
Choosing a Random Peer

[Extended Abstract]

Valerie King
∗

Department of Computer Science
University of Victoria

P.O. Box 3055
Victoria, BC, Canada V8W 3P6

val@cs.uvic.ca

Jared Saia
†

Department of Computer Science
University of New Mexico

Albuquerque, NM 87131-1386

saia@cs.unm.edu

ABSTRACT
We present the first fully distributed algorithm which chooses
a peer uniformly at random from the set of all peers in a
distributed hash table (DHT). Our algorithm has latency
O(log n) and sends O(log n) messages in expectation for a
DHT like Chord [17]. Our motivation for studying this prob-
lem is threefold: to enable data collection by statistically rig-
orous sampling methods; to provide support for randomized,
distributed algorithms over peer-to-peer networks; and to
support the creation and maintenance of random links, and
thereby offer a simple means of improving fault-tolerance.

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed Data Structures

General Terms
Algorithms

Keywords
peer-to-peer, distributed hash table, random sampling

1. INTRODUCTION
In this paper, we address the problem of choosing a peer

uniformly at random from the set of all peers in a Dis-
tributed Hash Table (DHT). Random sampling is a fun-
damental statistical operation; a function which chooses a
random peer can be used for many types of applications,
including the following:

∗This research was partially supported by a grant from
NSERC.
†This research was partially supported by NSF grant CCR-
0313160 and Sandia University Research Program grant No.
191445.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04, July 25–28, 2004, St. Johns, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

• Data Collection: By randomly sampling peers, we can
quickly collect the following types of useful informa-
tion: peer opinions, e.g., on popular content; physi-
cal properties of network nodes, e.g., for measurement
studies like [16, 15]; and environmental data, e.g., for
sensor networks.

• Supporting Randomized Algorithms: We know of two
randomized algorithms for P2P systems which require
a function for choosing a random peer. The first algo-
rithm ensures good load-balancing of computational
tasks across the peers in a network [6]. The second
algorithm provides a scalable solution to the Byzan-
tine agreement problem [8]. Both algorithms critically
rely on the existence of a function for choosing a ran-
dom peer, but unfortunately, both results only suggest
heuristics to approximate such a function.

• Create Random Links: Consider a network where ev-
ery node has a small number of links to other ran-
dom nodes. Such a network is known to be robust in
the sense that it will stay well-connected even in the
face of a sudden, massive number of adversarial node
deletions [11]. A function for choosing a random peer
allows for simple creation and maintenance of random
links, and these random links provide an extra measure
of robustness.

In this paper, we will use the following DHT model [17].
We will assume that the “key space” of the DHT is scaled so
it is in the range (0, 1] and will think of the DHT as a circle
with unit circumference, which we will call the unit circle.
We assume that n peers are connected in the DHT and that
all of the n peers are mapped to locations on the unit circle
which we call peer points. We assume that the n peer points
are distributed uniformly at random on the unit circle1. We
further assume that the DHT provides two basic operations:
h and next. For a point x on the unit circle, h(x) is the peer
whose peer point is closest in clockwise distance to x. For
a given peer p, next(p) returns the peer whose peer point is
closest in clockwise distance to p’s peer point.

Our problem then is to design a scalable, distributed func-
tion which chooses a peer uniformly at random from the set
of all peers in the DHT. We want this function to use only

1As is standard, we use the random oracle model [2] for the
base hash function of the DHT.

the basic DHT operations h and next and we want it to be
scalable in the sense that latency and bandwidth will be at
most polylogarithmic in n.

A simple heuristic for this problem is to choose a random
point x on the unit circle and return h(x). Unfortunately,
this heuristic, although simple, is biased. The probability
that a peer p is chosen by this heuristic is proportional to
the length of the arc between the peer point for p and the
closest counter-clockwise peer point. The lengths of these
arcs vary widely. In particular, with high probability, the
longest arc is of length Θ(log n/n) [17] and the shortest arc is
of length Θ(1/n2) (see Theorem 3). Thus, the peer with the
longest arc will be chosen Θ(n log n) times more frequently
than the peer with the shortest arc. To remove this bias, we
require a more sophisticated algorithm.

1.1 Our Results
Our main result is stated in Theorems 1 and 2, which

are summarized here. These theorems show that, with high
probability, our algorithm:

• always chooses each peer p with probability exactly
1/n;

• has expected latency O(log n) and sends O(log n) mes-
sages in expectation.

In particular, for any base hash function of the DHT, with
probability 1− 3/n, our algorithm has these two properties
every time it is called by any peer in the DHT. The expected
latency and message costs assume that the DHT computes
the function h with O(log n) latency and O(log n) messages,
and that it computes the function next with O(1) latency
and O(1) messages.

1.2 Related Work
Gkansidis et. al. addresses the problem of choosing a

random peer in a P2P system [4]. They show that ran-
dom walks can provide a good approximation to uniform
sampling for networks where the gap between the first and
second eigenvalues of the transition matrix is constant. Un-
fortunately, their result only approximates uniform sampling
and the closeness of the approximation is impossible to for-
mally state without knowledge of the second eigenvalue of
the network. See also Law and Siu [7] who also use random
walks to approximately sample peers.

There are several results on adding load-balancing ex-
tensions to the basic DHT model. These results seek to
more equitably map the function h across the peers. One
technique is that of virtual nodes(see e.g. [17]): each peer
maps to O(log n) peer points on the unit circle. A peer is
then responsible for all points which are closest in clockwise
distance to any of its O(log n) peer points. While virtual
nodes do improve load-balancing, one drawback, as noted
in [3] and [5], is that they also increase the bandwidth re-
quired for basic network maintenance. There are several
load-balancing techniques which do not use virtual nodes [3,
1, 14, 5]. Generally these techniques work by dynamically
“reassigning” hash space among the peers to ensure that no
peer is ever responsible for too large a portion.

We have assumed a standard DHT which has no load-
balancing extensions. We make this assumption for two rea-
sons. First, we would like our protocol to be applicable for
a wide-range of DHTs. Unfortunately, there is currently no

consensus about the best way to add load-balancing exten-
sions to a DHT so assuming some particular method would
hurt generality. We believe that adding load-balancing ex-
tensions to the DHT generally makes the problem of choos-
ing a random peer easier and so the results we have for
the basic DHT can be easily adapted to a DHT which has
load-balancing extension. Second, we want our results to
hold even in the presence of malicious faults and we are not
aware of any DHTs with load-balancing extensions which
are provably robust to malicious faults.

1.3 Notation
For any two points x and y on the unit circle, we let d(x, y)

be the distance from x to y traveling clockwise along the
unit circle (i.e. if y ≥ x, then d(x, y) = y − x else d(x, y) =
(1−x)+y). Let num(x, y) denote the number of peer points
in the half-closed interval (x, y] traveling clockwise from x
to y along the unit circle.

For a given peer p, we let l(p) be p’s peer point. We note
that k applications of next returns the kth next peer in the
clockwise ordering around the circle from l(p) and is denoted

next(k). We assume that a single application of next has
O(1) latency and requires O(1) messages to be sent. We
assume that computing h(x) for some arbitrary point x has
th latency and requires mh messages to be sent. Typically
th = O(log n) and mh = O(log n).

The rest of this paper is laid out as follows. In Section 2
we give an algorithm which allows a peer to estimate n to
within a constant factor. We then use this algorithm in
Section 3 when we present our algorithm for choosing a peer
uniformly at random. We conclude and give directions for
future work in Section 4.

2. ESTIMATING N

In this section, we describe an algorithm which allows
a peer p to estimate n to within a constant multiplicative
factor. Our technique is similar to that of Manku in [10].
The algorithm has two steps. The first is to estimate n
to within a constant exponent, by measuring the distance
between two consecutive peer points and taking its inverse.
The second uses the first estimate n̂1 to estimate ln n within
a constant factor. It then finds the length t of the interval
which contains s = c1 ln n̂1 peer points and uses the ratio of
s over t to get the final estimate n̂2 of n. The constant c1

determines the tightness of the estimate.
The algorithm is given below.

Estimate n

1. n̂1 ← [d(l(p), l(next(p)))]−1;

2. s← c1 ln n̂1;

3. t← d(l(p), l(next(s)(p)));

4. Return n̂2 ← s/t.

We will now show that the algorithm Estimate n returns
a constant factor approximation to n with high probability.
To show this, we will first need the following two lemmas.
The first lemma is similar to Mahlki et. al. [9].

Lemma 1. With probability at least 1− 1/n: (property 1)
h has the property that for any peer, p,

lnn− ln ln n− 2 ≤ ln

�
1

d(l(p), l(next(p))) � ≤ 3 lnn

Consider some interval I of the unit circle. We say that I
is anchored if I has a peer point, p, at its counterclockwise
endpoint. We say that p is the anchor point for I. The proof
of the following lemma is in Appendix A.

Lemma 2. Let α1, α2, ε be fixed positive constants with
α1 < α2 and 0 ≤ ε ≤ 1/2. Let C > 144/α1ε

2. Then
for n sufficiently large, with probability at least 1 − 1/n,the
following (property 2) is true for h:

• For any anchored interval I on the unit circle, if the
number of peers that I contains other than the anchor
point is greater than Cα1 ln n and less than Cα2 ln n,
then I is of length between C(1 − ε)α1(ln n/n) and
C(1 + ε)α2(ln n/n)

For given functions f(n) and g(n), we say that f(n) is a
(γ1, γ2) approximation of g(n) if γ1g(n) ≤ f(n) ≤ γ2g(n).
We can now give the main lemma of this section.

Lemma 3. With probability at least 1 − 2/n, h is such
that the output of the algorithm Estimate n, for all peers, is
a (2/7 − ε1, 6 + ε1) approximation of n, for ε1 any positive
constant and n sufficiently large.

Proof. Lemma 1 says that with high probability, s is a
(β, 3) approximation to c1 log n for any fixed β < 1 when n
is sufficiently large. Similarly, Lemma 2 shows that t is a
(β − ε, 3 + ε) approximation to (c1 log n)/n for any ε > 0,

for n and c1 sufficiently large. Thus, n̂2 is a � β
3+ε

, 3
β−ε � -

approximation to n for c1 and n sufficiently large.

3. CHOOSING A RANDOM PEER
Our algorithm for choosing a random peer is presented in

Figure 1. In this algorithm, we let n̂ be a (γ1, γ2)-approximation
to n, γ1, γ2 constants. We further let n′ = n̂/γ1 and let
λ = 1/(7n′). Then n′ ≥ n and is Θ(n) and λ ≤ 1/(7n) and
is Θ(1/n). The main idea of the algorithm is to partition the
unit circle into disjoint intervals so that for each peer there
is a set of intervals assigned to that peer whose lengths sum
exactly to λ.

The algorithm randomly selects a random number from
(0, 1]. If there is a peer p such that d(r, l(p)) < λnum(r, l(p))
with num(r, l(p)) ≤ 6 lnn′, then the algorithm returns the
first such peer. Else the algorithm repeats until a peer is
returned. We will show that with high probability, the hash
function has properties which imply that the expected num-
ber of repetitions of the algorithm is O(1).

3.1 Proof of Correctness
We say that the algorithm assigns a point x on the unit

circle to a peer p if the algorithm returns p when x is the ran-
dom number chosen in step 1. In this section, we show that
the algorithm assigns to each peer a set of disjoint intervals
whose lengths sum to λ.

Choose Random Peer

While TRUE do :

1. r ← random number in (0, 1];

2. If d(r, l(h(r))) < λ then return h(r);

3. Else:

(a) first← h(r); T ← d(r, l(first))− λ;

(b) Repeat 6 ln n′ times or until T < 0:

i. T ← T + d(l(first), l(next(first)))− λ;

ii. if T < 0 return next(first), else first ←
next(first).

Figure 1: Algorithm for choosing a random peer.

Lemma 4. For any point r on the unit circle, if r is as-
signed by the algorithm to a peer p, then d(r, l(p)) < λnum(r, l(p))
and num(r, l(p)) ≤ 6 ln n′. If there is more than one such
peer, then the algorithm assigns r to the closest one, i.e.,
the one such that d(r, l(p)) is minimal.

Proof. If r = l(p) or is within distance λ of l(p) and p is
the next peer whose peer point is clockwise from r then line 2
of the algorithm assigns r to p. In this case, num(r, l(p)) = 1
and d(r, l(p)) < λ.

If line 3 is executed, the algorithm visits a succession of
peer points going clockwise from r. Let pi represent the peer
whose peer point is the ith encountered (here, p1= h(r)). In
line 3a, T is set to d(r, l(p1))−λ. It is easy to see by induction
that at the ith repetition of line 3b(ii), T = d(x, l(pi+1)) −
λ(i + 1) = d(x, l(pi+1)) − λnum(x, l(pi+1). The algorithm
returns the first peer pi such that T < 0, i.e., d(r, l(pi)) <
λnum(x, l(pi)), provided that such a peer is encountered
within 6 ln n′ repetitions.

For any peer p, let Int(p) = (x, l(p)] be the half-closed
interval on the unit circle whose endpoint x is the clos-
est point counterclockwise from l(p) such that d(x, l(p)) ≥
λnum(x, l(p)).

Lemma 5. Let p, p′ be any peers such that num(Int(p)) ≤
6 lnn′ and p 6= p′. Then:

1. Every point assigned by the algorithm to p lies in Int(p).

2. Every point in Int(p) is assigned by the algorithm to a
peer whose peer point lies in Int(p).

3. Either Int(p) ⊂ Int(p′), Int(p′) ⊂ Int(p), or Int(p)∩
Int(p′) = ∅.

Proof. Proof of (1): Let Int(p) = (x, l(p)]. Let y be
a point assigned to p. Then d(y, p) < λnum(y, l(p)), by
Lemma 4. Assume to the contrary that y lies outside Int(p).

We first look at the case that there is no peer point in
[y, x]. Then d(y, p) = d(y, x)+d(x, p) ≥ d(x, p) ≥ λnum(x, p) =
λnum(y, p), contradicting the assumption that the algorithm
would have assigned y to p.

Alternatively, let p′ be the peer whose peer point is closest
to x in [y, x] (or equal to x if x is a peer point). By assump-
tion, since y was assigned to p, d(y, l(p)) < λnum(y, p).
Now, d(y, l(p)) = d(y, l(p′)) + d(l(p′), l(p)) and num(y, p) =
num(y, l(p′)) + num(l(p′), l(p)). Hence we have

d(y, l(p′))+d(l(p′), l(p)) < λnum(y, l(p′))+λnum(l(p′), l(p)).

Since d(l(p′), l(p)) ≥ (d(x, l(p)) ≥ λnum(x, l(p)) and
num(l(p′), l(p)) = num(x, l(p)), the above inequality is pre-
served when we subtract d(l(p′), l(p)) from the left-hand side
and λnum(l(p′), l(p)) from the right-hand side. This implies:

d(y, l(p′)) < λnum(y, l(p′)).

By Lemma 4, the algorithm would have assigned y to p′

since d(y, l(p′)) < d(y, l(p)), contradicting our assumption.

Proof of (2): This follows from the fact that every point y
in lnt(p) has the property that d(y, l(p)) < λnum(y, l(p))).
Hence by Lemma 4, y is either assigned to p or some closer
peer in [y, l(p)].

Proof of (3): This is similar in technique to the proof of (1)
and is left to the reader.

Lemma 6. The set of intervals assigned to any peer p with
num(Int(p)) ≤ 6 ln n′ has total length λ.

Proof. The proof is by induction on the size of num(Int(p))
where p is any peer.

Base Case: num = 1. In this case, Int(p) = (l(p)− λ, l(p)].
Lemma 5 (2) implies that every point in Int(p) is assigned
to p and Lemma 5 (1) implies that no other point is assigned
to p so the single interval assigned to p has length λ.

Induction step: Suppose num(Int(p)) = k. Then there are
k − 1 peer points within Int(p) excluding l(p). By Lemma
5(3), each of these peer points p′ have Int(p′) ⊂ Int(p).
Since Int(p′) does not contain l(p), num(Int(p′) < k. By
the induction assumption, each peer p′ is assigned an inter-
val of length λ, for a total of (k − 1)λ. By Lemma 5 (2),
every point in Int(p) is assigned to a peer in Int(p). Hence
since d(Int(p)) = λk, kλ − (k − 1)λ = λ has been assigned
to p. By Lemma 5 (1), no other points on the unit circle
have been assigned to p. Hence p has been assigned a set of
intervals whose lengths add up to λ.

We will show that with high probability, every peer p has
num(Int(p)) ≤ 6 ln n′.

Lemma 7. With probability greater than 1 − 1/n, (prop-
erty 3) h has the property that any interval containing more
than 6 ln n peer points has length greater than ln n/n.

Proof. We will show that no interval of length less than
(lnn)/n contains more than 6 ln n peer points. The anal-
ysis follows from the balls and bins paradigm. Partition
the unit circle into disjoint consecutive intervals (bins) of
length (lnn)/n. Let X be the number of balls in any one
bin. Then E[X] = lnn. By the Chernoff bound, Pr(X >

(1 + δ)E[X]) < e−2E[X] = 1/n2 for δ ≥ 2.
Let δ = 2. With probability 1/n2, no consecutive pair of

bins contains more than 2(1 + δ)E[X] = 6 lnn peer points
which implies that no interval of length (lnn)/n in the unit
circle contains more than 6 lnn peer points.

Lemma 8. Let h be a random hash function such that
properties (1)–(3) hold. Then for every peer p, num(Int(p)) ≤
6 lnn′.

Proof. From Lemma 1 and Lemma 2, we know that
6 lnn′ ≥ 6 lnn and that (lnn′)/n′ ≤ (lnn)/n. By Lemma 7,
for any interval (x, y], if num(x, y) ≥ 6 ln n′ ≥ 6 lnn then
d(x, y) ≥ lnn/n ≥ lnn′/n′ > λnum(x, y). Hence if x is any
point such that num(x, l(p)) ≥ 6 ln n′ then x /∈ Int(p). It
follows that num(Int(p)) < 6 lnn′.

Theorem 1. Let h be a random function. Then with
probability at least 1 − 3/n, h has properties (1)-(3). In
this case, our algorithm chooses each peer with probability
1/n.

Proof. Let p be any peer. From Lemma 8, num(Int(p)) ≤
6 lnn′. From Lemma 6, each such peer is assigned a set of
points whose lengths are equal. Since each point which is
assigned to a peer has an equal chance of being chosen, the
probability of choosing any peer is equal to the probability
of choosing any other peer, or 1/n.

3.2 Latency and Bandwidth

Theorem 2. Our algorithm has latency O(th+log n) and
sends O(mh + log n) messages in expectation. In particular,
if th = mh = O(log n), then our algorithm has latency cost
O(log n) and sends O(log n) messages in expectation.

Proof. It is easy to see that n̂ can be computed with
O(th+log n) latency and with O(mh+log n) messages, since
there are O(1) applications of h and O(log n) applications
of next.

We note that every iteration of the body of the while loop
of the algorithm also has O(th + log n) latency and sends
O(mh + log n) messages, since there is one application of h
and O(log n) applications of next.

Now we bound the expected number of times the body of
the while loop must be iterated until it succeeds. Since a
disjoint arc length of λ has been assigned to each peer, the
probability of finding an assigned point is nλ or Ω(1). Since
each trial is independent, the number of trials needed to
find an assigned point is a geometric random variable with
probability nλ. In particular, the expected number of trials
is no greater than 1/(nλ) or O(1). This implies that the
expected latency of the entire algorithm is O(th +log n) and
the expected number of messages sent is O(mh + log n).

4. CONCLUSION AND OPEN PROBLEMS
We have presented the first algorithm which chooses a

peer uniformly at random from the set of all peers in a DHT.
Numerous open problems remain including the following:

• Our algorithm is relatively simple and has small asymp-
totic resource costs. We would like to empiricially eval-
uate it to determine if it will work well in practice. Is
it possible to reduce the constants in the asymptotic
notation any further?

• Many peer-to-peer networks like Gnutella have much
less structure than a DHT. Are there efficient algo-
rithms to choose random peers in semi-structured peer-
to-peer networks?

• In some applications, we may want to choose a peer
with a biased probability. For example, we may want
to choose a peer with probability that is inversely pro-
portional to its distance from us on the unit circle.
Are there efficient algorithms to choose a random peer
with specifically biased probabilities?

5. REFERENCES
[1] M. Alder, E. Halperin, R. Karp, and V. Vazirani. A

stochastic process on the hypercube with applications
to peer-to-peer networks. In ACM Symposium on
Theory of Computing (STOC), 2003.

[2] M. Bellare and P. Rogaway. Random oracles are
practical: a paradigm for designing efficient protocols.
In The First ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[3] J. Byers, J. Considine, and M. Mitzenmacher. Simple
load balancing for distributed hash tables. In
Proceedings of the Second Internation Peer to Peer
Symposium (IPTPS), 2003.

[4] C. Gkantsidis, M. Mihail, and A. Saberi. Random
walks in peer-to-peer networks. In Conference of the
IEEE Communications Society (INFOCOM), 2004.

[5] D. Karger and M. Ruhl. Finding nearest neighbors in
growth-restricted metrics. In ACM Symposium on
Theory of Computing (STOC), 2002.

[6] D. Karger and M. Ruhl. New algorithms for load
balancing in peer-to-peer systems. In Proceedings of
the Fourth Internation Peer to Peer Symposium
(IPTPS), 2004.

[7] C. Law and K.-Y. Siu. Distributed construction of
random expander graphs. In Conference of the IEEE
Communications Society (INFOCOM), 2003.

[8] S. Lewis and J. Saia. Scalable byzantine agreement.
Technical report, University of New Mexico, 2004.

[9] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A
scalable and dynamic emulation of the butterfly
network. In ACM Conference on the Principles of
Distributed Computing (PODC), 2002.

[10] G. Manku Routing networks for distributed hash
tables In ACM Conference on the Principles of
Distributed Computing (POD C), 2003.

[11] R. Motwani and P. Raghavan. Randomized Algorithms,
chapter 5.3. Cambridge University Press, 1995.

[12] R. Motwani and P. Raghavan. Randomized Algorithms,
chapter 4. Cambridge University Press, 1995.

[13] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[14] M. Naor and U. Weider. Novel architectures for p2p
applications: the continuous-discrete approach. In
SPAA, 2003.

[15] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble,
and H. M. Levy. An analysis of internet content
delivery systems. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation
(OSDI), December 2002.

[16] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing
Systems. In Proceedings of Multimedia Computing and
Networking, 2002.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In
Proceedings of the ACM SIGCOMM 2001 Technical
Conference, San Diego, CA, USA, August 2001.

APPENDIX

A. PROOFS
In this section, we present proofs of some of the theorems

stated in the paper.

Theorem 3. With high probability, when n peers are dis-
tributed uniformly at random on the unit circle, the shortest
arc length between two peers is Θ(1/n2)

Proof. First we show that the smallest arc length is
O(1/n2). Imagine that we are tossing the peers onto the
unit circle one at a time. Let k be such that 0 ≤ k < 1 and
let χi be the event that no arc of size k or less is formed
up to the time the i-th peer is thrown in. Then we can say
that:

P (χi|χi−1) ≤ 1− k(i− 1).

Thus we have:

P (χn) =

n�

i=2

P (χi|χi−1);

≤
n�

i=1

(1− ki);

≤ e− � n
i=1 ki;

≤ e−k(n+1)n/2.

We note that the last term is a constant only when k =
O(1/n2)

To see that the smallest arc length is Ω(1/n2), let χ̄n be
the probability that some arc is of length k or less when the
n-th peer is thrown. Then note that:

P (χ̄n) = 1− P (χn);

≥ 1− e−k(n+1)n/2.

For k = Ω(1/n2), this probability can be made arbitrarily
close to 1.

We now present the proof of Lemma 2 which we repeat
here for convenience.

Lemma 2: Let α1, α2, ε and k be fixed positive constants with
α1 < α2 and 0 ≤ ε ≤ 1. Let C be a positive constant
depending only on α1, α2, ε and k. Then for n sufficiently
large, with probability 1−n−k,the following statement is true:

• For any anchored interval I on the unit circle, if the
number of peers that I contains other than the anchor
point is greater than Cα1 ln n and less than Cα2 ln n,
then I is of length between C(1−ε)α1(lnn/n) and C(1+
ε)α2(lnn/n)

Proof. Fix some peer point p on the unit circle. Let
Is be the interval starting at p and extending clockwise for
a distance of C(1 − ε)α1(lnn/n). Let Il be the interval
starting at p and extending clockwise for a distance of C(1+
ε)α2(ln n/n). We will now show that with high probability,
Is contains less than or equal to Cα1 log n other peer points
and Il contains greater than or equal to Cα2 ln n other peer
points.

Let Xs be a random variable giving the number of peer
points other than p that fall in the interval Is. Note that
a single peer point falls in the interval Is with probability
C(1− ε)α1(lnn)/n, so by linearity of expectation:

E(Xs) = C(1− ε)α1(n− 1)(lnn)/n.

Chernoff bounds [12] tell us that for any δ, 0 ≤ δ ≤ 1:

P (Xs > (1 + δ)E(Xs)) < e−
δ
2

E(Xs)
3 ;

Setting δ = ε/(1− ε), ensures that

(1 + δ)E(Xs) = Cα1(ln n)(n− 1)/n

≤ Cα1 ln n

Thus:

P (Xs > Cα1 ln n) < e
−

Cε
2

α1(n−1) ln n

3n(1−ε) .

≤ e
−

Cε
2

α1 ln n

6(1−ε) .

≤ e−
Cε

2
α1 ln n

6 .

Where the second line follows if we assume that n ≥ 2
(since then (n − 1)/n ≥ 1/2) and the third line follows by
our assumption that 0 ≤ ε ≤ 1.

Now let Xl be a random variable giving the number of
peer points other than p that fall in the interval Il. A single
peer point falls in the interval Xl with probability C(1 +
ε)α2(ln n/n) so by linearity of expectation:

E(Xl) = C(1 + ε)α2(n− 1)(lnn)/n.

Chernoff bounds [13] tell us that for any δ, 0 ≤ δ ≤ 1:

P (Xl < (1− δ)E(Xl)) < e−
δ
2

E(Xl)

2 ;

We want to choose δ such that (1 − δ)E(Xl) ≥ Cα2 lnn.
Assume that (n − 1)/n ≥ γ for some value γ < 1. Then
we know that E(Xl) ≥ Cγ(1 + ε)α2 ln n. Thus to ensure
that (1− δ)E(Xl) ≥ Cα2 lnn, it suffices if (1− δ) ≥ 1

γ(1+ε)
.

In other words, we need δ ≤ 1 − 1
γ(1+ε)

. To use Chernoff

bounds, we have the additional constraint that 0 ≤ δ ≤
1. Thus, it must be the case that 1

γ(1+ε)
< 1. Choosing

γ = 1+ε/2
1+ε

satisfies all of these constraints and requires that
δ ≤ ε

2+ε
. To recap, the key assumption we are making is

that (n− 1)/n ≥ 1+ε/2
1+ε

which is true when n ≥ 2(1+ε)
ε

.

Setting δ = ε
2+ε

(and assuming that n > 2(1+ε)
ε

), we have
that.

P (Xl < Cα2 lnn) < e
−

Cα2(n−1)ε
2(1+ε) ln n

2n(2+ε)2 .

≤ e
−

Cα2ε
2(1+ε) ln n

4(2+ε)2 .

≤ e−
Cα2ε

2 ln n

36 .

Where the second line follows if we assume that n ≥ 2 (since
then (n − 1)/n ≥ 1/2) and the third line follows by our
assumption that 0 ≤ ε ≤ 1.

Now for the peer p, consider any anchored interval I that
has p as its anchor point. Say that I is small if it has length
less than or equal to C(1− ε)α1(log n/n), and large if it has
length greater than or equal to C(1 + ε)α2(log n/n). The
bad event for p is that either 1) I is small and I contains
greater than Cα1 log n peer points other than p or 2) I is
large and I contains less than Cα2 log n peer points other
than p. Let ξp be the bad event for the peer p. Then, by a
simple union bound, we can say that

P (ξp) ≤ e−
Cε

2
α1 ln n

6 + e−
Cα2ε

2 ln n

36

≤ 2e−
Cε

2
α1 ln n

36

Now let ξ be the event that for any peer p, there exists
an interval I anchored at p such that 1) I is small and I
contains greater than Cα1 lnn peer points other than p or 2)
I is large and I contains less than Cα2 ln n peer points other
than p. In other words, ξ is the event that the statement
of the lemma fails. Again by a simple union bound, we can
say that:

P (ξ) ≤ 2ne−
Cε

2
α1 ln n

36

The last equation can be made arbitrarily small for C chosen
large enough.

