Faster Agreement Via a Spectral Method for Detecting Malicious Behavior

Valerie King and Jared Saia
Byzantine Agreement

Each node starts with a bit

Goal: 1) all good nodes output the same bit; and 2) this bit equals an input bit of a good node

\(t = \# \text{ bad nodes controlled by an adversary} \)
Applications

- **Bitcoin**

 “Bitcoin is based on a novel Byzantine agreement protocol in which cryptographic puzzles keep a computationally bounded adversary from gaining too much influence” [ML ’13]

- **Game Theory (Mediators)**

 “deep connections between implementing mediators and various agreement problems, such as Byzantine agreement” [ADH ’08]

- **Peer-to-peer networks**

 “These replicas cooperate with one another in a Byzantine agreement protocol to choose the final commit order for updates.” [KBCCEGGRWWWZ ’00]

Also: Secure Multiparty Computation, Databases, State Machine Replication, Sensor Networks, Cloud Computing, Control systems, etc.
Classic Model

- **Asynchronous**: Adversary schedules message delivery
- **Full Information**: Adversary knows state of all nodes
- **Adaptive Adversary**: Adversary takes over nodes at any time up to t total
Previous Work

- [Ben-Or '83] gave first randomized algorithm to solve BA in this model
- [FLP '85] showed BA impossible for deterministic algorithms even when $t=1$
- Ben-Or’s algorithm is exponential expected communication time
- **Communication Time**: maximum length of any chain of messages
Our Result

• Las Vegas algorithm that solves Byzantine agreement in the classic model

• We tolerate \(t = \theta(n) \)

• Expected communication time is \(O(n^3) \)

• Computation time and bits sent are also polynomial in expectation
Ben-Or’s algorithm

- Consists of iterations
- Uses private random bits to create a fair global coin with probability $1/2^n$ in each iteration
- For each iteration there is a correct direction
- If there is a global coin and it is in this direction, agreement is reached

Our goal: Get a fair global coin after polynomial iterations using the private random bits
Key Idea

• With constant probability, sum of coinflips of good nodes will be in the correct direction and large enough for Ben-Or to succeed

• Bad nodes need to generate bad deviation in the opposite direction of equal magnitude to foil this good event

• If the few bad nodes generate large deviation repeatedly, we can find them
Equivocation: Bad nodes send different coins to different nodes.

Issues

Missing coins: Adversary delays messages so that different nodes receive different coins.

Bracha's Reliable Broadcast: If a good node receives a message from a bad node, q, all other good nodes that receive a message from q will receive the same message.

Common coins: coins known to most nodes.

No more than 2t coins from good nodes, no more than 2 per node that are not common.

Common coins are known to n-4t good nodes.

Ignore in this talk. See paper for details.
Remaining Problem

- Bad nodes create biased coinflips
Deviation

• All coinflips are either +1 or -1

• The deviation of p in an iteration is the absolute value of the sum of p’s coinflips

• The direction of p in an iteration is the sign of the sum of p’s coinflips
Iterations and Epochs

• In each iteration, we run modified Ben-Or

• There are $m = \theta(n)$ iterations in an epoch

• In each epoch, we expect a constant fraction of iterations to be good i.e. deviation of good nodes is $\geq \beta$ in correct direction ($\beta = \theta(n)$)

• In a good iteration, bad nodes have deviation $\geq \beta/2$

• (Remaining “good” deviation undone by scheduler)
In an epoch with no agreement, there is a set of $\theta(n)$ iterations I and a set of at most t nodes B such that:

$$\sum_{i \in I} \sum_{p \in B} \text{(deviation of node } p \text{ in iteration } i) = \Omega(n^2)$$
Spectral Blacklisting
Matrix

- M is a $m \times n$ matrix
- $M(i,j) = \text{deviation in iteration } i \text{ of node } j$
- M_b is bad columns of M
- M_g is good columns of M
- Assume $M = [M_b \ M_g]$
Algorithm Sketch

Repeat until reaching agreement

1. Run an epoch. Let M be the deviation matrix for that epoch

2. If $|M|$ is “sufficiently large” then
 A. Compute the right eigenvector, r, of M
 B. Increase bad value of each node i by $r[i]^2$

3. Blacklist a node when its bad value reaches 1
\[|M_b| \geq C |M_g| \]

- **Lemma 1:** In an epoch with no agreement, whp, for any constant \(C \), for \(t = c_1 n \) chosen sufficiently small, \(|M_b| \geq C |M_g| \)

- **Fact 1:** Whp \(|M_g| = O(n) \)
 “sufficiently large”

- **Fact 2:** \(|M_b| = \Omega(n) \) in such an epoch

- **Lemma 1** then follows by algebra
rb and rg

- Let r be the top right eigenvector of M
- Let r_b be the vector such that $r_b[i] = r[i]$ for $1 \leq i \leq t$ and all other entries are 0
- Let r_g be the vector such that $r_g[i] = r[i]$ for $t+1 \leq i \leq n$ and all other entries are 0
- Expect $|r_g|^2$ to be bigger than $|r_b|^2$
Lemma 2

Lemma 2: Whp, $|r_g|^2 < |r_b|^2 / 2$

Proof: Assume not. Then $|r_b|^2 \leq 2/3$

$$|M_B| \leq |M|$$
$$= \ell^T (Mr)$$
$$\leq \ell ||Mr||$$
$$\leq |M_B||r_b| + |M_G||r_g|$$
$$\leq |M_B|(|r_b| + (1/C)|r_g|)$$
$$\leq |M_B|((\sqrt{2/3} + 1/C))$$
$$< |M_B|$$

where the last line holds if $C \geq 5.45$ (i.e. $t \leq .004n$)
Implications

Lemma 2: Whp, $|r_g|^2 < |r_b|^2 / 2$

So, whp, **bad** values for bad nodes increase at twice the rate as **bad** values for good nodes

Thus “most” good nodes:

1) Blacklist no more than t good nodes

2) Blacklist all bad nodes within n epochs
Conclusion

• First expected fully polynomial time algorithm for classic Byzantine agreement

• Previous best algorithm (Ben-or’s) was expected exponential time

• New technique: design algorithms that force attackers into statistically deviant behavior that is detectable
Open Problems

• Can we use spectral blacklisting in problems where an adversary is trying to attack reputations or page rank?

• Can we learn bad nodes faster via different scoring e.g. weighted majority?

• Connections to planted clique type problems?

• Improve latency, resilience, and bandwidth
Questions?
(D)eetector/(N)eutralizer

Game

1. N claims columns, provided total claimed over game $\leq t$
2. Entries in unclaimed columns set to sum of n indep coinflips
3. Each row selected indep. with prob. 1/2
4. N sets all entries in its columns
5. D sees matrix & may remove columns provided total removed over game $\leq 2t$

N’s goal: Deviation of all “selected” rows $\leq 2n$
D wins if N fails in its goal

Our result: Win for D in expected $O(n)$ iterations
1. N claims columns, provided total claimed over game $\leq t$

2. Entries in unclaimed columns set to sum of n indep coinflips

3. Each row selected indep. with prob. 1/2

4. N sets all entries in its columns

5. D sees matrix & may remove columns provided total removed over game $\leq 2t$
Related Work (Spectral)

- Page Rank
- Eigentrust
- Hidden Clique
Page Rank [PBMW '99]

- Google’s $300 billion “secret sauce”
- M is a stochastic matrix, representing a random walk over the web link graph
- r is top right eigenvector of M (and stationary distribution of M’s walk)
- For a web page, i, $r[i] = “authority”$ of i
Eigentrust [KSG '03]

- M is a matrix s.t. M(i,j) represents amount which party i trusts party j
- \(r \) is top right eigenvector of M
- For a party, i, \(r[i] = \text{“trustworthiness” of i} \)
- Party i is trustworthy if it is trusted by parties that are themselves trustworthy
Differences

• Eigentrust and PageRank: Want to identify good players based on feedback from other players

• D/N Game: Want to identify bad players based on deviation from random coinflips
Hidden Clique

- The problem
 - A random $G(n, 1/2)$ graph is chosen
 - A k-clique is randomly placed in G
- [AKS ’98] give an algorithm for $k = \sqrt{n}$
 1. v is second eigenvector of adj. matrix of G
 2. W is top k vertices sorted by abs. value in v
 3. Returns all nodes with $3k/4$ neighbors in W
Differences

- Hidden Clique: Matrix entries are 0 and 1; want to find submatrix that is all 1’s.

- D/N Game: Matrix entries in [-n,+n]. Want to find submatrix where sum of each row has high absolute value.
Reliable Broadcast (Bracha)

• All coinflip values sent using reliable broadcast
• Ensures if a message is “received” by a good node, same message is eventually “received” by all nodes
• Prevents equivocation
• Doesn’t solve BA

• If a bad player reliably broadcasts, may be case that no good player “receives” the message
Common Coins

- There are at least $n(n-2t)$ common coins and no more than $2t$ coins from good nodes, no more than 2 per node that are not common.
- The common coins are known to $n-4t$ good nodes.
Bipartite Graph

$|R| = cn$

$|L| = n$ nodes

iterations

edge between each node p and each iter i with weight $= \text{dvt} n$ of p in iter i
Fact 1: Whp, $|M_g| \leq 5(n(m+n))^{1/2}$

- M_g is a random matrix
- Each entry is an independent r.v. with expectation 0; s.d. = \sqrt{n}; and range $[-k,k]$ where $k \sim n^{1/2} \log n$
- Fact 1 follows from Theorem 3 in [AS '07]
\[|M_b| \]

Fact 2: \(|M_b| \geq (mn)^{1/2} / (2c_1)\) (where \(t = c_1 n\))

- \(x\) is a unit vector with all values \(1/t^{1/2}\)
- \(y\) is a unit vector with entries \(\pm 1/(m/10)^{1/2}\) for the \(m/10\) good iterations and 0 everywhere else (sign of non-zero entries is direction of bad deviation)
- Then \(y^t M_b x \geq (mn/20)/(mt/10)^{1/2} \geq (mn)^{1/2} / (2c_1)\)
When to update bad values

• Some good nodes may not receive the coinflips of the bad nodes in a given epoch.

• If $|M| \leq (mn)^{1/2}/(2c_1)$ then don’t do bad updates (recall $t = c_1n$).

• If there is no agreement, a linear number of good nodes will perform updates.
Deviation Probabilities

- Deviation probability
- Observed prob for t bad nodes
- Prob t good nodes have dev ≤ -kn
- Sum
- T nodes
- N-t nodes
- Prob n-t nodes have dev ≥ kn

\[\sum \text{probability} \]

\[n-t \text{ nodes} \]

\[t \text{ nodes} \]