
too many elections in one round cannot be allowed
to participate in too many groups in the next
round.

We address (1) in section 2. Since each group is of
polylogarithmic size, the processors are able to robustly
simulate a broadcast using a polylogarithmic number of
message bits. They are then able to use known protocols
for leader election designed for the broadcast model.

Item (2) is addressed in section 3. In order to make
the group assignments, we use a layered network with
extractor-like properties. Every processor is assigned
to a specific set of nodes on layer 0 of the network.
In order to assign processors to a node A on layer
` > 0, the set of processors assigned to nodes on layer
` − 1 that are connected to A hold an election. In
other words, the topology of the network determines
how the processors are assigned to groups. By choosing
the network to have certain desired properties, we can
ensure that the election mechanism is robust against
malicious adversaries.

To accomplish item (3), we use monitoring sets,
which we describe more fully in section 4. Each node A
of the layered network is assigned a set of nodes from
layer 0, which we denote m(A). (Abusing notation,
we also let m(A) denote the set of processors assigned
to nodes of m(A).) The job of the processors from
m(A) is simply to know which processors are assigned
to node A. Since the processors of m(A) are fixed in
advance and known to all processors, any processor
that needs to know which processors are assigned to
A can simply ask the processors from m(A). (In fact,
the querying processor only needs to randomly select
a polylogarithmic subset of processors from m(A) in
order to learn the identities of the processors in A with
high probability. This random sampling will be used to
ensure load balancing.) Since the number of processors
that need to know the identities of processors in node A
is polylogarithmic, the processors of m(A) will not need
to send too many messages.

We use a communication tree to inform the moni-
toring sets which processors won each of their respective
elections, as well as to inform all processors who won the
final leader election, thus addressing item (4). The im-
portant properties of the communication tree are given
in Theorem 1.2, and the communication tree itself is
described in section 4.

Item (5) is addressed by having such processors
refrain from further participation. We show there are
not many such processors in section 5. In section 5 we
described the Leader Election Algorithm. Our proof of
Theorem 1.1 and 1.2 is presented in section 6.

2 Subcommittee elections

We now describe how small groups of processors elect
leaders and subcommittees. The idea is to use previ-
ously known protocols designed in the broadcast model,
by simulating broadcast when necessary.

We first adapt an algorithm by Feige [12] to the
point-to-point full information model to get what we
will call the Heavyweight-Leader-Election proto-
col. This algorithm elects a good leader with constant
probability from among a set of n processors, of which a
fraction greater than 2/3 are good. Feige’s result shows
that this can be done in ln∗ n expected rounds, with
each processor broadcasting at most once per round.
To adapt Feige’s result to the point-to-point full infor-
mation model, we simulate broadcast. Each time it is
necessary for processor p to broadcast in the original
protocol, we replace it with p sending a message to all
other processors followed by a call to a Byzantine Agree-
ment algorithm such as [10], so that all processors agree
on the message p sent. (The algorithm presented in [10]
requires O(k) rounds and O(k3) bits when there are
k processors, and less than k/3 are bad. We will use
k = O(log10 n) and k = O(log8 n).) This results in the
following:

Lemma 2.1. [12] In the point-to-point full informa-
tion model, there is a protocol we call Heavyweight-
Leader-Election with the following properties. On
a set k processors, with (2/3 + ε)k good processors, it
returns a good leader with probability at least a positive
constant and requires O(k4 ln∗ k) bits and O(k2 ln∗ k)
rounds.

Next, we describe a method for electing a sub-
committee of processors, with desired properties from
a committee of processors using what we call Elect-
Subcommittee. This protocol is also a simple adapta-
tion of a subroutine in [12].

Elect-Subcommittee: Input is processors p1, . . . , pk

with k = Ω(ln8 n).
1 For i = 1 to k,
2 Processor pi randomly selects one of k/(c1 ln3 n)

“bins” and tells the other processors in its
committee which bin it has selected.

3 The other processors in the committee run
Byzantine Agreement to come to a consensus on
which bin pi has selected.

4 Let B be the bin with the least number of processors
in it, and let SB be the set of processors in that bin.
Arbitrarily add enough processors to SB to ensure
|SB | = c1 ln3 n.

5 Return SB as the elected subcommittee.

Lemma 2.2. Let S be a committee of Ω(ln8 n) proces-
sors, where the fraction, fS, of good processors is greater
than 2/3. Then there exists some constant c1, such that
w.h.p., the subcommittee election protocol elects a subset
Z of S such that |Z| = c1 ln3 n and the fraction of good
processors in Z is greater than (1− 1/ lnn)fS. Further,
this algorithm uses a polylogarithmic number of bits and
polylogarithmic number of rounds.

Proof. The proof follows from a straightforward appli-
cation of Chernoff and union bounds and is omitted in
this extended abstract.

3 The layered network

We now describe the layered network we use to assign
processors to groups that is robust against malicious
adversaries.

We first present a result similar to that used in [9].
Let X be a set of processors. For a collection F of
subsets of X, a parameter δ, and a subset X ′ of X, let
F(X ′, δ) be the subcollection of all F ′ ∈ F for which

|F ′ ⋂ X ′|
|F ′|

>
|X ′|
|X|

+ δ.

Let Γ(r) denote the neighbors of node r in a
graph. The following lemma is easily shown using the
probabilistic method. We omit its proof here.

Lemma 3.1. Let `∗ be the smallest integer such that
n/ ln`∗ n ≤ ln10 n. There is a family of bipartite graphs
G(Li, Ri), i = 0, 1, . . . , `∗, such that |Li| = n/ lni n,
|Ri| = n/ lni+1 n, and

1. Each node in Ri has degree ln5 n.

2. Each node in Li has degree O(ln4 n).

3. For any subset L′
i of Li, let F = {Γ(r) | r ∈ Ri}.

Then |F(L′
i, 1/ lnn)| < |Li|/ ln3 n.

4. Additionally, label the vertices in Ri by 0, 1, . . . , |Ri|
and the vertices in Li by 0, 1, . . . , |Li|. Then the
vertices in Li labelled k lnn, k lnn + 1, . . . , (k +
1) lnn − 1 are incident to the vertex labelled k in
Ri.

We are now ready to describe the layered network.
Let `∗ be the minimum integer ` such that n/ ln` n ≤
ln10 n; note that `∗ = O(lnn/ ln lnn). The topmost
layer `∗ has a single node which is adjacent to every
node in layer `∗ − 1. For the remaining layers ` =
0, 1, ..., `∗ − 1, there are n/ ln`+1 n nodes. There is an
edge between the ith node in layer ` and the jth node
in layer ` + 1 iff there is an edge between the ith node
in L`+1 and the jth node in R`+1 from Lemma 3.1.

Each node in the layered network will contain a set
of processors known as a committee. All nodes, except
for the one on the top layer and those in layer 0, will
contain c1 ln3 n processors. Initially, we assign the n
processors to nodes on layer 0 using the bipartite graph
G(L0, R0) described in Lemma 3.1. The ith processor
is a member of the committee contained in the jth node
of layer 0 iff there is an edge in G between the i node
of L0 and the j node of R0. Notice that every node on
layer 0 has ln5 n processors in it.

Nodes on higher layers have committees assigned
to them during the course of the algorithm. Let A be
a node on layer ` > 0, let B1, . . . , Bs be the nodes
adjacent to A on layer ` − 1 in the network, and
suppose that we have already assigned committees to
nodes on layers lower than `. If ` < `∗, we assign
a committee to A by running Elect-Subcommittee
on the processors assigned to B1, . . . , Bs, and assigning
the winning subcommittee to A. (Note that we can
run each of these elections in parallel.) If A is at layer
`∗, we assign a committee (which is a single processor)
by running Heavyweight-Leader-Election on the
processors in B1, . . . , Bs and assigning the winner to A.

4 Communication

As processors move up the layered network, the proces-
sors assigned to a given node are not generally known to
the other processors. This information is reliably pro-
vided by monitoring sets, each of which is assigned to
monitor the election for one node, along with a commu-
nication tree to communicate the election results to the
monitoring sets.

During the course of the protocol, we will sometimes
speak of a node sending a message to a processor, or a
node sending a message to another node. In order for
node A to send a message to processor p, every processor
in A sends the message to p. Processor p considers the
message it received most often to be the message that A
sent. Note that so long as the majority of processors in
A are good and agree on a correct message, the message
p receives is correct. In order for node A to send a
message to node B, we simply have node A send the
message to every processor in B. Again, so long as
the majority of processors in A are good, every good
processor in B knows the correct message. Notice that
A must know the processors in B in order to carry out
this protocol. More subtly, each processor receiving
a message from node A must know the processors in
A in order to take the majority of the correct set of
processors. We will ensure throughout that this is the
case, w.h.p.

The communication tree. We construct a
rooted tree T whose node set is the set of nodes from

the layered network. The tree is rooted at the sin-
gle node at level `∗. The children of this node con-
sist of all nodes from layer `∗ − 1. In general, node
i from layer ` > 0 has as its children the nodes
i · lnn, i · lnn + 1, . . . , (i + 1) · lnn− 1 from layer `− 1.
For a node A, we denote the subtree of T rooted at A
by T (A).

Although the communication tree and the network
can be treated separately, we find it convenient to
embed the tree in the network. Recalling item 4 from
Lemma 3.1, we see that if node A on layer ` > 0 is
adjacent to the nodes B1, . . . , Bs on layer `−1, then the
children of A in the communication tree consist of some
subset of the nodes B1, . . . , Bs. The advantage of this
becomes apparent in the following algorithm, used to
send a message from A to the leaf nodes of T (A). Since
the processors are assigned to A based on an election
using the processors from B1, . . . , Bs, we see that the
processors of A already know the processors of A’s
children in the communication tree (under reasonable
assumptions about how many processors have been
corrupted; we formalize these notions in Section 6).

To avoid confusion, we use the term level when we
are discussing the tree T , and the term layer when we
are discussing the layered network.

Send-Message-Down-Tree: Input is node A with
message m.
1 If node A is not on level 0, then
2 Node A sends message m to each of its

children C1, . . . , Ct in the communication tree T .
3 Call Send-Message-Down-Tree on each Ci

with message m.

Monitoring sets. For every node A, we define a
monitoring set, denoted m(A), that consists of nodes
from layer 0. This set of nodes is determined before
the start of the algorithm. Specifically, for node A on
layer 0, m(A) consists of the node A. For node A on
layer ` > 0, let B1, . . . , Bs be the nodes adjacent to A
on layer ` − 1. The set m(A) consists of the leaf nodes
of T (B1), . . . , T (Bs). Notice that the monitoring set
for the single node on level `∗ consists of every layer-
0 node. Since these sets are fixed, every processor
knows the nodes in m(A) throughout the protocol.
Further, since m(A) consists of layer-0 nodes, the
processors in nodes of m(A) are known by everyone
throughout the algorithm. Thus, if processor p needs
to know the identity of the processors in node A, it
may communicate with m(A) in order to learn that
information.

One interesting aspect of this problem is that
straightforward polling can be defeated by flooding.
That is, suppose node A wants to know the identity of

the processors in node B. Suppose A randomly samples
a subset of m(B) to get the required information. (In
general, m(B) contains too many nodes for A to talk
to everyone in m(B).) If the processors of A are un-
known to m(B), then every bad processor can request
the same information. The good processors, having a
limit on the number of bits they may send, do not know
which requests to ignore; hence, the protocol would fail.

Communication with monitoring sets.
Throughout the algorithm, nodes on the same layer
will frequently need to know the processors assigned to
each other. The following protocol allows a node A to
determine the processors in node B on the same layer.
It assumes that the election algorithm expects nodes A
and B to communicate with each other. (Otherwise,
processors in m(B) could get flooded with requests
from bad processors.) Although it will not be necessary
for us, a simple extension also allows nodes on different
layers to determine the processors assigned to each
other.

When A needs to learn the processors in B, the
nodes in m(B) tell corresponding nodes in m(A) who
the processors in B are. Node A then queries the nodes
of m(A). Note that both the processors from nodes
in m(A) and the processors from nodes in m(B) know
each other. Since every processor from a node in m(A)
has a belief about which O(ln3 n) processors are in A,
they will answer at most O(ln3 n) queries, from these
processors.

Learn-Processors: Input is nodes A,B, both from
the same layer.
1 For all i = 1, 2, . . . m(A),

The ith node of m(B) tells the ith node of
m(A) the identities of the processors in node B.

2 Every processor p in A randomly selects a set of
ln2 n nodes in m(A) to poll.

Each polled node sends p the identities of the
processors in nodes B (according to the
messages it received in step 1). Processor p
determines the processors in node B by the
majority of messages sent by the nodes it
polled.

5 The Leader Election Algorithm

We are now ready to present the leader election proto-
col.

Leader-Election
1 For ` = 1 to `∗:
2 For each node A in layer `, (Let B1, . . . , Bs be

nodes adjacent to A in layer `− 1 of the network.)
3 Call Learn-Processors on nodes Bi, Bj for

all i, j ∈ [s].

4 If ` < `∗, run Elect-Subcommittee on the
processors in nodes B1, . . . , Bs. Assign winning
processors to node A.

5 Else, run Heavyweight-Leader-Election
on the processors in nodes B1, . . . , Bs. Assign
the single winning processor to node A.

6 Call Send-Message-Down-Tree on each Bi

to communicate the identities of the processor(s)
in A to the leaves of T (B1), . . . , T (Bs) = m(A).

7 If processor p is elected to more than 8
nodes on layer `, it becomes silent, refusing
to participate in any more elections.

8 Every processor is assigned to more than one
layer-0 node, hence receives multiple messages on
who wins the election. Each processor takes the
message it receives most often to be the true
message.

9 Every processor randomly polls ln2 n processors to
determine the leader. A processor only responds to
the processor it believes to be the leader, ignoring
all other queries. If a majority of a processor’s
queries are answered, it considers itself the leader.

Step 7 of Leader-Election is simply to ensure the
load-balancing condition of the main theorem. The fact
that good processors drop out of elections throughout
the algorithm seems like a potential problem. However,
the following lemma shows that the effect of silent
processors is not too great. We will use it later to show
that very few elections are spoiled because of these silent
processors.

Lemma 5.1. W.h.p. the fraction of nodes on layer
` that contain more than a 4/ lnn fraction of good
processors that have become silent is at most a 4/ lnn
fraction of the total nodes on layer `.

Proof. Let X be the number of processors on layer
` (counting multiplicity). The number of processors
elected to layer ` + 1, counting multiplicity, is precisely
X/ lnn. We show that w.h.p., the number of processors
elected more than 8 times to layer ` + 1, counting
multiplicity, is at most 16X/ ln3 n. Our claim will thus
follow.

By construction, the number of nodes on layer `+1
is X/ ln4 n, where the election for each employs lns n
bins, with s = 7 for ` = 0 and s = 5 otherwise.
Being overly generous, suppose that for each election
the adversary is able to choose which bin is elected.
For a fixed sequence of X/ ln4 n bin choices (one for
each of the X/ ln4 n elections held on layer ` + 1), let
pk be the probability that a given (good) processor is
elected k or more times. Then for a fixed bin sequence–
since each good processor independently and randomly

chooses which bin to select– the probability that at least
αX processors are elected k or more times is bounded
by (

X

αX

)
pαX

k ≤
(epk

α

)αX

Hence, by a union bound, the probability that any bin
sequence causes at least αX processors to be elected k
or more times is

≤
(epk

α

)αX

· (lns n)X/ ln4 n.

Each node on layer ` participates in at most 2 ln4 n
elections. Since processors that are assigned to more
than 8 nodes become silent, no processor on layer `
participates in more than 16 ln4 n elections. So we may
upper bound pk by(

16 ln4 n

k

)
·
(

1
lns n

)k

≤
(

16e ln4 n

k lns n

)k

≤
(

16e

k lnn

)k

.

Notice that for k > 8 and n sufficiently large that
(16e/(k lnn))k/2 ≤ 16/(k ln4 n). Hence, using α =
16/(k ln4 n), we see that for k > 8 and n sufficiently
large that e/α ≤ p

−1/2
k . From above, the probability

that any bin sequence causes at least 16X/(k ln4 n)
processors to be elected k or more times is at most(epk

α

)αX

· (lns n)X/ ln4 n ≤ p
αX/2
k · (ln7 n)X/ ln4 n

≤
(

16e

k lnn

)8X/ ln4 n

· (lnn)7X/ ln4 n = o(n−m).

Hence, w.h.p., the number of processors elected 9 or
more times, counting multiplicities, is at most

16X/(ln4 n) +
∑
k≥10

16X/(k ln4 n) ≤ 16X/ ln3 n

from which the lemma follows.

6 Proofs of Theorem 1.1 and 1.2

We focus on the proof of Theorem 1.2, since Theo-
rem 1.1 follows as a consequence. Lemma 6.3 below
will guarantee that the number of messages sent and
the number of rounds taken by the algorithm is poly-
logarithmic in n. Further, notice that items (1) and
(2) follow by construction, and item (6) follows by the
way in which the algorithm executes. Item (3) also fol-
lows trivially, assuming the algorithm executes as de-
scribed. (That is, so long as the adversarial processors
cannot stop the algorithm from functioning, each in-
ternal node will be assigned O(ln3 n) processors, with
no processor assigned to more than O(ln4 n) nodes per

layer.) Lemma 6.1 below will show that, assuming the
nodes of the network are not too corrupted, the algo-
rithm works correctly. Lemma 6.2 shows that, in fact,
the nodes of the network do not become too corrupted,
w.h.p. Together, these show that the algorithm works as
expected. Further, Lemma 6.2 proves item (4). Finally,
item (5) of Theorem 1.2 will follow as a consequence of
Lemma 2.1, Lemma 6.2, and the fact that the algorithm
works as expected.

We recursively define the notion of good/bad nodes
and good/bad leaves. A node A on layer 0 is a bad node
if the fraction of bad processors in A is greater than
b + 12/ lnn; a node is good if it is not bad. The node A
(which is the unique leaf node of T (A)) is a bad leaf for
T (A) iff A is bad; otherwise, it is a good leaf for T (A).

Now, consider a node A on layer ` > 0, and let
B1, . . . , Bs be the nodes adjacent to A on layer ` − 1.
We say A is a bad node iff the fraction of processors in
A that are bad is at least b + 12(` + 1)/ lnn, or if the
fraction of leaf nodes from the trees T (B1), . . . , T (Bs)
that are bad leaves for their respective trees is greater
than 3(` + 2)/ lnn. If node C is a leaf of T (A), then C
is a bad leaf for T (A) iff there is a bad node anywhere
along the path from C to A in the tree (including A and
C itself). For convenience, we will sometimes call C a
bad leaf for layer ` in this case. If C is a leaf of T (A)
and it is not a bad leaf for T (A), then C is a good leaf
for T (A). Likewise, C is a good leaf for layer ` in this
case.

Finally, we call a node too quiet if at least a 4/ lnn
fraction of its processors have become silent.

Lemma 6.1. W.h.p., for all ` < `∗, we have

1. Every call to Learn-Processors that is run on
two good nodes A,A′ on layer ` executes correctly.

2. Every call to Send-Message-Down-Tree that is
run on a good node A will send the correct message
to every good leaf node of T (A).

3. Every call to Elect-Subcommittee that is run
on processors from layer-` nodes B1, . . . , Bs elects
a subcommittee with at most a b + 12(` + 2)/ lnn
fraction of bad processors, so long as at most a
7/ lnn fraction of the Bi’s are bad or too quiet.

Proof. We proceed by induction. The base case, ` = 0,
follows immediately for items 1 and 2. For item 3,
suppose that at most a 7/ lnn fraction of the Bi’s are
bad or too quiet. So at most a 7/ lnn + 4/ lnn +
b + 12/ lnn fraction of the processors in B1, . . . , Bs are
bad or silent. That is, at least a (1 − b − 23/ lnn)
fraction of the processors are good. By Lemma 2.2,
the number of good processors assigned to A is at least

a (1−b−23/ lnn)(1−1/ lnn) > 1−b−24/ lnn fraction,
as we wanted. Now assume the lemma holds for some
` ≥ 0, and consider ` + 1.

We will first prove item 1 of the lemma. Let A,A′

be good nodes on layer `+1, let B1, . . . , Bs [respectively,
B′

1, . . . , B
′
s] be the nodes adjacent to A [respectively, A′]

on layer ` of the network. For each i = 1, 2, . . . , |m(A)|,
let Di be the ith node in the monitoring set m(A), and
let D′

i be the ith node in the monitoring set m(A′).
Since A and A′ are both good nodes, the fraction of the
Di [respectively D′

i] that are bad leaf nodes for layer
` is at most 3(` + 2)/ lnn. Hence, the fraction of i’s
such that either Di or D′

i is a bad leaf node is at most
6(` + 2)/ lnn.

Now, suppose Di is a good leaf node for layer
`, and choose j so that Di is a leaf node of T (Bj).
By induction (from item 2), when Send-Message-
Down-Tree is called on Bj in step 6 of the Leader-
Election protocol, Di correctly learns the identity
of the processors in A, w.h.p. Likewise, if D′

i is a
good leaf node for layer `, then it correctly learns the
identity of the processors in A′, w.h.p. Each processor
p in A randomly selects ln2 n nodes from m(A). With
probability at least 1− 6(` + 2)/ lnn, both the selected
node in m(A) and its corresponding node in m(A′) are
good and know the identities of A and A′, respectively.
Hence, the expected number of messages that p receives
that correctly name the processors in A′ is at least
1− 6(` + 2)/ lnn. By a standard Chernoff bound, every
processor in A learns the processors in A′ w.h.p. Since
Learn-Processors is called at most a polynomial
number of times, it correctly works every time it is called
on two good nodes w.h.p.

For item 2, let D be a good leaf node of T (A),
and let C be the child of A in the communication tree
that lies on the path from D to A. By definition, C is
good. Further, by the construction of the network, C
participated in the election of the committee for A. So
A knows the processors in C and will correctly pass the
message to C. By induction, Send-Message-Down-
Tree correctly sends the message from C down to D,
w.h.p.

For item 3, let B1, . . . , Bs be nodes on layer `+1. By
induction (item 1), each good Bi knows the processors
in each good Bj . We note that it is unimportant
whether the processors in the good nodes from Bi agree
on which processors map to the bad nodes from Bi.
To see this, note that we are assuming that a single
adversary controls all of the bad processors and that a
bad processor can send different messages to different
good processors. Thus a bad node can do no more
mischief in the case where the good processors do not
have the same view of which processor maps to it than

in the case where the good processors all have the same
view.

Now, suppose that at most a 7/ lnn fraction of the
Bi are bad or too quiet. Hence, at most a 7/ lnn +
4/ lnn+b+12(`+2) lnn fraction of the processors from
B1, . . . , Bs are bad or silent. So, by Lemma 2.2, Elect-
Subcommittee will elect a subcommittee with at most
a b + 12(` + 3)/ lnn fraction of bad processors.

Lemma 6.2. W.h.p., for all ` < `∗, we have

1. The fraction of bad nodes on layer ` is at most
3/ ln2 n

2. The fraction of bad leaves for layer ` is at most
3(` + 1)/ ln2 n.

Proof. We prove the lemma by induction. The base
case, ` = 0, follows from Lemma 3.1. Assume the lemma
holds for some ` ≥ 0 and consider ` + 1.

Let A be a node from layer `+1, and let B1, . . . , Bs

be the nodes adjacent to A in the network on layer
`. Suppose that (1) the fraction of nodes B1, . . . , Bs

that are bad is at most 3/ ln2 n + 1/ lnn, (2) the
fraction of nodes B1, . . . , Bs that are too quiet is at
most 5/ lnn, and (3) the fraction of bad leaves from
T (B1), . . . , T (Bs) is at most 1/ lnn + 3(` + 1)/ lnn +
1/ lnn. By Lemma 6.1(item 3) and conditions (1) and
(2), the fraction of bad processors assigned to A is at
most b + 12(` + 2)/ lnn w.h.p. Further, the fraction of
bad leaves for T (B1), . . . , T (Bs) is at most 3(`+2)/ lnn
by condition (3). That is, A is a good node, w.h.p.

We now calculate the fraction of such A from layer
` + 1 that violate either condition (1),(2), or (3). This
upper bounds the fraction of bad nodes on layer ` + 1,
w.h.p.

By induction, the number of bad nodes on layer ` is
at most 3/ ln2 n. Hence, by Lemma 3.1, the fraction
of nodes A from layer ` + 1 that have more than a
3/ ln2 n + 1/ lnn fraction of B1, . . . , Bs that are bad is
at most 1/ ln2 n. That is, the number of nodes on layer
` + 1 that violate (1) is at most 1/ ln2 n.

Noting Lemma 5.1, we see that the fraction of nodes
on layer ` that are too quiet is at most 4/ lnn. We again
invoke Lemma 3.1 to see that the fraction of nodes A
that have more than a 4/ lnn + 1/ lnn fraction of their
B1, . . . , Bs that are too quiet is at most 1/ ln2 n. That
is, the number of nodes on layer `+1 that violate (2) is
at most 1/ ln2 n.

Finally, let C1, . . . , Cr be the nodes on level `. By
induction, the total fraction of leaf nodes from among
T (C1), . . . , T (Cr) that are bad is at most 3(`+1)/ ln2 n.
Hence, the number of i for which T (Ci) has more than
a 3(` + 1)/ lnn fraction of bad leaf nodes is at most
1/ lnn. Again, Lemma 3.1 guarantees that at most a

1/ ln2 n fraction of the nodes on layer ` + 1 violate (3).
Hence, the total fraction of bad nodes on layer ` + 1 is
at most 3/ ln2 n.

To prove the second item, simply note that the
fraction of bad leaves for layer ` + 1 is at most the
fraction of bad leaves for layer ` plus the fraction of bad
nodes on layer ` + 1. This is at most 3(` + 1)/ ln2 n +
3/ ln2 n = 3(` + 2)/ ln2 n, as we wanted.

To finish the correctness proof, consider the last
iteration of the algorithm. From Lemma 6.2, the
fraction of bad nodes on layer `∗− 1 is at most 3/ ln2 n.
Hence, the fraction of bad processors on layer `∗ − 1
is at most 3/ ln2 n + b + 12/ lnn < 1/3 − ε for some ε.
Further, Lemma 6.1 guarantees that each good node
on layer `∗ − 1 correctly learns the processors in all
of the other good nodes. So Heavyweight-Leader-
Election elects a good leader with probability at
least a positive constant, by Lemma 2.1. This proves
item (5) of Theorem 1.2, thus completing the proof for
Theorem 1.2.

In order to finish the proof for Theorem 1.1, we need
to ensure that a 1−o(1) fraction of the good processors
know the results of the election. The results of the
election are transmitted via calls to Send-Message-
Down-Tree. By Lemma 6.1, all of the good leaves
correctly receive the message. Since the fraction of bad
leaves for level `∗− 1 is at most 3`∗/ ln2 n < 3/ lnn, the
fraction of processors which are assigned to leaves so
that more than a 1/3 fraction of the processor’s leaves
are bad is at most 9/ lnn fraction of the total nodes.
Since the processors take the majority message, at least
1 − O(1/ lnn) processors correctly know the elected
leader. Thus after the final polling step (step 9 of the
algorithm), by the Chernoff bound, w.h.p. exactly one
processor considers itself to be the leader.

Lemma 6.3. The number of messages sent and pro-
cessed by each good processor and the size of each mes-
sage is polylogarithmic in n.

Proof. By Lemma 3.1, each processor participates in
at most O(lnn/ ln lnn) layers. In each layer, each
processor is involved in O(ln4 n) elections, since a
processor ceases to participate if it wins more than 8
elections on a layer. Every time an election is run, each
participating processor sends polylogarithmic messages,
by Lemma 2.2.

Also, each processor is in O(ln5 n) monitoring set for
each layer and communicates with O(ln3 n) other pro-
cessors each time monitoring sets communicate; moni-
toring sets communicate for each pair of siblings in the
network. In addition, there are a number of messages
passed down the communications tree. If A is a node at

layer `, and processor p is in a node of m(A), then when
Send-Message-Down-Tree is called on A, p must
handle the message at most ` times. So the number of
messages handled by each processor over the course of
the entire algorithm is still polylogarithmic, and each
message communicated in the tree T reports the elec-
tion results of a single node, which requires O(ln4) bits.

Finally, we note that the protocol involving random
sampling can be used by the adversary to “flood” all
the processors in the monitoring set that may be poten-
tially sampled with requests by the processors doing the
sampling, if the adversary has control of these proces-
sors (or their monitoring sets). However, this increases
the load for each processor by only a polylogarithmic
number of messages per processor, since only a polylog-
arithmic number of processors are identified as potential
samplers.

7 Conclusion

In this paper, we have presented a scalable algorithm for
the leader election problem. The algorithm is scalable in
the sense that each good processor sends and processes
a number of bits which is only polylogarithmic in n. For
b < 1/3, our protocol elects a good leader with constant
probability and ensures that a 1 − o(1) fraction of the
good processors know this leader. To the best of our
knowledge, this is the first leader election protocol which
ensures that each good processor sends and processes a
sublinear number of bits.

Several open problems remain, including the fol-
lowing. First, can we prove Conjecture 1 or some
weaker version of this conjecture? Second, the number
of rounds required by our algorithm and the number of
bits sent and processed by good processsors are all poly-
logarithmic in n but the exponents of these logarithms
are relatively large. Can we reduce these exponents?
Can we reduce the fraction of good processors needed
to do leader election below 2/3, as in [12]? Finally, can
a simplified version of our algorithm or heuristics based
on it be used in a practical large-scale network?

References

[1] M. Ajtai and N. Linial. The influence of large coali-
tions. Technical Report 7133(67380), IBM, 1989.

[2] N. Alon and M. Naor. Coin-flipping games immune
against linear-sized coalitions. In Proceedings of the
IEEE Foundations of Computer Science(FOCS), 1990.

[3] Ben-Or, N. Linial, and M. Saks. Collective coin flipping
and other models of imperfect randomoness. In Colloq.
Math Soc. Janos Bolyai No., 52 Combinatorics, 1987.

[4] Michael Ben-Or and Nathan Linial. Collective coin
flipping and other models of imperfect randomness.

In Proceedings of the IEEE Foundations of Computer
Science(FOCS), 1985.

[5] Michael Ben-Or and Nathan Linial. Collective coin
flipping. Advances in Computing Research, pages 91–
115, 1989. JAI Press; Silvio Micali, editor.

[6] R. Boppana and B. Narayanan. Collective coin
flipping and leader election with optimal immunity.
manuscript.

[7] R. Boppana and B. Narayanan. The biased coin
problem. In Proceedings of the Symposium on the
Theory of Computing (STOC), 1993.

[8] Gabriel Bracha. An o(logn) expected rounds ran-
domized byzantine generals protocol. In Proceedings
of the ACM Symposium on the Theory of Computa-
tion(STOC), 1985.

[9] Jason Cooper and Nathan Linial. Fast perfect-
information leader-election protocol with linear immu-
nity. Combinatorica, 15:319–332, 1995.

[10] D. Dolev, M. Fischer, R. Fowler, N. Lynch, and
H. Strong. An efficient algorithm for byzantine agree-
ment without authentication. Information and Con-
trol, 1982.

[11] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal.
Fault tolerance in networks of bounded degree. SIAM
Journal on Computing, 17:975–988, 1988.

[12] Uriel Feige. Noncryptographic selection protocols. In
Proceedings of 40th IEEE Foundations of Computer
Science(FOCS), 1999.

[13] J. Kahn, G. Kalai, and N. Linial. The influence of ran-
dom variables on boolean functions. In Proceedings of
29th IEEE Foundations of Computer Science(FOCS),
1988.

[14] N. Linial. Games computers play: Game-theoretic as-
pects of computing. Technical report, Hebrew Univer-
sity of Jerusalem, 1992.

[15] R. Ostrovsky, S. Rajagoplan, and U. Vazirani. Simple
and efficient leader election in the full information
model. In Proceedings of the Twenty-Sixth Annual
ACM Syposium on Theory of Computing, 1994.

[16] A. Russell, M. Saks, and D. Zuckerman. Lower
bounds for leader election and collective coin-flipping
in the perfect information model. In Proceedings of
the Symposium on the Theory of Computing (STOC),
1999.

[17] A. Russell and D. Zuckerman. Perfect information
leader election in log*n + o(1) rounds. In Proceedings
of 39th Annual Symposium on Foundations of Com-
puter Science(FOCS), 1998.

[18] Michael Saks. A robust noncryptographic protocol
for collective coin flipping. SIAM Journal of Discrete
Mathematics, pages 240–244, 1989.

[19] D. Zuckerman. Randomness-optimal oblivious sam-
pling. Random Structures and Algorithms, 11:345–367,
1997.

