
Performance Evaluation of Open MPI
on Cray XE/XK Systems

Samuel K. Gutierrez, Nathan T. Hjelm

High Performance Computing Division, HPC-3

Los Alamos National Laboratory

Los Alamos, NM

{samuel, hjelmn}@lanl.gov

Manjunath Gorentla Venkata, Richard L. Graham

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN

{manjugv, rlgraham}@ornl.gov

Open MPI is a widely used open-source implementation

of the MPI-2 standard that supports a variety of platforms

and interconnects. Current versions of Open MPI, however,

lack support for the Cray XE6 and XK6 architectures – both

of which use the Gemini System Interconnect. In this paper,

we present extensions to natively support these architectures

within Open MPI; describe and propose solutions for perfor-

mance and scalability bottlenecks; and provide an extensive

evaluation of our implementation, which is the first completely

open-source MPI implementation for the Cray XE/XK system

families used at 49,152 processes.

Application and micro-benchmark results show that the per-

formance and scaling characteristics of our implementation are

similar to the vendor-supplied MPI’s. Micro-benchmark results

show short-data 1-byte and 1,024-byte message latencies of

1.20 μs and 4.13 μs, which are 10.00% and 39.71% better than

the vendor-supplied MPI’s, respectively. Our implementation

achieves a bandwidth of 5.32 GB/s at 8 MB, which is similar

to the vendor-supplied MPI’s bandwidth at the same message

size. Two Sequoia benchmark applications, LAMMPS and

AMG2006, were also chosen to evaluate our implementation

at scales up to 49,152 cores – where we exhibited similar

performance and scaling characteristics when compared to

the vendor-supplied MPI implementation. LAMMPS achieved

a parallel efficiency of 88.20% at 49,152 cores using Open

MPI, which is on par with the vendor-supplied MPI’s achieved

parallel efficiency.
Keywords-Open MPI, Cray, Gemini, uGNI, XPMEM

I. INTRODUCTION

The Cray XE6 and XK6 architectures are an important new

class of systems for running demanding scientific simulations,

as they have demonstrated the ability to achieve petascale

performance [1]. A critical component in realizing this level

of performance within a parallel scientific simulation is the

system’s network infrastructure.

The Cray XE6 and XK6 architectures include a new network

infrastructure called the Gemini System Interconnect [2]. Cray

provides two low-level interfaces for implementing communi-

cation libraries targeted for the Gemini: User Generic Network

Interface (uGNI) and DMAPP. In particular, the User Generic

Network Interface interface is geared towards message passing

libraries and DMAPP towards global address space (GAS)

libraries.

Most scientific applications running on these system archi-

tectures leverage a Message Passing Interface (MPI) library

for communication and synchronization, and can spend a

significant amount of simulation time in MPI routines. For

example, the 32,768-core LAMMPS benchmark run presented

in this paper spends approximately 20% of the its simulation

time in MPI routines. Similarly, our AMG2006 benchmark

problem spends approximately 64% of its simulation time

in MPI routines. Despite the importance of MPI for these

systems and applications, there are currently no completely

open-source implementations of MPI that natively support the

Cray XE6 and XK6.

In this work, we implement an open-source MPI implemen-

tation for Cray XE6 and XK6 systems by extending Open

MPI [3], a production grade and widely used open-source

implementation of MPI. Adding support for new network inter-

faces in Open MPI requires implementing a network-specific

message transfer component (i.e., either a Byte Transfer Layer

(BTL) or a Matching Transport Layer (MTL)); while other

infrastructure provided within Open MPI, such as the run-

time system, message multiplexing and demultiplexing layer,

and the layer that provides MPI semantics, can be directly

leveraged with minimal to no modifications.

To support the Cray XE/XK architecture families, we intro-

duce two new BTLs, vader and ugni. vader provides protocols

for intra-node communication and ugni provides protocols for

inter-node communication. Besides implementing commonly

known eager and rendezvous protocols for message transfers,

we introduce new protocols and mechanisms to obtain desir-

able scalability and performance characteristics. Among them,

a newly introduced Eager GET protocol, which provides

better memory utilization characteristics than using Gemini’s

small message protocol for small data messages; and a Put
Fallback protocol, which acts as an alternate protocol when

the constraints of Gemini’s GET protocol cannot be satisfied.

The rest of the paper is organized as follows. Section II

provides background and Section III discusses related work.

Section IV discusses the vader component and its protocols

for intra-node communication. Secion V discusses the ugni
component, its protocols for inter-node communication, scala-

2012 IEEE 20th Annual Symposium on High-Performance Interconnects

978-0-7695-4831-9 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/HOTI.2012.11

40



bility bottlenecks, and optimizations. Section VI describes the

experimental setup, evaluates the vader and ugni components,

and presents micro-benchmark and application performance

results. Section VII provides an analysis of the results and

Section VIII concludes and discusses future work.

II. BACKGROUND

Open MPI’s Point-to-Point Architecture: The point-to-point

infrastructure that we chose to leverage in this work consists

of three major layers: the Point-to-Point Management Layer

(PML), the BTL Management Layer (BML), and the Byte

Transfer Layer (BTL).

The Point-to-Point Management Layer (PML) is responsi-

ble for implementing MPI-like semantics, including message

buffering, message matching, and scheduling of message trans-

fers [4]. The PML is also responsible for implementing the

eager and rendezvous protocols, which leverage the underlying

messaging services (e.g., send/receive and Remote Direct

Memory Access (RDMA)) provided by either the MTL or

BTLs. An eager protocol is typically used for short data

transfers, and a rendezvous protocol is used for long data

transfers. The BML layer is responsible for multiplexing MPI

messages, and the BTL layer is responsible for transferring

data between communication endpoints. More information

about Open MPI’s point-to-point architecture can be found

in [4].

Gemini System Interconnect: The Gemini System Intercon-

nect is Cray’s network for current petascale system architec-

tures such as Cielo, a 143,104-core Cray XE6 housed at Los

Alamos National Laboratory, and Titan, Oak Ridge Leadership

Computing Facility’s (OLCF) 299,008 core XK6, and is the

successor to the Cray SeaStar* network interconnect found in

XT systems. Each Gemini provides 10 torus connections - 8

evenly divided up between X and Z and 2 in Y, as shown in

Figure 1. Link bandwidths are 4.68 to 9.375 GB/s per direction

[2].

Fig. 1. High-level diagram showing 4 Opteron nodes connected by 2 Gemini
ASICs. The X,Y, and Z axes are depicted as Red, Green, and Blue arrows,
respectively.

Message passing libraries can effectively leverage Gemini

hardware though a user-level interface provided by the User

Generic Network Interface (uGNI) [2][5]. Furthermore, we

anticipate Cray’s next generation interconnect will expose a

similar user-level application programming interface (API),

which could potentially reduce porting efforts focused on

supporting Cray’s next generation network architecture. More

information about the Gemini System Interconnect and the

uGNI can be found in [2] and [5].

User Generic Network Interface: The GNI exposes low-

level user-space communication services through uGNI. In

particular, two mechanisms are provided for initiating RDMA

transactions: Fast Memory Access (FMA) and Block Transfer

Engine (BTE).

FMA: FMA provides in-order RDMA. FMA transactions

come in a variety of forms. Short message (SMSG) and Shared

Message Queue (MSGQ) provide send/receive semantics and

are used to transfer short point-to-point messages. FMA

Distributed Memory (FMA DM) is used to execute PUT,

GET, and atomic memory operations (AMOs). FMA PUT
transactions do not require the registration of send memory.

BTE: BTE is well-suited for large, asynchronous message

transfers because once a transfer is initiated, up to 4 GB of

data can be transferred by the Gemini hardware without CPU

involvement [2].

XPMEM: XPMEM [6] is an open-source kernel module

and user-space library that provides cross-process memory

mapping capabilities that allow for single-copy address-space

to address-space transfers between cooperating processes, thus

avoiding costs associated with copy-in/copy-out (CICO) se-

mantics that require data buffers associated with a transfer

to be copied twice. That is, a copy of the buffer into a

shared memory region by the sender and a copy out of

the shared region by the receiver. XPMEM exposes a small

API that is made up of 3 major functions: xpmem_make(),

xpmem_get(), and xpmem_attach().

At a high-level, XPMEM setup first requires process A to

export a region of its virtual address space to a cooperating

process B by calling xpmem_make(), which returns an

XPMEM segment ID. The XPMEM segment ID is then shared

with B via an out-of-band communication mechanism. Next,

B calls xpmem_get() to obtain an access permit ID (apid)

that is associated with A’s shared segment information. Finally,

B attaches to a subset of the exported region by calling

xpmem_attach(). Once B is successfully attached, that

subset of A’s exported memory region is directly accessible to

B. In particular, B can now perform single-copy transfers via

direct loads and stores to within that region.

III. RELATED WORK

Many design aspects of Cray’s MPI implementation for the

Cray XE/XK [7] are echoed within the open-source ugni BTL

that was implemented within Open MPI to support the same

target high-speed network. This is primarily due to a nice

mapping between uGNI data transfer protocols and required

Network Module (Netmod)/BTL functionality. For example,

SMSG is a natural choice for implementing short message

41



support within the ugni BTL because of its low latency and

high messaging rates, but is not well-suited for large message

transfers because of its high memory requirements due to

SMSG Mailbox resources.

Cray provides a high-performance MPI implementation

based on MPICH2 [8], an open-source MPI implementation,

within its Message Passing Toolkit (MPT) that targets Gemini

through a closed-source uGNI-based Netmod, which directly

interfaces with the uGNI [7]. Short and medium messages

use an eager message protocol and large messages use a

rendezvous protocol, which is also seen within the ugni
BTL. A registration library leveraging Linux MMU Notifier,

uDREG, was used to alleviate memory registration costs for

large message transfers within Cray’s MPI [7], while a user-

level registration cache was leveraged by both the vader
and ugni BTLs. Cray’s MPI implementation also leverages

XPMEM for intra-node communication, but published de-

sign and implementation details surrounding their usage of

XPMEM could not be found. Therefore, we cannot compare

and contrast design and implementation decisions regarding

the two XPMEM drivers.

The Eager GET protocol presented in this paper is similar

to the one presented in [7], but was independently discovered

during our implementation of the ugni BTL – when the need

for such a protocol became apparent.

IV. INTRA-NODE COMMUNICATION COMPONENT

vader1, a newly introduced BTL, is the component that

provides protocols for intra-node communication for the Cray

XE/XK system architectures2. vader leverages XPMEM and

implements its queues using a similar lock-free scheme pre-

sented in [9].

A. Message Protocols

vader uses an eager protocol for short message transfers.

Each process allocates space for 4 kB blocks of per-peer

receive queues – which we will refer to as fastboxes in order

to leverage already established terminology [9] – and a single

shared receive queue. Each fastbox is broken up into 128-byte

chunks - each reserving 2 bytes of storage for message header

information.

Messages smaller than 126 bytes are preferentially placed

in a fastbox when space permits; otherwise, they are placed

on the target peer’s shared receive queue. Short messages

that are larger than the fastbox size limit but smaller than

the single-copy threshold, are simply copied into the target’s

shared receive queue. Messages larger than the single-copy

limit but smaller than the eager limit are handled differently.

In particular, only the sender-side base pointer is sent eagerly.

When the eager fragment is processed on the receiver side, the

base-pointer is used to perform a direct copy from the sender’s

address space into the receiver’s.

1Internal development name that has no meaning.
2vader can also be used on other Linux platforms when XPMEM support

is present.

A rendezvous protocol is used for messages larger than

the eager limit. PUT and GET semantics are facilitated

by XPMEM. More details surrounding vader’s design and

implementation are provided in [10].

V. INTER-NODE COMMUNICATION COMPONENT

This section describes the ugni BTL, which implements the

protocols required for inter-node communication. The ugni
BTL uses an eager protocol for short data messages and a

rendezvous protocol for long data messages. Further in this

section, we describe the bottlenecks of the current protocols

for Gemini and introduce new protocols to overcome these

bottlenecks.

A. Initialization and Connection Setup

Connection information must be exchanged before the

short data SMSG-based protocol can be used. Connection

establishment between two peers involves exchanging SMSG

attributes and control information via GNI_EpPostData().

By default, connections are established lazily between peers on

an on-demand basis, so memory resource overhead associated

with connection establishment will be representative of the

application’s communication characteristics.

B. Short Message Protocol

ugni uses an eager protocol for short message transfers,

where each process reserves and registers, per-peer desti-

nation buffers, called Mailboxes. During a message trans-

fer, the sender directly writes data to its designated Mail-
box on the receiver’s side. An SMSG connection is estab-

lished between two peers during their first short message ex-

change. Once a connection is established, the sending process

sends SMSG messages through the established channel via

GNI_SmsgSendWTag(). Short messages sent through this

channel include a header that describes the message type and

size. SMSG handles the delivery to the remote Mailbox and

raises a local completion event on the sender’s SMSG endpoint

upon successful delivery.

C. Long Message Protocol

ugni uses a rendezvous protocol for long data message

transfers. When a sending process is ready to send a long

message, it first sends a ready-to-send (RTS) message to the

receiving process and waits for the clear-to-send (CTS) mes-

sage from the receiving process. The RTS message, in addition

to expressing the intent to send the message, also provides the

data buffer information to the receiver. On receiving the CTS
from the receiving process, the sender directly writes data to

the target receive buffer using PUT, or the receiver can initiate

the data transfer using GET without sending the CTS. After

completion, a finish (FIN) is sent to indicate the completion

of message transfer.

The RTS and CTS messages are handled by the lower-

latency short message protocol. Data transfer is handled by

the BTE’s PUT or GET operations. Data transfer using GET
requires that the data buffer on both sides (sender and receiver)

42



be a multiple of 4 and 4-byte aligned. When buffer size and

alignment restrictions are not met, PUT is used as a fallback

protocol.

D. Scalability Bottlenecks and Optimizations

Using an SMSG-based eager message protocol for short

message transfers requires a significant amount of registered

memory resources, thus creating the potential for memory

resource scarcity for other processes on the same node. To

alleviate this problem, SMSG is used for communication up to

a certain small message size, which is a configurable run-time

option. Above the SMSG limit, but less than the rendezvous

limit, ugni switches to the Eager GET protocol. This protocol

uses a small shared pool of pre-registered buffers as opposed

to the per-peer Mailboxes used by the SMSG protocol.

Eager GET Protocol: The sending process sends an

Eager_Get_Request to the receiver, which indicates the

intent to send a message and also provides data buffer

information. Once the receiving side has processed the

Eager_Get_Request and is ready to receive the mes-

sage, the receiver reserves a preregistered buffer from a

shared pool and uses GET to fetch the data specified within

the Eager_Get_Request message. In the ugni BTL, the

sender sends the Eager_Get_Request message along with

header information indicating an Eager GET protocol using

GNI_SmsgSendWTag(). Data transfer is completed with

either BTE or FMA GET. Once the receiver process receives

the message, it sends an RDMA COMPLETE message to the

sender, thus completing the message transfer. Upon receipt

of the RDMA COMPLETE message the sender marks the

message as complete and frees any resources associated with

the message. Figures 2 and 3 are control flow diagrams

(sender- and receiver-side) for the Eager GET protocol.

Put Fallback Protocol: Gemini imposes a 4-byte data

buffer alignment requirement on all FMA and BTE GET
operations. If a GET operation cannot be completed due to

buffer size or alignment violations, ugni will use the Put
Fallback protocol.

The receiver sends a request-to-receive (RTR) message to

the sender that includes receiver-side data buffer information.

The sender uses the information stored in the RTR to send the

data using either FMA or BTE PUT. Once the PUT operation

is complete the sender sends a FIN to indicate the completion

of the request.

VI. EVALUATION

This section describes the experimental test bed, micro-

benchmarks, and application benchmarks used for evaluating

our implementation. To evaluate our extensions to Open MPI,

we compare the performance and scaling characteristics of

our implementation with the vendor-supplied MPI library –

referred to as “Vendor MPI” in the following sections. First,

we compare Open MPI’s latency and bandwidth character-

istics to Vendor MPI’s at small scale. Then, we evaluate

our implementation’s performance and scaling characteristics

Size Larger
Than Eager 

Protocol
Limit?

Send Data 
(Eager Protocol)

No

Send 
Eager_Get_Request

Yes

Send Complete

Progress Remote SMSG

RDMA_ COMPLETE

Fig. 2. Figure showing the steps involved in the Eager GET protocol (sender-
side).

Wait for Eager Get 
Request

Is MSG Size 
Within Eager 

GET ?

Start 
Rendezvous 

Protocol

Start 
Eager GET

Wait for 
Completions

Send 
RDMA_COMPLETE 

Receive 
Complete

No

Yes

Eager_Get_Request

Get Complete

Fig. 3. Figure showing the steps involved in the Eager GET protocol
(receiver-side).

beyond micro-benchmark evaluation using two application

benchmarks: LAMMPS and AMG2006.

A. Test Platform

Performance results were gathered on Cielo, a capability-

class Cray XE6 housed at Los Alamos National Labo-

ratory and operated by Advanced Computing at Extreme

Scale (ACES). Cielo’s Gemini System Interconnect has a

16x12x24 (XYZ) 3-dimensional torus topology built from

Gemini Application-Specific Integrated Circuits (ASICs) that

provide 2 Network Interface Controllers (NICs) and a 48-

port router. Each Gemini connects two 16-core (2.4 Ghz 8-

core AMD Opteron Magny-Cours) nodes, each with 32 GB

memory. Cielo has 8,944 compute nodes totaling 143,104

43



compute cores and 272 6-core AMD Opteron Istanbul service

nodes. Compute nodes run Cray Linux Environment (CLE),

a Linux-based operating system. Cluster Compatibility Mode

(CCM) was not used for any of the performance evaluation

runs presented in this paper. Data were collected during regular

operating hours, so the system was servicing other workloads

alongside the performance evaluation runs.

A general overview of the system software used for all

tests is as follows: CLE 4.0.up02, XPMEM 0.1-2.04, uGNI

2.3-1.0400, Open MPI 1.7 pre-release (development trunk)

compiled with GCC 4.6.2, and Cray MPT (mpich2/5.4.2). All

benchmark binaries were statically built and reported data for a

given application and core count were sequentially run within

a single interactive compute resource allocation to minimize

timing differences due to node placement.

B. Benchmarks and Applications

1) Micro-Benchmarks: Small-scale micro-benchmark per-

formance results were gathered using NetPIPE [11], a protocol

independent performance tool. NetPIPE performs simple ping-

pong tests at various message sizes. Open MPI was configured

to switch from the SMSG protocol to the Eager GET protocol

at 1 kB and the rendezvous protocol at 8 kB, as was Vendor

MPI. This was done to highlight the effects of the Eager GET
protocol.

2) Applications: Two tier 1 Advanced Simulation and

Computing (ASC) Sequoia benchmark applications [12] were

used to evaluate the performance characteristics of Open MPI

and Vendor MPI on Cielo.

AMG2006 is a parallel algebraic multi-grid solver for

linear systems written in International Organization for

Standardization (ISO) C. AMG2006 was compiled with

the HYPRE NO GLOBAL PARTITION option, as recom-

mended by the benchmark documentation.

LAMMPS [13] is an open-source classical molecular dy-

namics code written in C++, whose communication is primar-

ily nearest neighbor.

All tests, including the micro-benchmarks, were compiled

with GCC 4.6.2.

C. Results

1) Micro-benchmark Latency: Figure 4 shows message

exchange latencies between two MPI processes using Open

MPI and Vendor MPI, as reported by the NetPIPE benchmark,

where MPI processes were configured to be on a different

node. The 1-byte messages latencies are 1.20 μs and 1.32

μs for Open MPI and Vendor MPI, respectively. The 1 MB

message latencies of Open MPI and Vendor MPI are 189.54

μs and 192.07 μs, respectively. Open MPI and Vendor MPI

message latencies are very similar for most message sizes,

except for medium message sizes, where the Eager GET
protocol is used. In particular, at the 1 kB message size, Open

MPI’s message latency is 4.13 μs – 39.71% better than Vendor

MPI’s.

Open MPI uses the Put Fallback protocol for all messages

that are not a multiple of 4 and not 4-byte aligned. Open

 1

 4

 16

 64

 256

 1024

 4096

 1  32  1024  32768  1.04858e+06  3.35544e+07

La
te

nc
y 

(u
se

c)

Message Size (Bytes)

Netpipe Latency

Vendor MPI
Open MPI

Fig. 4. Latencies on Cielo as reported by NetPIPE (log-log plot).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1  32  1024  32768  1.04858e+06  3.35544e+07

U
ni

-d
ire

ct
io

na
l B

an
dw

id
th

 (
M

B
/s

ec
)

Message Size (Bytes)

Netpipe Bandwidth

Vendor MPI
Open MPI

Fig. 5. Bandwidth on Cielo as reported by NetPIPE (log-log plot).

MPI’s message latencies are better than Vendor MPI’s for

message sizes that fall within this regime. In Figure 4, we can

observe message latency spikes for messages that fall within

this regime. At 8,195 B, the reported message latencies of

Open MPI and Vendor MPI are 7.74 μs and 8.33 μs, respec-

tively. For message transfers beyond 512 KB, this performance

advantage disappears.

2) Micro-benchmark Bandwidth: Figure 5 shows the uni-

directional bandwidth of Open MPI compared to Vendor MPI,

as measured by the NetPIPE benchmark. The bandwidths

achieved by both implementations are very similar. Open MPI

and Vendor MPI achieve 5.32 GB/s and 5.34 GB/s of message

bandwidth for an 8 MB message, respectively.

44



For messages that are not a multiple of four and not 4-byte

aligned, Open MPI achieves better bandwidths than Vendor

MPI. Within this message regime, Open MPI uses the Put
Fallback protocol. The effects of the protocol can be seen

as dips in bandwidth in Figure 5. For 8,195 B messages,

the reported bandwidths for Open MPI and Vendor MPI are

1,010.22 MB/s and 937.81 MB/s, respectively.

To demonstrate the performance of our implementation out-

side of micro-benchmarks, we ran two applications with differ-

ent communication characteristics: LAMMPS and AMG2006.

Figure 6 shows the loop time of 100 steps of LAMMPS

for the weak-scaling Lennard-Jones Liquid problem for both

Open MPI and Vendor MPI. The local size for each simulation

was fixed at 256,000 atoms. At 49,152 processes, LAMMPS

using Open MPI completed 100 steps in 95.65 seconds,

and LAMMPS using Vendor MPI completes 100 steps in

95.88 seconds. At some problem sizes, LAMMPS using Open

MPI slightly outperforms Vendor MPI – particularly at 32,

64, 1,024, 2,048, 8,192, and 49,152 processes. However, the

general trend is that both Open MPI and Vendor MPI exhibit

very similar performance and scaling characteristics within

LAMMPS.

Figure 7 shows the ideal efficiency for LAMMPS for the

weak-scaling Lennard-Jones Liquid problem compared with

calculated efficiencies using Open MPI and Vendor MPI, as

the number of cores are increased. This graph shows that Open

MPI and Vendor MPI have similar scaling characteristics. At

49,152 processes, the LAMMPS run using Open MPI achieves

88.2% parallel efficiency, and LAMMPS run using Vendor

MPI achieves 87.4% parallel efficiency.

Figure 8 shows the figure of merit (FOM) for AMG2006

as a function of core count, per the provided benchmark in-

structions, for Open MPI and Vendor MPI. We ran AMG2006

in a weak-scaling mode where the problem size per node is

kept constant. The benchmark was configured to solve a 3D

7-point Laplace problem on a cube. The recommended FOM

is System Size * (Number of Iterations / Solve Time). We can

observe that up to 16,384-cores, Open MPI performs similarly

to Vendor MPI. Above 32,768-cores, Vendor MPI outperforms

Open MPI. We suspect that this is primarily due to an

increasing amount of time spent in collective routines, as the

AMG2006 simulation scales in core count. In particular, mpiP

[14] reported that approximately 20% of the total simulation

time was spent in MPI_Allreduce(), which was up from

the 15% that it spent in the same routine at 16,348 cores.

Unfortunately, due to system time limitations, we were unable

to profile AMG2006 at 49,152 cores.

VII. ANALYSIS

3) Application Benchmarks: With our extensions to support

the Cray XE/XK system architectures, Open MPI and the

vendor-supplied MPI both exhibit similar micro-benchmark

latency and bandwidth performance characteristics. Further-

more, application benchmark results show both implementa-

 82

 84

 86

 88

 90

 92

 94

 96

 98

 1  4  16  64  256  1024  4096  16384  65536

Lo
op

 T
im

e 
(1

00
 S

te
ps

, S
ec

on
ds

)

Cores

LAMMPS ASC Benchmark for Scaled-size Lennard-Jones Liquid

Vendor MPI
Open MPI

Fig. 6. Reported LAMMPS loop time in seconds for 100 iterations of the
weak-scaling Lennard-Jones Liquid problem (lower is better).

 0

 20

 40

 60

 80

 100

 120

 1  4  16  64  256  1024  4096  16384  65536

LA
M

M
P

S
 P

ar
al

le
l E

ffi
ci

en
cy

 (
%

 o
f I

de
al

)

Cores

LAMMPS Parallel Efficiency Scaled-size Lennard-Jones Liquid

Vendor MPI
Open MPI

Ideal

Fig. 7. Calculated LAMMPS parallel efficiency for 100 iterations of the
weak-scaling Lennard-Jones Liquid problem (higher is better).

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

S
ys

te
m

 S
iz

e 
* 

Ite
ra

tio
ns

 / 
S

ol
ve

 P
ha

se
 T

im
e

Cores

AMG2006 ASC Benchmark (3D 7-Point Laplace Problem on a Cube)

Vendor MPI
Open MPI

Fig. 8. Recommended figure of merit versus core count for a 3D 7-Point
Laplace problem on a cube (higher is better).

45



tions exhibit similar performance characteristics when com-

munication isn’t dominated by collective operations.

Figures 4 and 5 establish our implementation’s basic per-

formance characteristics. In Figure 4 we can observe that

Open MPI’s short data latency is better than Vendor MPI’s

by 39.71% at 1,024 bytes. For large data, however, the

performance is very similar.

Open MPI outperforms Vendor MPI within the 1 kB to 8

kB message size range – where both implementations were

configured to use the newly introduced Eager GET protocol.

In Figure 5, we can observe that Open MPI and Vendor

MPI have similar bandwidth characteristics.

For messages that are not a multiple of four and not 4-byte

aligned, our Open MPI implementation uses the Put Fallback
protocol because GET cannot be used. This protocol was

introduced because the sender has insufficient information to

detect when GET cannot be used. The Put Fallback protocol

has higher latency due to the overhead of an additional small

message. Figures 4 and 5 show the effect of the Put Fallback
protocol (e.g., latency spikes). Open MPI has a latency of 5.12

μs for 8,192-byte messages and a latency of 7.69 μs for 8,195-

byte messages. For comparison with 8,195-byte messages,

Open MPI performs 7.62% better than Vendor MPI.

After establishing basic performance characteristics, we

measure the impact of our MPI implementation on applica-

tion performance. We ran our MPI implementation against

LAMMPS and AMG2006 – both having very different com-

munication characteristics. From the data presented in Figures

6, 7, and 8, we can observe that both Vendor MPI and our

implementation have very similar performance and scaling

characteristics.

In order to understand the application benchmark per-

formance results, we profiled the applications using mpiP

and determined approximately how much time was spent

in MPI routines. Figure 9 shows the percentage of time

spent in MPI routines. LAMMPS spends a significant time

in MPI_Send(), MPI_Wait(), and MPI_Waitall(). As

seen in the Figure 4 and 5, the message transfer performance

characteristics of Open MPI and Vendor MPI are very similar,

resulting in similar performance characteristics between both

MPI implementations. Figure 9 shows that AMG2006 spends

a significant amount of time in MPI_Allreduce() – an

increase from 15% to 20% when the system size is increased

from 16,384 to 32,768 cores. In addition, our measurements

show that Open MPI’s default 8-byte MPI_Allreduce()
is approximately 50% worse than Vendor MPI’s at 16,384

cores. We believe that AMG2006 spending a significant time

in MPI_Allreduce(), coupled with the degraded perfor-

mance of Open MPI’s MPI_Allreduce(), is resulting in

the growing performance disparity between the two MPI

implementations above 16,384 cores.

VIII. CONCLUSION AND FUTURE WORK

An open-source MPI implementation for Cray XE/XK

systems was implemented by extending Open MPI. Besides

typically used short and long data protocols, new protocols

LAM
M

PS

AM
G2006

N
or

m
al

iz
ed

 P
er

ce
nt

ag
e 

of
 T

ot
al

 M
P

I T
im

e

Normalized Percentage of Total MPI Time (Open MPI)

Allreduce
Bcast
Irecv
Send
Wait
Cart_create
Cart_rank
Sendrecv
Recv
Isend
Iprobe
Probe
Scan
Test
Testall
Waitall

Fig. 9. Normalized percentage of time spent by LAMMPS and AMG2006
in MPI routines.

were implemented to achieve desirable scaling and perfor-

mance characteristics. Both performance and scaling charac-

teristics were evaluated. Micro-benchmark results show that

Open MPI’s short data message latency characteristics were

better than Vendor MPI’s, and are very similar for long

data messages. Application performance evaluation shows that

Open MPI and Vendor MPI have very similar performance and

scaling characteristics.

In the future, we plan to update the implementation to use

the MSGQ protocol for point-to-point communication at large

scale, and evaluate its effect on performance and scalability.

ACKNOWLEDGMENT

The authors would like to thank Alliance for Computing at

Extreme Scale (ACES) management and staff for their support.

Work supported by the Advanced Simulation and Computing

program of the U.S. Department of Energy’s NNSA. Los

Alamos National Laboratory is operated by Los Alamos

National Security, LLC for the NNSA. In addition, the authors

would also like to thank the Office of Advanced Scientific

Computing Research’s FASTOS program and the Math/CS

Institute EASI!; U.S. Department of Energy, and partial work

was performed at ORNL, which is managed by UT-Battelle,

LLC under Contract No. DE-AC05-00OR22725. This research

used resources of the Center for Computational Sciences at

Oak Ridge National Laboratory, which is supported by the

Office of Science of the U.S. Department of Energy under

Contract No. DE-AC05-00OR22725. LA-UR-12-21530.

REFERENCES

[1] TOP500.org. (2012) Top500 supercomputing sites. http://www.top500.
org/. [Online]. Available: http://www.top500.org/

46



[2] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system inter-
connect,” in High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, Aug. 2010, pp. 83 –87.

[3] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97–104.

[4] R. L. Graham, R. Brightwell, B. Barrett, G. Bosilca, and Pješivac-
Grbović, “An evaluation of open mpi’s matching transport layer on the
cray xt,” Oct 2007.

[5] Cray Inc., “Using the gni and dmapp apis,” in Cray Software
Document, vol. S-2446-4003, Dec. 2011. [Online]. Available: http:
//docs.cray.com/books/S-2446-4003/S-2446-4003.pdf

[6] (2011) XPMEM, cross-process memory mapping. http://code.google.
com/p/xpmem/. [Online]. Available: http://code.google.com/p/xpmem/

[7] H. Pritchard, I. Gorodetsky, and D. Buntinas, “A ugni-based
mpich2 nemesis network module for the cray xe,” in Proceedings
of the 18th European MPI Users’ Group conference on Recent
advances in the message passing interface, ser. EuroMPI’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 110–119. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2042476.2042490

[8] Argonne National Laboratory. MPICH2 : High-performance and Widely
Portable MPI. http://www.mcs.anl.gov/research/projects/mpich2/.

[9] D. Buntinas, G. Mercier, and W. Gropp, “Design and evaluation of neme-
sis, a scalable, low-latency, message-passing communication subsystem,”
in International Symposium on Cluster Computing and the Grid, 2006,
pp. 530–540.

[10] M. G. Venkata, R. L. Graham, N. T. Hjelm, and S. K. Gutierrez, “Open
mpi for cray xe/xk systems,” in Proceedings of the 2012 Cray User
Group Annual Technical Conference, May 2012.

[11] Ames Laboratory. (2012) NetPIPE - a network protocol independent
performance evaluator. http://www.scl.ameslab.gov/netpipe/. [Online].
Available: http://www.scl.ameslab.gov/netpipe/

[12] Lawrence Livermore National Laboratory. ASC Sequoia Benchmark
Codes. https://asc.llnl.gov/sequoia/benchmarks/.

[13] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1
– 19, 1995. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S002199918571039X

[14] Lawrence Livermore National Laboratory. (2010) mpiP: lightweight,
scalable mpi profiling. http://mpip.sourceforge.net/. [Online]. Available:
http://mpip.sourceforge.net/

47


