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Abstract. Consider the following game between a worm and an alert3

over a network of n nodes. Initially, no nodes are infected or alerted
and each node in the network is a special detector node independently
with small but constant probability. The game starts with a single node
becoming infected. In every round thereafter, every infected node sends
out a constant number of worms to other nodes in the population, and
every alerted node sends out a constant number of alerts. Nodes in the
network change state according to the following four rules: 1) If a worm
is received by a node that is not a detector and is not alerted, that node
becomes infected; 2) If a worm is received by a node that is a detector,
that node becomes alerted; 3) If an alert is received by a node that is not
infected, that node becomes alerted; 4) If a worm or an alert is received
by a node that is already infected or already alerted, then there is no
change in the state of that node.
We make two assumptions about this game. First, that an infected node
can send worm messages to any other node in the network but, in con-
trast, an alerted node can send alert messages only through a previously
determined, constant degree overlay network. Second, we assume that the
infected nodes are intelligent, coordinated and essentially omniscient. In
other words, the infected nodes know everything except for which nodes
are detectors and the alerted nodes’ random coin flips i.e. they know
the topology of the overlay network used by the alerts; which nodes
are alerted and which are infected at any time; where alerts and worms
are being sent; the overall strategy used by the alerted nodes; etc. The
alerted nodes are assumed to know nothing about which other nodes are
infected or alerted, where alerts or worms are being sent, or the strategy
used by the infected nodes.
Is there a strategy for the alerted nodes that ensures only a vanishingly
small fraction of the nodes become infected, no matter what strategy is
used by the infected nodes? Surprisingly, the answer is yes. In particular,
we prove that a simple strategy achieves this result with probability ap-
proaching 1 provided that the overlay network has good node expansion.
Specifically, this result holds if d ≥ α and α

β(1−γ) > 2d
c , where α and

3 Specifically, we consider self-certifying alerts[6], which contain short proofs that a
security flaw exists and thereby eliminate false alerts.



β represent the rate of the spread of the alert and worm respectively;
γ is the probability that a node is a detector node; d is the degree of
the overlay network; and c is the node expansion of the overlay network.
Next, we give empirical results that suggest that our algorithms for the
alert may be useful in current large-scale networks. Finally, we show that
if the overlay network has poor expansion, in particular if (1− γ)β > d,
then the worm will likely infect almost all of the non-detector nodes.
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graphs, epidemic processes
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1 Introduction

Attacks on the Internet are characterized by several alarming trends: (i) increases
in frequency: large-scale attacks are approximately doubling every year [22]; (ii)
increases in speed: the recent slammer worm infected 90% of vulnerable hosts
within 10 minutes [17]; and (iii) increases in severity: the slammer worm had
many unforeseen consequences including failures of 911 emergency data-entry
terminals, network outages, and canceled airline flights, [17, 7, 11, 10]. In addi-
tion, there has been a broadening of motivations for attack to include extor-
tion [23, 1]; phishing [8, 24, 12]; sending anonymous spam [15, 13]; and political
reasons [18, 19]. Modern computer worms simply propagate too quickly for hu-
man detection. Since attacks are now occurring at a speed which prevents direct
human intervention, there is a need to develop automated defenses. Since the
financial, social and political stakes are so high, we need defenses which are
provably good against a worst case attacks.

A promising recent result in this direction is the development of self certifying
alerts(SCAs)[6]. An SCA is a short, machine verifiable, automatically generated
proof that a security flaw exists. Because an SCA is short, it is easily propagated
through a network. Because an SCA is efficiently verifiable, false positives are
eliminated. SCAs are generated by dedicated machines called detectors. Detec-
tors run instrumented software to automatically detect a worm, determine which
vulnerability the worm exploits, and then generate an SCA for the worm, i.e.
a short proof that the vulnerability the worm exploits does in fact exist. After
receiving and verifying an SCA, a machine can generate a filter that blocks in-
fection by analyzing the exploit which the SCA proves exists. Because the SCA
focuses on the security flaw exploited by a worm, rather than the textual con-
tent of the worm, SCAs can easily be created for polymorphic worms. Recent
empirical results suggest that SCAs can be generated, checked and deployed ef-
ficiently. For example, the Vigilante system [5] takes 18 milliseconds to generate
an SCA for the Slammer worm, the resulting SCA is 457 bytes long, the time
to verify this SCA is 10 milliseconds, and the time to create a filter from the
verified SCA is 24 milliseconds. These times for SCA generation, verification



and filter creation are on the same scale as the time it takes a worm to infect a
machine. Vigilante performs similarly for two other Internet worms, Code Red
and Blaster.

Distribution of alerts in the Vigilante system is performed by the Pastry[20]
peer-to-peer overlay network. It is shown empirically that a very small fraction of
special detector nodes is enough to ensure that a worm infects no more than 5%
of the vulnerable population. While these initial results are promising, several
critical problems remain. First, Vigilante requires that the nodes participating
in the overlay network all be resistant to infection. Second, Vigilante requires
that the topology of the overlay network be hidden from the worm. These two
assumptions may hold true for an overlay network owned and operated by a sin-
gle company, but seem unlikely to hold for a large-scale open source peer-to-peer
network. Finally, while the Vigilante systems performs well empirically against
currently known worms, the system has no known theoretical guarantees against
all worms. In this paper, we focus exclusively on the problem of distribution of
alerts through an overlay network and address these three problems.

1.1 Our Model

We model our problem of alert distribution as a game between a worm and an
alert over a synchronous network. Initially, no nodes are infected or alerted and
each node in the network is a special detector node independently with fixed
probability γ. The game starts with a single node becoming infected. In every
round thereafter, every infected node sends out β worms to other nodes in the
population, and every alerted node sends out α alerts for fixed constants α and
β. Nodes in the network change state according to the following four rules: 1) If
a worm is received by a node that is not a detector and is not alerted, that node
becomes infected; 2) If a worm is received by a node that is a detector, it is not
infected, instead it becomes alerted; 3) If an alert is received by a node that is
not infected, that node becomes alerted; 4) If a worm or an alert is received by
a node that is already infected or already alerted, then there is no change in the
state of that node.

We make two assumptions about this game. First, an infected node can send
worm messages to any other node in the network but, in contrast, an alerted node
can send alert messages only through a previously determined, constant degree
overlay network. In other words, the alert-spreading algorithm is “polite” in
the sense that it does not bombard arbitrary nodes with alerts unless it knows
that they are interested in receiving them. Since the worm is not required to
be polite, it is not constrained by the overlay network, although a particularly
sophisticated worm may exploit the structure of the overlay network for its own
purposes. An edge in this overlay network represents an agreement between two
nodes to accept SCAs from each other. Second, we assume that the infected
nodes are intelligent, coordinated and essentially omniscient. In other words,
the infected nodes know everything except for which nodes are detectors and
the alerted nodes’ random coin flips i.e. they know the topology of the overlay
network used by the alerts; which nodes are alerted and which are infected at



any time; where alerts and worms are being sent; the overall strategy used by
the alerted nodes; etc. Moreover, the worm is unconstrained in which nodes it
attacks. For example, it could always try to infect nodes which have never been
infected before. The alerted nodes are assumed to know nothing about which
other nodes are infected or alerted, where alerts or worms are being sent, or the
strategy used by the infected nodes. Also the number of messages an alerted
node can send is constrained by the degree of the graph.

1.2 Results

In our results, we make use of a d-regular overlay network with node expansion c.
As a concrete example, a random d-regular graph has node expansion c = d/5−1
with high probability4. Throughout this paper, we use the phrase with high
probability (w.h.p) to mean with probability at least 1 − 1/nε for some fixed
ε > 0. Let RANDOM be the algorithm that has each alerted node in each round
send out alerts to α nodes selected uniformly at random without replacement
from its neighbors in the overlay. Our main theoretical results are stated below
as the following two theorems which are proven in Sections 2 and 4 respectively.

Theorem 3: If d ≥ α and α
β(1−γ) > 2d

c , then the algorithm RANDOM ensures
that, w.h.p, only o(n) nodes are ever infected.

Theorem 6: If the overlay network has bounded degree d and β(1− γ) > d, then
any alert algorithm in expectation will save a fraction of non-detector nodes that
approaches 0 as n gets large

Our empirical results, presented in Section 3, show that if the overlay network
is a d-regular random graph, as n grows large, the algorithm RANDOM saves an
increasingly large fraction of the nodes against a worm that spreads uniformly
at random. For example, for n = 106, d = 100, β = 1, α = 5 and γ = .02, we
were able to save 99% of the nodes on average.

1.3 Other Related Work

Several approaches for generating self-certifying alerts have been proposed re-
cently (see e.g. [9, 14, 3], but few systems have been proposed for disseminating
those alerts. The Vigilante system and its limitations have been discussed above.
Zhou et al. [16] propose a system for distributing alerts over a network, but their
system is focused on confronting worms that can spread only through the same
overlay network through which the alert is spreading. Vojnovic and Ganesh [25]
and Shakkottai and Srikant [21] perform exhaustive analytical and empirical
studies of the effectiveness of different types of alert dissemination. However,
their work focuses only on worms that spread uniformly at random in the net-
work. In contrast, our work considers worms that may use smarter dissemination
strategies.
4 see [4] for an algorithm for sampling from random d-regular overlay networks in a

distributed manner



2 Alert versus worm in an expanding overlay network

In this section, we focus on d-regular graphs for our overlay network. We show
that for a suitable choice of parameters and a particular type of overlay network,
we are able to save most of the nodes from getting infected with high probability.
More precisely, at the end of the process only o(n) nodes get infected, and all
other nodes get alerted.

The essential idea is that we want the long-run growth rate of the set of
alerted nodes to be higher than the rate for the infected nodes. The rate for
infected nodes is easy to calculate; assuming an optimal choice of targets, each
infected node infects on average an additional β(1 − γ) nodes per round. The
rate for alerted nodes is trickier, as alerted nodes are limited by the structure
of the overlay network. But we can get a lower bound on the expected rate
during the early parts of the protocol by observing that A alerted nodes will
between them have at most dA neighbors, of which at least cA will not already
be alerted, where c is the expansion parameter of the network. It follows that
each alerted node will attempt to alert on average at least α(c/d) unalerted nodes
at each step. In the absence of the worm, this would give the growth rate of the
alerted nodes; with M infected nodes, we must subtract these from the pool of
new alerted nodes (using the simplifying assumption that the worm successfully
concentrates itself on the boundary of the set A). Fortunately these lost infected
nodes are compensated for somewhat by the boost of γβM new alerted nodes
from triggered detectors.

This overview ignores two important details. Because we want a high-probability
bound, it is not enough simply to consider expected growth rates. And because
the expansion factor applies only for sets with n/2 or fewer elements, we must
consider separately the case where the set of alerted nodes is larger. We handle
both problems by dividing the execution into three phases. Phase I starts with
a single infected node and ends when lnn worm messages have been received
by nodes in the network. During this phase we ignore the spread of alerts and
content ourselves with getting only the Θ(γ lnn) alerted nodes that result from
successful detections. Phase II starts at the end of of Phase I. During this phase
we use the fact that the number of infected and alerted nodes are both Ω(log n)
to show that both the worm and the SCA propagate at close to the expected rate
with high probability; the key point is that when the populations of both are
large enough, Chernoff bounds apply to the increases. Phase II ends when n/d2

nodes have been alerted by the SCA; at this point we can no longer rely on the
expansion properties of the network and must resort to a different analysis. Note
that there are expansion properties till the end of Phase II. For this analysis,
done in Section 2.3, we show that in constant number of steps, we would alert
n/2 nodes and then after c log(log(n)) further steps we would have only o(n) not
alerted or not infected nodes. Thus we would have shown that only o(n) nodes
could have been infected and θ(n) nodes have been alerted.

In the remainder of this section, all lemmas that bound a random variable’s
value for t rounds hold with probability greater than or equal to 1 − t/nc for



some fixed constant c > 0. Also for all the remaining lemma’s in this section,
d ≥ α.

2.1 Phase I

Let Z be the set of nodes that receive the first lnn worm messages; i.e., the set
of nodes that receive worm messages in Phase I.

We write Ai for the number of nodes alerted at time t, counting from the
end of Phase I; thus A0 is the number of nodes alerted in Z.

Lemma 1. At the end of Phase I, (a) the expected number of alerted nodes
E[A0] is at least γ lnn; and (b) for any c > 0, there exists a constant δ ≤ 1/2,
such that with probability greater than 1− 1/nc, (1− δ) E[A0] ≤ A0

Proof. For each v ∈ Z, let Xv be the indicator random variable for the event that
v is alerted in Phase I and let Yv be the event that v is a detector node. While the
Xv are not necessarily independent, we do have that Xv ≥ Yv for all v, and thus
A0 =

∑
v∈Z Xv ≥

∑
v∈Z Yv. It follows that E[A0] ≥

∑
E[Yv] = γ|Z| = γ lnn.

The second part is an immediate application of Chernoff bounds.

It follows that A0 is Θ(lnn) with high probability.

2.2 Analysis of Phase II

For the second phase, begin by comparing the number of infected nodes in the
actual process with the number of infected nodes in an infinite graph where the
SCA has no effect on the spread of the worm. The process in the latter graph
has the advantage of being much easier to analyze; and, as we show, it gives an
upper bound on the outcome of the original process.

Formally, let Mt be the number of infected nodes at time t in the original
graph, where as before we count rounds from the start of Phase II. Let M ′

t be the
number of infected nodes at time t in an infinite graph under the assumptions
that (a) no alert messages are ever sent out by the detector nodes, even though
they are alerted by worm messages, and (b) each infected node spreads the worm
to β unique, previously uninfected nodes in the network at each round. Where
no confusion will result, we also use Mt and M ′

t to refer to the set of nodes
infected in each case.

Observe that the assumptions for M ′
t only increase the number of infected

nodes; so that M ′
t stochastically dominates Mt in the sense that ∀ k ≥ 0,

Pr(M ′
t ≥ k) ≥ Pr(Mt ≥ k), no matter what strategy the worm applies in

the original graph.
Let M0 and M ′

0 count the nodes infected by the end of Phase I, in their
respective simulations. From Lemma 1, we have that M0 ≤ |Z| −A0 ≤ lnn.

Lemma 2. For all t ≥ 0, the expected value of the random variable M ′
t at time

t is equal to (1 + β(1− γ))tM0.



Proof. By our assumption about the number of messages sent by the infected
nodes and the fraction of detector nodes, the expected number of new infected
nodes is β(1−γ) E[M ′

t ], where (1−γ) is the probability that a given node is not
a detector node. Hence the recurrence relation for E[M ′

t ] is E[M ′
t ]=(1 + β(1 −

γ)) E[M ′
t−1]. Hence E[M ′

t ] = (1 + β(1− γ))tM0.

We now show that M ′
t remains closely bounded around its expected value,

thus giving an upper bound on the variable Mt. The proof of the following lemma
is somewhat technical; it is omitted from this extended abstract due to space
constraints.

Lemma 3. For any c > 0 and fixed β and γ, there exists a constant k such that,
for sufficiently large n and any t, it holds that M ′

s ≤ k E[M ′
s] for all s ≤ t

We now turn to alerted nodes. Let At be the number of nodes that are in
the alerted state at time t. For any set of vertices A, let N(A) be the set of
neighbors of nodes in A in the overlay network that are not themselves in A.
Let the random variable Zt be equal to the number of nodes in N(At−1) that
receive an alert message at time step t.

Lemma 4. For all t ≥ 0, At ≥ At−1 + Zt- M ′
t

Proof. Out of the unalerted nodes which receive alert messages, at most M ′
t−1

nodes could be infected nodes. Hence the lower bound result holds true.

Lemma 5. For all t ≥ 0, E(Zt) ≥ (cα/d)At−1.

Proof. Let St−1 be the set of nodes that are alerted at time t − 1 and let n′ =
|N(St−1)|. Number the nodes in N(St−1) from 1 to n′. Let Xi,t = 1 if the i-th
such node is alerted at time step t for the first time, and 0 otherwise. Then Zt

≥
∑n′

i=1 T (i, t). By linearity of expectation, E[Zt] ≥
∑n′

i=1 E[Xi,t]. Observe that
each node counted in At−1 sends an alert to fixed neighbor with probability α/d;
it follows that for each node i in N(St−1), Pr[Xi,t = 1] ≥ α/d. We thus have
E[Zt] ≥ n′α/d ≥ (cα/d)At−1, where c is the expansion factor.

Lemma 6. For all t ≥ 0 At ≥ At−1 + (1/2)E(Zt)−M ′
t.

Proof. We now imagine that the alerted nodes use the following process to de-
cide where to send out their α alert messages. They randomly permute all of
their neighbors and then send out alerts to the first alpha nodes in this random
permutation. Imagine further that some alerted node j determines its random
permutation by assigning a random variable Xj,i to each node i that is a neigh-
bor of j. This random variable takes on a value uniformly at random in the real
interval between 0 and 1. The nodes that the alert is sent to are thus determined
by finding the α random variables among the d whose outcomes are closest to
0. For each node i and j, there is a separate such random Xj,i and we note
that these random variables are all independent. Let f be a function such that
Zt = f(X1,1, X1,2, . . . , Xm,d). We note that f satisfies the Lipchitz condition, i.e



|f(X1,1, X1,2, . . . , Xl,p, . . . , Xm,d) − f(X1,1, X1,2, . . . , X ′
l,p, . . . , Xm,d)| ≤ 1. This

is the case since a change in the outcome of a single Xi,j will at most cause one
new node to receive an alert and one old node to not receive an alert. Hence we
can use Azuma’s Inequality to say that Pr( Pr(|Zt − E(Zt)| ≥ (1/2)E(Zt) ≤

2e
− (1/4)E(Zt)

2

2At−1d . Since by the previous lemma E(Zt) ≥ (cα/d)At−1, the right hand

side is less than or equal to 2e
− ((cα/d)At−1)2

8At−1d which is O(1/nk′) for some constant
k′ > 0 since At−1 is θ(lnn). The lemma then follows by a simple Union bound.

Let k be the multiplicative constant of the expectation, in the statement of
lemma 3.

Lemma 7. For all t ≥ 0, At ≥ (1 + (αc)/(2d))At−1 − k(1 + β(1− γ))t lnn

Proof. From Lemma 5 and Lemma 6 we get that the number of nodes alerted
at round t follows the inequality At ≥ At−1 + (1/2)((cα/d)At−1) −M ′

t . Hence
At ≥ (1+ (αc)/(2d))At−1−M ′

t . By Lemma 2 and Lemma 3 we know that M ′
t is

no more than k(1 + β(1− γ))t lnn for t rounds, with probability at least 1-t/nc.
Hence replacing the upper bound value of Mt in the above expression yields the
inequality At ≥ (1 + (αc)/(2d))At−1 − k(1 + β(1− γ))t lnn.

Let p = (1 + (αc)/(2d)), q = (1 + β(1− γ)). Hence the recurrence relation as
given in the last lemma is At ≥ pAt−1 − kqt.

Lemma 8. For all t ≥ 0, At ≥ ptA0 − k(qt + pqt−1 + . . . pt)

Proof. Proof is by induction on t. It is easy to see that the base case holds.
Assume that the claim holds for all rounds less than or equal to t-1. Hence
At ≥ p(pt−1A0 − k(qt−1 + . . . pt−1))− kqt. Expanding the algebraic expression,
we get the expression in the claim.

Let κ = p/q. Then At ≥ pt lnn− ptk(1 + 1/κ + . . . (1/κ)t). Or

At ≥ pt(lnn− k(1 + 1/κ + . . . (1/κ)t)). (1)

2.3 Analysis of Phase III

In this phase, we make use of a graph with two types of expansion. We show
below that a random d regular graph has the types of expansion that we need.
The proof of the following two theorems are omitted from this extended abstract.

Theorem 1. Let d ≥ 30 and ε > 0, then with high probability, a random d-
regular graph G has the following properties

1. For any set S such that ε log n ≤ |S| ≤ n
d2 , |N(S)| ≥ |S|(d

5 − 1).
2. For any set S such that n

d2 ≤ |S| ≤ n
2 , |N(S)| ≥ |S|

2 .



The following theorem assumes that the overlay network has expansion prop-
erties as given in the Theorem 1.

Theorem 2. Assume that at some point, the number of alerted nodes is at least
n/d2 and that the number of infected nodes is no more than n1−ε for some ε > 0.
Then w.h.p, at the end of the process, all but o(n) nodes will be alerted.

The next theorem is the main result of this section.

Theorem 3. If d ≥ α and α
β(1−γ) > 2d

c , then the algorithm RANDOM ensures
that, w.h.p, only o(n) nodes are ever infected.

Proof. Since α
β(1−γ) > 2d

c , therefore αc
2d > β(1− γ). Hence 1+αc

2d > 1 + β(1− γ),
or p/q > 1. From equation 1 it is clear that At ≥ ptlnn− 3k. Hence At ≥ pt.
Hence for t ≥ logpn, At ≥ Ω(n). Hence in Phase II, the process cannot last
for more that logp(n) steps. Hence from Lemma 3, we know that Mlogp(n) ≤
k(1+β(1−γ))logp(n) with probability greater than 1− logp(n)/nc. Hence Mlogpn

< k qlogp(n). Since p > q, clearly Mt = o(n) at the end of Phase II. Further it
is O(n1−ε). Now, from Theorem 2 , we know that if we have o(n1−ε) infected
nodes at the end of Phase II , we would have at most o(n) infected nodes at the
end of the Phase III.

3 Empirical Results

We simulated the spread of a worm and an alert through a network to empirically
determine the fraction of nodes saved.5 We performed our experiment using a
random d-regular graph as the overlay network and set each node in the network
to be a detector node independently with probability γ. In addition, we fixed the
worm strategy such that each infected node, in each round, sent out the worm to
β unique nodes selected uniformly at random, and we fixed the alert strategy such
that each alerted node sent out the alert to α unique nodes selected uniformly
at random among its neighbors in the overlay network. We note that the worm
strategy we used in these experiments is not necessarily the best possible worm
strategy, but we selected this strategy for concreteness. Our d regular random
graph was created using the configuration model method proposed in [2].

In each round we iterate through the set of vertices, allowing each infected or
alerted node to send the worm or alert to the appropriate number of other nodes
in the network. There are several possible strategies for resolving the status of
a virgin (i.e. neither alerted or infected) node that gets both a worm message
and an alert message in the same round. In our previous theoretical analysis,
we assumed that if a node receives just one worm message it becomes infected.
However, in our experiments, we used the somewhat more relaxed and realistic
assumption that the probability that the node gets infected equals the number
5 All of the code necessary to replicate these experiments is available at http://www.
cs.unm.edu/∼navin/worm.html.



(a) (b)

Fig. 1. (a) log of the network size versus fraction of nodes saved (b) contour plot of α
versus γ required to save 99%, 95% and 90% of the nodes.

of worm messages received divided by the total number of messages received,
and that the probability the node becomes alerted is 1 minus this quantity. We
note that this assumption is equivalent to assuming that the messages all arrive
in the node’s message queue according to some random permutation.

Figure 1(a) illustrates our results when γ = 0.1, β = 1, α = 1 and d = 10,
where we varied the value of n from 210 to 220, multiplying at each step by 2. To
remove noise in the simulation, each data point represents the average over 100
trials. The best result we obtained was saving only 45% of the nodes for n = 220.
Even though this final data point is somewhat disappointing, we do observe a
clear increasing trend in the fraction saved as n increases.

Given these results, it seems for current network sizes, there is not much
hope for the alert when α = β. We thus next considered the case where α > β.
In practice, this condition may hold since the alerts are traveling through a
predetermined overlay network and a technique such as throttling can ensure
that alert messages received through the overlay are given priority over types of
messages. To explore this scenario, we conducted experiments where we fixed β
at 1. We then determined necessary values of γ for each α ranging from 2 to 10,
that would ensure that we save 90%, 95% and 99% of the nodes (Figure 1(b)).
The values of n and d used in the experiment were 106 and 100 respectively.
The results of these experiments were much more encouraging. In particular, for
α = 2, we were able to save 99% of the nodes with γ = .14. When α = 5, we
required a γ of .018 to save 99% of the nodes, and when α = 10, we required a γ
of only .001 to save 99% of the nodes. These results suggest that our algorithms
for spreading alerts might be most effective in conjunction with other techniques
(like throttling) that would enable the alerts to spread more quickly than the
worm.



4 Is expansion necessary?

In this section, we consider what happens in graphs with poor expansion proper-
ties. In particular, we look at the growth rate of the number of nodes at distance
k from some initial point of infection, and show that if this growth rate is small,
the worm successfully infects almost every node that does not detect it itself.

For the purposes of this lower bound, we adopt a simplified deterministic
version of the model. We proceed in a sequence of rounds starting from the time
at which the worm is first detected, and think of the graph as organized in layers
V0, V1, . . . , where V0 contains the initial a0 alerted and b0 infected nodes, and
each Vi is the set of nodes at distance i from this initial set.

We ignore the structure of the interconnections between layers; instead, we
allow an SCA that has already alerted ai nodes in layer Vi to alert any αai nodes
in layer Vi+1 in one round. Because the worm can spread without regard to the
layer structure, we assume that it can attempt to infect these nodes first; a round
thus consists of the worm attempting to infect nodes in layer Vi+1 followed by
the SCA attempting to alert any nodes that are left.

Let bi be the total number of infected nodes in layer i after round i and let
Bi =

∑i
j=0 be the total number of infected nodes after round i without regard

to what layer they are in. The worm can attempt to infect up to βBi nodes in
round i + 1; of these, γβBi will trigger detectors.

If we similarly let ai be the number of alerted nodes in layer Vi after round
i, then the SCA can attempt to alert αai nodes in layer Vi+1. But because the
worm goes first, there may not be any nodes left to alert.

The overall pattern in round i + 1 is thus:

1. The worm attempts to infect up to βBi nodes in layer Vi+1, of which
(1− γ)βBi become infected and γβBi become alerted.

2. The SCA spreads from layer Vi to layer Vi+1, yielding an additional
min(αai, |Vi+1| − βBi) alerted nodes.

This gives us the recurrence

bi+1 = (1− γ)min (|Vi+1|, βBi)
ai+1 = γ min (|Vi+1|, βBi) + min (αai, |Vi+1| − βBi)

Theorem 4. Define ai, bi, and Vi as above. Let |V0|, |V1|, . . . be such that, for
all i ≥ 0,

|Vi+1| ≤ β(1− γ)
i∑

j=0

|Vi|.

Let b0 ≥ (1− γ)|V0|. Then bi ≥ (1− γ)|Vi| for all i.



Proof. Straightforward induction on i. The base case is given. For the induction
step suppose the claim holds for i. Then we have

bi+1 = (1− γ) min (|Vi+1|, βBi)

= (1− γ) min



|Vi+1|, β
i∑

j=0

bj





≥ (1− γ) min



|Vi+1|, β(1− γ)
i∑

j=0

|Vj |





= (1− γ)|Vi+1|.

In other words, if the growth rate of the graph is small enough and the
initial set of alerted nodes is small enough, then the SCA has no effect beyond
the original detection sites.

For a large enough graph, a higher initial growth rate or lower initial worm
numbers can be compensated for in the limit. For simplicity, we consider an
infinitely large graph that is again organized into layers V0, V1, . . . as above.

Theorem 5. Let ai, bi, Vi be as in Theorem 4. Let b0 > 0 and let

lim sup
i→∞

|Vi+1|
∑i

j=0 |Vi|
< (1− β)γ. (2)

Suppose further that |Vi+1| ≥ |Vi| for all i. Then

lim
i→∞

bi

|Vi|
= (1− γ).

Proof. We assume that α is sufficiently large that at the end of round i, any
node in layer i that is not infected is alerted. This assumption only hurts the
worm, so if the assumption is violated the result only improves.

From (2), there exists some ε, i0 such that for all i > i0,
|Vi+1| ≤ (1 − ε)(1 − γ)β

∑i
j=0 |Vj |. Let ri = Bi/

∑i
j=0 |Vj | and compute, for

i > i0,



bi+1 = (1− γ)min (|Vi+1|, βBi)

= (1− γ)min



|Vi+1|, βri

i∑

j=0

|Vi|





= min



(1− γ)|Vi+1|, riβ(1− γ)
i∑

j=0

|Vi|





≥ min
(

(1− γ)|Vi+1|, ri

1− ε
|Vi+1|

)

= min
(

1− γ,
ri

1− ε

)
|Vi+1|.

Unless ri = 1 − γ, we expect bi+1/|Vi+1| to be larger than ri; in particular
we have bi+1/|Vi+1| ≥ min((1 − γ), (1 + ε)ri). The new ratio ri+1 is a weighted
average of ri and bi+1/Vi+1. Under the assumption that |Vi| is nondecreasing,
the weight on the second term is at least 1/(i + 1). Thus we have

ri+1 ≥
i

i + 1
ri +

min(1− γ, εri)
i + 1

= ri +
min((1− γ)− ri, εri)

i + 1
.

Observe that the first term in the minimum is decreasing and the second
increasing. As long as εri < (1 − γ)ri, we have ri+1 ≥ ri

ε
i+1 . So ri+k ≥

ri

(
1 + ε

∑k−1
j=i

1
j+1

)
; as the series diverges, eventually ri+k must be large enough

that the first term takes over. But then let si = (1 − γ) − ri, and compute
si+1 = (1− γ)− ri+1 ≤ si− si

i+1 = si
i

i+1 , from which it follows via a telescoping
product that si+k ≤ si

i
i+k , which goes to zero in the limit.

The proof of the following theorem follows directly from the above.

Theorem 6. For a graph with bounded degree d, we have |Vi+1| ≤ d
∑i

j=1 |Vj |+
1. So if (1− γ)β > d we expect almost no non-detector nodes to be alerted.

5 Conclusion and Future Work

We have described a simple distributed algorithm for spreading alert messages
through a network during a worm attack and have proven that this algorithm
protects all but a vanishingly small fraction of the network provided that the
alerts spread through an overlay network with sufficiently good node expan-
sion. Our algorithm is provably good no matter what strategy the worm uses
to spread through the network. We have demonstrated empirically that this al-
gorithm works effectively against a randomly spreading worm under conditions
that may be reasonable for modern computer networks. Finally, we have shown



that if the overlay network has poor expansion, then the worm will likely infect
almost all of the non-detector nodes in the network. Many open problems remain
including: (1) tightening the upper and lower-bounds for the expansion needed
in the overlay network to save almost all of the nodes; (2) developing other
models for the spread of a dynamic process and its inhibitor over a network,
and finding provably good strategies in these models; and (3) further empirical
study to determine the efficacy of deploying our algorithm in a real network.
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