
Faster Agreement Via a
Spectral Method for

Detecting Malicious Behavior

Valerie King and Jared Saia	

!

Byzantine Agreement

Each node starts with a bit	

Goal: 1) all good nodes output the same bit;
and 2) this bit equals an input bit of a good
node	

t = # bad nodes controlled by an adversary

Applications
!

•Bitcoin	

“Bitcoin is based on a novel Byzantine agreement protocol in
which cryptographic puzzles keep a computationally bounded
adversary from gaining too much influence” [ML ’13]!

•Game Theory (Mediators)	

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH ’08]!

•Peer-to-peer networks	

“These replicas cooperate with one another in a Byzantine agreement
protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ ’00]!

•Also: Control systems, Databases, Sensor networks, Cloud Computing, etc	

!
!

Also: Secure Multiparty Computation, Databases,
State Machine Replication, Sensor Networks, Cloud
Computing, Control systems, etc.	

Classic Model

• Asynchronous: Adversary schedules
message delivery	

• Full Information: Adversary knows state of
all nodes	

• Adaptive Adversary: Adversary takes over
nodes at any time up to t total

Previous Work
• [Ben-Or ’83] gave first randomized

algorithm to solve BA in this model	

• [FLP ’85] showed BA impossible for
deterministic algorithms even when t=1	

• Ben-Or’s algorithm is exponential expected
communication time	

• Communication Time: maximum length of
any chain of messages

Our Result

• Las Vegas algorithm that solves Byzantine
agreement in the classic model 	

• We tolerate 	

• Expected communication time is O(n3) 	

• Computation time and bits sent are also
polynomial in expectation

≤

t = θ(n)

Ben-Or’s algorithm
• Consists of iterations 	

• Uses private random bits to create a fair global
coin with probability 1/2n in each iteration	

• For each iteration there is a correct direction

• If there is a global coin and it is in this direction,
agreement is reached

Our goal: Get a fair global coin after polynomial
iterations using the private random bits

Key Idea

• With constant probability, sum of coinflips
of good nodes will be in the correct
direction and large enough for Ben-Or to
succeed	

• Bad nodes need to generate bad deviation
in the opposite direction of equal
magnitude to foil this good event	

• If the few bad nodes generate large
deviation repeatedly, we can find them

Equivocation: Bad nodes send different coins to different nodes

Issues

Missing coins: Adversary delays messages so that different
nodes receive different coins

Bracha’s Reliable Broadcast: If a good node receives a
message from a bad node, q, all other good nodes that
receive a message from q will receive the same message

Common coins: coins known to most nodes	

No more than 2t coins from good nodes, no more
than 2 per node that are not common. 	

Common coins are known to n-4t good nodes.

Ignore in this talk. 	

 See paper for details

Remaining Problem

• Bad nodes create biased coinflips

Deviation

• All coinflips are either +1 or -1	

• The deviation of p in an iteration is the
absolute value of the sum of p’s coinflips	

• The direction of p in an iteration is the
sign of the sum of p’s coinflips

Iterations and Epochs
• In each iteration, we run modified Ben-Or 	

• There are iterations in an epoch

• In each epoch, we expect a constant
fraction of iterations to be good i.e.
deviation of good nodes is in correct
direction ()� = ✓(n)

m = ✓(n)

� �

•In a good iteration, bad nodes have deviation 	

•(Remaining “good” deviation undone by scheduler)

� �/2

Bad deviation

In an epoch with no agreement, there is a set of ✓(n) iterations I
and a set of at most t nodes B such that:

P
i2I

P
p2B (deviation of node p in iteration i) = ⌦(n2

)

Spectral Blacklisting

Matrix

• M is a m by n matrix	

• M(i,j) = deviation in iteration i of node j	

• Mb is bad columns of M	

• Mg is good columns of M	

• Assume M = [Mb Mg]

Algorithm Sketch
Repeat until reaching agreement	

1. Run an epoch. Let M be the deviation
matrix for that epoch	

2. If |M| is “sufficiently large” then	

A. Compute the right eigenvector, r, of M	

B. Increase bad value of each node i by
r[i]2	

3. Blacklist a node when its bad value
reaches 1

|Mb|≥ C |Mg|

• Lemma 1: In an epoch with no agreement,
whp, for any constant C, for t=c1n chosen
sufficiently small, |Mb|≥ C |Mg|

• Fact 1: Whp

• Fact 2: in such an epoch

• Lemma 1 then follows by algebra	

“sufficiently large”
|Mb| = ⌦(n)

|Mg| = O(n)

rb and rg

• Let r be the top right eigenvector of M	

• Let rb be the vector such that rb[i] = r[i]
for 1≤i≤t and all other entries are 0 	

• Let rg be the vector such that rg[i] = r[i] for
t+1≤i≤n and all other entries are 0	

• Expect |rg|2 to be bigger than |rb|2

=Mb Mg

rb

rg

Mbrb

Mgrg

Lemma 2

Let x = (1/
p
t, 1/

p
t, . . . , 1/

p
t) be a length t unit vector.

Let y

t = (1/
p

m/10, . . . , 1/
p

m/10, 0, . . . , 0) be a length
m unit vector, where the first m/10 entries (the good itera-
tions) equal 1/

p
m/10 and the remaining entries are 0. Note

that xMBy = (m�/20)/(
p

(m/10)t) =
p
mn/(20

p
t/10) =p

mn/(20
p

�1/10)

Note that m+ n  4m. Thus w.h.p. we have that

|MG|  5
p

n(m+ n)

 20
p
mn

where the first step holds via Corollary 1.
Hence, for any constant C, for �1 chosen su�ciently small,

we can ensure that w.h.p. |MB | � C|MG|.
Let M be an m by n matrix such that M(i, j) is the devi-

ation in the i-th iteration of the j-th processor. For analy-
sis, we assume that the columns of M are arranged so that
the columns for the t bad processors are to the left of the
columns for the n � t good processors. We note that this
rearrangement is equivalent to multiplying M by a permu-
tation matrix and so will not e↵ect the singular values of
M .

We thus let M = [MBMG]. Now let ` and r be the top
left and right singular vectors of M and let �1 be the top
singular vector of M i.e. �1 = |M |. We note that �1 � |MB |
and that `TMr = �1.
Now let rb be defined such that for all 1  i  t rb[i] =

r[i] and all other entries of rb are 0. Similarly, define rg

such that for all t + 1  i  n rg[i] = r[i] and all other
entries of rg are 0. Note that by construction, r = rb + rg.

Lemma 2. The following holds w.h.p., |rg|2 < |rb|2/2

Proof. Assume by way of contradiction that |rg|2 �
|rb|2/2. Note that |rg|2 + |rb|2 = |r|2 = 1. Thus, using
our assumption, we have

1 = |rg|2 + |rb|2

� |rb|2/2 + |rb|2

= 3/2|rb|2

This implies that |rb|2  2/3 or |rb| 
p

2/3. We further
note that |rg|2  1, so |rg|  1.

Now Mr = [MBMG](rb + rg) = MBrb + MGrg. Hence
|Mr|  |MB ||rb|+ |MG||rg|.

Putting this together, we have:

|MB |  |M |
= `T (Mr)

 |`||Mr|
 |MB ||rb|+ |MG||rg|
 |MB |(|rb|+ (1|/C)|rg|)
 |MB |(

p
2/3 + 1/C)

< |MB |

where the third line follows by the Cauchy-Schwartz inequal-
ity, and the last line follows for C su�ciently large.

Lemma 2: Whp, |rg|2 < |rb|2 /2

Proof: Assume not. Then |rb|2 ≤ 2/3

where the last line holds if C ≥ 5.45 (i.e. t ≤ .004n)

Let x = (1/
p
t, 1/

p
t, . . . , 1/

p
t) be a length t unit vector.

Let y

t = (1/
p

m/10, . . . , 1/
p

m/10, 0, . . . , 0) be a length
m unit vector, where the first m/10 entries (the good itera-
tions) equal 1/

p
m/10 and the remaining entries are 0. Note

that xMBy = (m�/20)/(
p

(m/10)t) =
p
mn/(20

p
t/10) =p

mn/(20
p

�1/10)

Note that m+ n  4m. Thus w.h.p. we have that

|MG|  5
p

n(m+ n)

 20
p
mn

where the first step holds via Corollary 1.
Hence, for any constant C, for �1 chosen su�ciently small,

we can ensure that w.h.p. |MB | � C|MG|.
Let M be an m by n matrix such that M(i, j) is the devi-

ation in the i-th iteration of the j-th processor. For analy-
sis, we assume that the columns of M are arranged so that
the columns for the t bad processors are to the left of the
columns for the n � t good processors. We note that this
rearrangement is equivalent to multiplying M by a permu-
tation matrix and so will not e↵ect the singular values of
M .

We thus let M = [MBMG]. Now let ` and r be the top
left and right singular vectors of M and let �1 be the top
singular vector of M i.e. �1 = |M |. We note that �1 � |MB |
and that `TMr = �1.
Now let rb be defined such that for all 1  i  t rb[i] =

r[i] and all other entries of rb are 0. Similarly, define rg

such that for all t + 1  i  n rg[i] = r[i] and all other
entries of rg are 0. Note that by construction, r = rb + rg.

Lemma 2. The following holds w.h.p., |rg|2 < |rb|2/2

Proof. Assume by way of contradiction that |rg|2 �
|rb|2/2. Note that |rg|2 + |rb|2 = |r|2 = 1. Thus, using
our assumption, we have

1 = |rg|2 + |rb|2

� |rb|2/2 + |rb|2

= 3/2|rb|2

This implies that |rb|2  2/3 or |rb| 
p

2/3. We further
note that |rg|2  1, so |rg|  1.

Now Mr = [MBMG](rb + rg) = MBrb + MGrg. Hence
|Mr|  |MB ||rb|+ |MG||rg|.

Putting this together, we have:

|MB |  |M |
= `T (Mr)

 |`||Mr|
 |MB ||rb|+ |MG||rg|
 |MB |(|rb|+ (1/C)|rg|)
 |MB |(

p
2/3 + 1/C)

< |MB |

where the third line follows by the Cauchy-Schwartz inequal-
ity, and the last line follows for C su�ciently large.

Implications

So, whp, bad values for bad nodes increase at twice the
rate as bad values for good nodes	

Thus “most” good nodes:

 1) Blacklist no more than t good nodes	

 2) Blacklist all bad nodes within n epochs

Lemma 2: Whp, |rg|2 < |rb|2 /2	

Lemma 2: Whp, |rg|2 < |rb|2 /2	

Conclusion

• First expected fully polynomial time
algorithm for classic Byzantine agreement 	

• Previous best algorithm (Ben-or’s) was
expected exponential time	

• New technique: design algorithms that
force attackers into statistically deviant
behavior that is detectable

Open Problems

• Can we use spectral blacklisting in
problems where an adversary is trying to
attack reputations or page rank?	

• Can we learn bad nodes faster via different
scoring e.g. weighted majority?	

• Connections to planted clique type
problems?	

• Improve latency, resilience, and bandwidth

Questions?

(D)etector/(N)eutralizer
Game

1. N claims columns, provided total claimed over game ≤ t	

2. Entries in unclaimed columns set to sum of n indep coinflips	

3. Each row selected indep. with prob. 1/2	

4. N sets all entries in its columns	

5. D sees matrix & may remove columns provided total removed
over game ≤ 2t

N’s goal: Deviation of all “selected” rows ≤ 2n	

D wins if N fails in its goal

Our result: Win for D in expected O(n) iterations

1. N claims columns, provided total claimed
over game ≤ t	

2. Entries in unclaimed columns set to sum of
n indep coinflips	

3. Each row selected indep. with prob. 1/2	

4. N sets all entries in its columns	

5. D sees matrix & may remove columns
provided total removed over game ≤ 2t

(D)etector/(N)eutralizer
Game

Related Work
(Spectral)

• Page Rank	

• Eigentrust	

• Hidden Clique

Page Rank [PBMW ’99]

• Google’s $300 billion “secret sauce”	

• M is a stochastic matrix, representing a
random walk over the web link graph	

• r is top right eigenvector of M (and
stationary distribution of M’s walk)	

• For a web page, i, r[i] = “authority” of i

Eigentrust [KSG ’03]
• M is a matrix s.t. M(i,j) represents amount

which party i trusts party j	

• r is top right eigenvector of M	

• For a party, i, r[i] = “trustworthiness” of i	

• Party i is trustworthy if it is trusted by
parties that are themselves trustworthy

Differences

• Eigentrust and PageRank: Want to identify
good players based on feedback from
other players	

• D/N Game: Want to identify bad players
based on deviation from random
coinflips

Hidden Clique
• The problem	

• A random G(n,1/2) graph is chosen	

• A k-clique is randomly placed in G	

• [AKS ’98] give an algorithm for k = √n	

1. v is second eigenvector of adj. matrix of G	

2. W is top k vertices sorted by abs. value in v	

3. Returns all nodes with 3k/4 neighbors in W

Differences

• Hidden Clique: Matrix entries are 0 and 1;
Want to find submatrix that is all 1’s	

• D/N Game: Matrix entries in [-n,+n]. Want
to find submatrix where sum of each row
has high absolute value

Reliable Broadcast
(Bracha)

• All coinflip values sent using reliable broadcast	

• Ensures if a message is “received” by a good
node, same message is eventually “received” by
all nodes 	

• Prevents equivocation	

• Doesn’t solve BA	

• If a bad player reliably broadcasts, may be
case that no good player “receives” the
message

Common Coins

• There are at least n(n-2t) common coins
and no more than 2t coins from good
nodes, no more than 2 per node that are
not common	

• The common coins are known to n-4t
good nodes

Bipartite Graph
|R| = cn

c2nt

� �/2 weightBe Ie

|L| = n

nodes iterations

edge between
each node p and
each iter i with

weight = dvtn of
p in iter i	

n/10
n/2

|Mg|

Fact 1: Whp, |Mg| ≤ 5(n(m+n))1/2	

• Mg is a random matrix	

• Each entry is an independent r.v. with
expectation 0; s.d. = √n; and range [-k,k]
where k ~ n 1/2 log n	

• Fact 1 follows from Theorem 3 in [AS
’07]

|Mb|
Fact 2: |Mb|≥ (mn)1/2 /(2c1) (where t = c1
n)	

• x is a unit vector with all values 1/t1/2	

• y is a unit vector with entries ± 1/(m/
10)1/2 for the m/10 good iterations and 0
everywhere else (sign of non-zero entries
is direction of bad deviation)	

• Then y^t Mb x ≥ (mn/20)/(mt/10) 1/2 ≥
(mn)1/2 /(2c1)

When to update bad
values

• Some good nodes may not receive the
coinflips of the bad nodes in a given epoch

•If |M|≤ (mn)1/2 /(2c1) then don’t do bad
updates (recall t = c1n)	

•If there is no agreement, a linear
number of good nodes will perform
updates

Deviation Probabilities

sum

probability n-t nodes

t nodes

prob n-t nodes	

have dev ≥ kn

kn-kn
prob t good
nodes have
dev ≤ -kn

observed
prob for t
bad nodes

