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Abstract

It has long been known that some cells differentiate into other cell types. Under

the assumption that living cells can be modeled using non-linear dynamical systems,

then cell types are attractors. If a cell type is an attractor, then a series of steps

leading from one attractor to another is a pathway of differentiation. As non-linear

dynamical systems, random Boolean networks were analyzed for their suitability in

a first attempt to model pathways of cell differentiation as model genetic regulatory

networks. We hypothesize that perturbations of Boolean networks share some key

behaviors of genetic regulatory networks in the process of differentiation. Further-

more, several solutions to the problem of mapping the discrete time nature of Boolean

networks to the continuous nature of genetic regulatory networks are presented. The
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findings suggest that Boolean networks are able to support some predictions about

the pathways of differentiation in living cells. These predictions should be testable

using gene array techniques.
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Glossary

Canalizing Functions Boolean functions where one value of at least one

of the inputs controls the output regardless of the

other input values.

Cell Surface Markers Cell surface markers are proteins that present them-

selves on the surface of the cell giving an indication

of what is going on inside the cell.

Deoxyribonucleic acid (DNA) Molecules of genetic material inside the cell, seg-

ments of which have been identified as genes.

Dynamical system A system that changes over time according to a

fixed set of rules.

Gene Arrays A Gene Array is a slide or wafer made from glass or

silicon upon which 100’s to 1000’s of DNA fragments

or genes are deposited in a regular ordering. This

ordering allows the spots to be made available to

probes which can detect and analyze the levels of

expression in the genes over time.

Genetic Regulatory Network A genetic regulatory network is a collection of genes

in a cell (presented on strands of DNA) that interact
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Glossary

with each other to determine the rate at which the

genes are transcribed into RNA.

Hamming Distance The number of bits which differ between two binary

strings.

Histology The scientific study of plant or animal tissues.

Medusa Networks A connected network in which relatively few nodes,

called the “Medusa head”, control the actions of a

majority of nodes in the network.

Morphology The form and structure of an organism.

Nonlinear Dynamical System A dynamical system is nonlinear when its output is

not proportional to its input, i.e., when adding the

inputs together and then operating on them pro-

duces a result that is different from operating on the

inputs separately and then adding them together.

Power Law The power law refers to the relationship between

two quantities x and y such that their relationship

can be written in the form x = cyn for some expo-

nent n and a constant c.

RBN See Random Boolean Network.

Random Boolean Network A random Boolean network is a network contain-

ing N nodes. Each node has K input edges. For

each node, the output value for each of the possible

2K input permutations is determined by a Boolean

function. The Boolean function takes as inputs the

values of true or false from each of the K inputs
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Glossary

and has an output, for each of the possible input

permutations. The output values for the Boolean

function are chosen at random during initialization

and fixed for the life of the network. The initial

state of the network is determined by choosing the

value for each node, either true or false, at random.

Subsequent network states are generated by feed-

ing the present state of the network to the Boolean

functions.

Regulatory Gene A gene which produces a substance which inhibits

the production of a protein.

Scale Free Networks Networks which have a power law distribution for

the number of connections on each node.

Stem Cells Stem cells are undifferentiated cells which can both

divide and differentiate into other cells.

Structural Gene A gene which controls the production of a protein

or peptide.

Transcription Factors A transcription factor is a protein that binds DNA

at a specific promoter site, where it regulates tran-

scription. Transcription factors are regulated by

other proteins.
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Chapter 1

Introduction

1.1 Background

Since the early 1960s when Jacob and Monod postulated that cell differentiation is

accomplished by the activation of specific groups of genes [8, 9], it has been accepted

that genes can regulate one another’s activity. Jacob and Monod proposed a model

genetic circuit to explain the mechanics of cell differentiation [9]. For example,

given two regulator genes RG1 and RG2, protein E1 expressed from RG1 represses

the protein E2 which is expressed from RG2. The protein E2 expressed from RG2

represses the expression of protein E1 from RG1. This mutual repression produces

one of two steady states; either RG1 on and RG2 off or RG2 on and RG1 off

(see fig. 1.1). Such steady states are considered to be attractors of the genetic

regulatory network dynamics. Jacob and Monod proposed that that these two steady

state attractors correspond to two stable patterns of gene expression which might

correspond to two cell types.

The hypothesis that cell types are attractors is credible [7, 10, 12] and of central

importance. If we presume that a gene’s activity is binary, to be restricted as either
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Chapter 1. Introduction

Protein E1

Protein E2

Regulatory Gene RG1

Regulatory Gene RG2

Figure 1.1: A model genetic circuit.

being on or off, then a genetic regulatory network with N genes has 2N number of

possible states1. Now the human genome has an estimated 25, 000 genes. There

are 225,000 possible configurations of gene activities in the human genome which is

approximately 107500 states where there is an estimated 1080 particles in the universe.

Given that there are some 265 cell types in the human body, we can infer from the

vast state space that only some configurations of genes can represent cell types.

Therefore, genetic regulatory networks must restrict themselves to small subsets of

the state space where each subset corresponds to a cell type. Thus it is natural to

postulate that cell types correspond to attractors. Such an attractor should be able

to approximate time scales of a cell orbiting the attractor, which to be biologically

plausible would take from minutes to days. Random Boolean Networks (RBNs) in the

ordered and critical regimes have these and other interesting properties [10, 11, 12].

While we understand how to induce cells to differentiate and why some cells dif-

ferentiate naturally, little is understood about cell behavior along the pathway of

differentiation as one cell type changes to another. For example, HL60 leukemia cells

can be induced to differentiate to a benign state after the application of dimethyl-

sulphoxide [2], but it is not known what happens during the process of differentiation.

It is thought that with the proper computational model, we may understand the bi-

ology better. Through better understanding, predictions about the biology model

can be made. Random Boolean networks may be able to fill in some of the pieces.

1A state in the network is defined to be a snapshot of all the node values in the network,

each node being either on or off.
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Chapter 1. Introduction

The findings presented here describe the first examination of pathways of cell differ-

entiation in model genetic regulatory networks where cell types are assumed to be

attractors. Random Boolean networks were found to be a good choice for modeling

limited kinds of behavior in the differentiation of living cells. The results obtained

offer for consideration what we might expect to find if we were to look at pathways

of differentiation in living cells. Conclusions we have reached from these results:

• The large percentage of homeostatic transients for model cells in the ordered

and critical regimes appeals to our intuition that cell types are stable attractors.

After being perturbed, most homeostatic transients return to the attractor in

one time-step. This behavior can be predicted in living cells.

• Pathways of differentiation often fuse and flow together in the Boolean network

model which suggests these fusing pathways may be found in cell differentiation.

• For pairs of transients which terminate at the same attractor, the Hamming

distance gradually decreases with proximity to the attractor. This behavior

suggests that differentiating cells which share the same terminal cell type be-

come more alike as they approach the attractor, even if they join the attractor

at different states on the state cycle.

• The Hamming distance between successive states on model transients are found

to decrease monotonically as an attractor is approached, substantiating recent

results found in cells [7].

• The ratio of fused homeostatic transients to unfused homeostatic transients is

greater for model cells in the ordered and critical regimes than it is for cells in

the chaotic regime. Where this ratio reverses may be a marker for the critical

regime.

• A large percentage of genes in chaotic models never change state on pathways

of differentiation, where the reverse is true for the ordered and critical regimes.
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Chapter 1. Introduction

If cells are in the ordered or critical regimes, then we would expect to find a

wide distribution of the percentage of time which genes change state on the

transient.

• The amount of gene variation over time in the Boolean network model suggests

a linear relation between transient lengths in RBNs and the number of times

a gene alters activity. This idea may be key to the problem of mapping dis-

crete steps in a synchronous Boolean network to the continuous levels of gene

expression within a cell.

Most of these conclusions are readily testable with living cells using gene array tech-

niques.

1.2 Overview

The structure of this thesis is as follows. Chapter 2 describes how genetic regulatory

networks operate, gives a short overview of how and why cells differentiate or change

to another cell type, and concludes with a description of how cell differentiation is

currently measured. In the Chapter 3, random Boolean networks are discussed and

reasons why Boolean networks make a good model for genetic regulatory networks

are shown. Chapter 4 discusses how the experiments were conducted and what was

measured. In the Chapter 5, we address the outcome from the experiments and

what kinds of behavior was observed. In Chapter 6 the meaning of the results is

discussed and what might be taken away from modeling pathways of differentiation

using Boolean networks. In Chapter 7 the experiments are summarized and the

conclusions on the suitability of the classic Random Boolean Network as a model for

the pathway of cell differentiation are presented. Finally in Chapter 8, we discuss

possible ways to extend the experiments and the possibilities for improving the model.
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Chapter 2

The Biology

2.1 Genetic Regulatory Networks

Cells contain molecules of deoxyribonucleic acid (DNA), the chemical building block

for genetic information. Each structural gene is a segment of DNA which is tran-

scribed into ribonucleic acid (RNA), which is translated into a protein. The DNA

molecules in a human cell contain about 25, 000 genes. These genes interact with

each other and other substances within the cell. The interactions induce the genes

to express proteins which in turn can modify or change their own or another gene’s

behavior. This web of interactions reveals the connections of the genetic regulatory

network. These interactions control the rate at which genes are transcribed into

messenger RNA (mRNA). Transcription is the vehicle which defines the cell type

and enables cells to differentiate into other cell types. The genes collectively, with

other genetic material make up the DNA in the cell. These genes are in a continuous

level of activation, from being fully expressed (turned on), to being not expressed

(turned off).

Each of the different cell types in the body contain an identical set of genes. There-
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Chapter 2. The Biology

fore, each cell in the body contains a copy of the same genetic regulatory network.

A cell type is defined by the particular subset of genes that are expressed [14]. The

initial cell type in the human body, the fertilized egg or zygote, divides multiple

times and differentiates into 265 [1] different cell types.

2.2 Cell Differentiation

Cell differentiation is the process by which a cell of one type becomes a cell of another

type. The process of differentiation is initiated by the expression of specific genes

within the cell. Small perturbations to the genetic regulatory network, such as the

deviation of a gene’s activity by a hormone, can force a cell to differentiate from

one cell type to another. Differentiation of cell types can occur as a natural process,

for example, embryonic stem cells differentiate into a variety of cell types. Cells

may also be induced to differentiate into different, sometimes abnormal, cell types

through the use of external stimuli such as chemicals. Likewise, abnormal cell types

may be similarly effected to differentiate into normal cell types [2].

2.2.1 Measurement of Cell Differentiation

Historically, cell differentiation has been assessed histologically, that is, by staining

the cell with certain stains or by observing the morphology. Research into the actual

process of cell differentiation has been recently facilitated by using molecular probes,

such as gene arrays. Gene arrays, or micro arrays can be thought of as a grid of DNA

spots on a slide. The spots are treated with RNA derived from a cell population

which determines the relative abundance of the RNA from different genes. The

pathway of differentiation can then be measured by taking a survey of the spots at

specific time intervals during cell differentiation.
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Chapter 3

Model

3.1 Boolean Networks

Boolean networks, like living cells, are non-linear dynamical systems capable of ex-

hibiting complex behavior [12]. A Boolean network can be thought of as a directed

graph where each node in the graph evaluates to a binary value of one or zero. Ran-

dom Boolean networks (RBNs) are networks of N nodes and K input edges for each

node1, where each of the connecting edges are generated randomly. To determine

how state transitions in Boolean networks are facilitated, each node is equipped with

a Boolean function (fig. 3.1). Inputs for the Boolean function are values of the nodes

sending an edge to a given node. The output value of each Boolean function depends

upon the function definition and the Boolean values of the input nodes, either a one

or a zero. The wiring of the graph and the output of the Boolean functions remain

static for the lifetime of the network.

The state of a Boolean network is a snapshot of the node values taken as a whole.

Generating subsequent states in the Boolean network is determined by feeding the

1Random Boolean networks are also known as N -K networks.
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Chapter 3. Model

present state of the network through a set of Boolean functions which generate

the next network state deterministically. Boolean networks are synchronous; their

activity is analogous to a mechanism being governed by a central clock. Each time

the clock ticks, all genes examine their inputs and the Boolean functions concurrently

update to produce the next state of the network. The network can be visualized as

an interconnection of light bulbs, turning each other on and off with every change of

state.

A

B

C

B C  A

0 0

0 1   1

1 0   0

1 1   1

1

0 1    1
1 0    0

1 1    1

0 0    1

B C   B

A B    C

0  0    0
0  1    0
1  0    0
1  1    1

Figure 3.1: A simple Boolean network with K = 2 inputs.

Because the state space of a Boolean network is finite, a sequence of states generated

by the Boolean functions will eventually repeat itself. A sequence of states which

repeats itself is referred to as a state-cycle. State cycles in Boolean networks can

be regarded as attractors. State cycles containing a single state are defined as point

attractors. A state cycle which contains more than one state is referred to as being

cyclic or periodic. The collection of states in a dynamical system which leads to a

specific attractor plus the attractor is called the basin of attraction. Depending upon

the configuration and implementation, a single Boolean network may have many such

basins of attraction.

Our working hypothesis is that cell types are attractors and therefore can be modeled

by the attractors exhibited in random Boolean networks. If cell types are attractors,

8



Chapter 3. Model

then getting from one attractor to another becomes the model for a pathway of cell

differentiation. In biology, such a transition can occur, for example, from exogenous

stimulation which perturbs a gene outside of its normal state. In random Boolean

networks, pathways of differentiation are initiated by perturbing or toggling node

values. Hence, a perturbation of a node can move a Boolean network into another

basin of attraction.

Any pathway leading to a state in an attractor is called a transient. Following a per-

turbation of an attractor, a path or transient which flows back to the same attractor

is called homeostatic. Conversely, a transient which terminates at an attractor dif-

ferent from the source attractor is non-homeostatic. The length of a transient is the

number of state transitions between the source of the transient and the destination

attractor.

The strength of the Boolean network model is its simplicity. From the simple im-

plementation of an RBN, complex behavior can be observed. After perturbing a

node on a state of a state cycle, the Boolean functions generate zero or more tran-

sient states which the network will pass through before reaching another state cycle.

The transient states then represent a model pathway for cell differentiation as a cell

changes from one cell type to another.

Random Boolean networks are one of a variety of models which could have been

implemented to represent genetic regulatory networks. For example, Scale-free or

Medusa networks2 could also have been used to model genetic regulatory networks.

The random Boolean network model was used because RBNs are a simple way to

implement collections or ensembles of networks. Generation of Boolean networks

by randomly constructing the wiring and the functions allow us to obtain random

samplings of ensembles of networks for different K values.

2Medusa networks are described in Chapter 8.
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Chapter 3. Model

3.2 Approximating the Biology

One of the goals of these experiments was to achieve a credible mapping between

Boolean networks and genetic regulatory networks. Such a mapping would allow

a state from a transient in a Boolean network to correspond to the state of a cell

at some point in the process of differentiation. We hypothesized that it might be

possible to map the discrete steps of a Boolean network to the continuous nature of

a genetic regulatory network by allowing the total number of gene3 activity changes

in a transient to be a stand-in for transient length.

A possible way to achieving this mapping is by tracking the percentage of time each

gene is in a state different from the unperturbed state. Suppose that a given gene

in state cycle A is on and we flip it to off. Then the gene shows up in state cycle

B. Calculate the fraction of states the gene is off. If the transient between the state

cycles is of length ten and the number of states for which the gene is off is six, then

the percentage of difference is 60%.

Another potential way to reach a mapping is by tracking the incidence of gene change

or gene flips over a transient. This is computed by summing the product of the genes

that change state x times over the length of the transient multiplied by x; which is

the number of genes which flip once, plus the number of genes which flip twice times

two, plus the number of genes which flip thrice times three, ... e.g.

M =
Tlen∑

1

NumOfGenesWhichChange[i] ∗ i (3.1)

As will be shown in the results, this method yields a linear relationship between the

number of gene variations and the transient length.

3For purposes of the Boolean network model, we refer to nodes and genes interchange-

ably as having equivalent meaning.
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Chapter 4

Methods

4.1 Network Construction

The model starts with the implementation of a Boolean network of size N nodes, a

value K which determines the number of inputs per node, and a seed to generate

a series of pseudo-random numbers to determine the configuration of the network.

The K input connections to each node are chosen at random from all nodes in

the network. Network connections remain static for the life of the network. To

determine the output value, each node in the network requires a Boolean function.

The output value for each Boolean function is chosen at random to pair with each of

the 2K possible input configurations. Given K inputs, there are 22K

possible Boolean

functions.

The network is initialized by setting the value of each node at random. Subsequent

states in the network are generated using the Boolean functions. Network states

are generated synchronously, meaning that all nodes in the network are updated

simultaneously. Each state of the network is recorded and compared with previously

generated states. When a duplicate state is found, a state cycle or attractor has been

11



Chapter 4. Methods

reached. The newly discovered attractor is compared against previously recorded

state cycles to determine if the attractor has been previously logged. If a previously

undiscovered state cycle is exposed, a representative state is recorded to compare

against the discovery of subsequent state cycles. Each gene of each state in the new

state cycle is flipped or perturbed, one at a time to obtain all single unit perturbations

from the attractor and subsequent states are generated using the Boolean functions.

The functions generate a transient or pathway leading either back to the original

attractor or to another state cycle.

New attractors discovered from the transients are also recorded and perturbed. When

there are no more perturbations to perform, a new initial network state is generated at

random and again the same Boolean functions use the network to generate additional

states. This process of creating initial network states, discovery of state cycles, and

perturbation continues until a user configurable limit of initial random states is

reached at which time the experiment is considered complete. When the experiment

is completed, all remaining data are written out to file. If additional investigations

are required, the seed value is incremented, a new network is generated and the

process repeats with a different set of Boolean functions and a new initial random

configuration.

Because each random Boolean network has 2N states, only a small fraction of states

may be stored in memory for large N . Keeping data structure size to a minimum

was the primary consideration. Wherever possible, network states were represented

as bit vectors and a minimum number of states were kept in memory. Transient

statistical data was written in compressed form to file and purged from memory as

soon as possible. As K increases the average number of states in state cycles grows

exponentially, hence the average amount of time required to process each state cycle

grows exponentially with K as well.
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Chapter 4. Methods

4.2 What was Measured

The transient states between attractors in RBNs represent a cell in the process

of differentiation and the destination attractor represents the terminal cell type.

In order to make predictions about behaviors of living cells in the differentiation

process, it is important to know how transients behave between attractors. It is

intuitive to think that as a transient approaches an attractor, it becomes more like

the attractor. If a transient does become more similar to the attractor, then it follows

that pairs of transients approaching an attractor also become more similar to each

other. The Hamming distance between subsequent states on a transient and the

Hamming distance between pairs of transients as an attractor is approached were

measured to prove or disprove these intuitions. The Hamming distance measures

the size of the difference between two states in a given network. For example, the

distance between two example states of a 4-gene network {1, 0, 1, 1} and {1, 1, 0, 1} is

2. The more similar two states in a network are, the smaller the Hamming distance.

At the termination of each run, a summary of statistics was produced. The distribu-

tion of transient lengths was calculated. The mean and standard deviation of gene

activity changes over each transient length was recorded and written to file. Sub-

sequent to a number of runs, a software utility was used to perform an aggregation

of statistics. During this post-processing phase, Hamming distances between pairs

of transients leading to the same attractors were recorded. The phenomena where

transients join or fuse and flow together before reaching the first state on an attractor

was also measured to provide predictions about the behavior of cell differentiation.

13



Chapter 4. Methods

4.3 Testing the Network Dynamics

For a non-linear dynamical system to be complex suggests that it is neither com-

pletely regular nor irregular, but having qualities of both [4]. Chaos is the term used

to describe irregular behavior in non-linear dynamical systems. Random Boolean

networks exhibit increasingly irregular behavior for larger values of K. It appeals

to our intuition that the model exhibits complex, as opposed to chaotic or entirely

ordered behavior to represent cells as attractors. Chaotic behavior in cells suggests

that cell types are unstable. On the other hand, behavior that is too ordered may

not allow for the flexibility that differentiation requires.

A conspicuous feature of RBNs is that these networks behave in three broad regimes;

the chaotic, the critical, and the ordered regime. Network dynamics needed to be

tested to ensure that the networks produced fall within established criterion for com-

plexity in Boolean networks. The accepted way of measuring the level of complexity

found in an RBN is to measure the Derrida curves for each of the K values under

consideration and compare the outcome against previously published results. The

results substantiated that for K = 1, K = 2, and for K > 2, networks demonstrated

ordered, critical, and chaotic behavior respectively. A Derrida curve is made by gen-

erating and initializing an RBN. From the initial RBN state, a copy is made and a

percentage of genes from the copy state are perturbed. The normalized Hamming

distance between the two states is labeled as δt for time step zero. Using the Boolean

functions, calculate the next time states for both the original state and the copy state.

The normalized Hamming distance between the two successor states label as δt + 1,

for the next time step. The process is repeated for different percentages of perturbed

genes and different random starting states. The mean of the results is plotted as a

line (δt, δt + 1).

For networks which generate lines that are above the main diagonal for small values

14



Chapter 4. Methods

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

D
t +

 1

Dt

k = 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

D
t +

 1

Dt

k = 1
k = 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

D
t +

 1

Dt

k = 1
k = 2
k = 3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

D
t +

 1

Dt

k = 1
k = 2
k = 3
k = 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

D
t +

 1

Dt

k = 1
k = 2
k = 3
k = 4
k = 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

D
t +

 1

Dt

k = 1
k = 2
k = 3
k = 4
k = 5
x = y

Figure 4.1: Derrida plot, K = 1, 2, 3, 4, 5.

of δt, it means that the trajectories are diverging from one another in state space

and are therefore in the chaotic regime. For networks which generate lines that are

below the main diagonal, it means that the trajectories are converging to each other

in state space and are therefore in the ordered regime. Networks which generate lines

near the main diagonal for small values of δt are neither diverging or converging in

state space, this behavior is a marker of the critical regime [3].

Figure 4.1 affirms that for K = 1 the networks generated are in the stable or ordered

regime, for K = 2 the networks are in the critical regime, and for K = 3, 4, 5, the

networks are in the chaotic regime.
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Results

5.1 Homeostatic vs. Non-Homeostatic Behavior

The initial property measured was the number of modeled transients which return

homeostatically to the perturbed attractor compared with transients which termi-

nated non-homeostatically at another attractor. The percentage of homeostatic tran-

sients was found to be inversely proportional to the size of K, decreasing as K in-

creases. Conversely, the percent of transients which returned homeostatically to the

source attractor increased with N (see table 5.1). This is consistent with the idea

that cell types are stable attractors. Networks where a single attractor was found

were omitted from the calculations because in the case of networks containing a single

attractor, non-homeostatic behavior is impossible.

Table 5.1: Percent of homeostatic transients as a function of N and K.
N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40

K = 1 71 82 83 86 88 89 93
K = 2 61 63 69 69 70 71 80
K = 3 56 58 59 61 63 64 67
K = 4 55 57 58 58 62 62 62
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5.1.1 Transient Length versus. Percentage of Transients

To compare the relationship between homeostatic transients and non-homeostatic

transients, transient lengths were compared with the number of transients occurring

for K = 1, 2, 3, & 4. Figures 5.1-5.4 show the distribution of transients of different

lengths as K varies for homeostatic versus non-homeostatic transients.
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Figure 5.1: Distribution of transient lengths, homeostatic and non-homeostatic K =
1.

By observation, homeostatic but not non-homeostatic transients have a distinct char-

acteristic; exhibiting a sharp peak for transients with a single state transition and

quickly tapering off. The definitive peak indicates that most homeostatic transients

quickly return to the original state cycle. If Boolean networks accurately model the

biology then it can be predicted that for most exogenous perturbations cells will

return to their original state cycle.

For K = 2, the number of homeostatic transients overwhelms the number of non-
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Figure 5.2: Distribution of transient lengths, homeostatic and non-homeostatic K =
2.

homeostatic transients by a ratio of approximately 4: 1. The tendency towards home-

ostasis lends stability to the model and exhibits behavior more typical of cell pro-

cesses. As the K value is increased, the average transient length increases sharply

and the concentration of transient lengths moderates rather than being concentrated

close to zero.

It was expected that homeostatic transients of length one would return to their

original state on the state cycle. This prediction was based on the assumption that

shorter transients would return close to if not at their original state. Unexpectedly, it

was confirmed that for all values of K, the majority of homeostatic transients length

one terminated at a different state on the state cycle (see table 5.2). This result

indicates that generally, length one homeostatic transients may return to any state

in the attractor.
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Figure 5.3: Distribution of transient Lengths, homeostatic and non-homeostatic K =
3.

5.2 Gene “Flips” Along Transients as a Function

of K and Transient Length

As discussed in section 3.2 on page 10, the number of gene flips is the sum of the

number of times each gene changes state on the transient. Figure 5.5 shows that for

each value of K = 2, 3, 4, the total number of gene flips increases monotonically with

Table 5.2: For homeostatic transients of length one, does the transient return to the
original state on the state cycle?

K-value Runs Same State Different State
K = 1 1000 8170 11399
K = 2 1000 7587 88740
K = 3 1000 4943 194862
K = 4 100 189 42837
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Figure 5.4: Distribution of transient lengths, homeostatic and non-homeostatic K =
4.

the length of the transient. As will be discussed later, this relationship is important

because it provides a tool to bridge the synchronous nature of the Boolean network

model to the asynchronous pathway of differentiation in real cells.

K = 1 did not follow the monotonic increase with the increase of transient length.

The results for K = 1 suggest that these findings may not hold for cells deep in the

ordered regime. It follows that if cells are in the ordered regime, we may be unable

to use the number of gene flips as a mapping of transient length for cells in process

of differentiation.
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Figure 5.5: Gene Flips, n = 40, K = 1, 2, 3, 4.

5.3 Transient Fusion

Given a pair of transients flowing toward the same attractor, it is sometimes the case

that the transients will join and flow together. Transient fusion is the measurement

of common states between pairs of transients which join or fuse together. The length

of fusion is measured by taking a pair of transients that share common states and

counting backwards from the first state on the destination attractor to the point

where the transient states differ. In general, this fusion between pairs of transients

is more common in the ordered and critical regimes than in the chaotic regime [12].
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5.3.1 Convergence With Transient Fusion

Given that a pair of transients fuse, there exists one or more pairs of states before the

point of fusion in which the transients differ. The measure of difference between a pair

of states is the Hamming distance. In biology, it has been recently discovered that

the Hamming distance between differentiating cells which share the same destination

cell type gradually diminishes as they approach the destination cell type [7].

It is not obvious that the Hamming distance between successive pairs of states on

transients which fuse would diminish. Given a fully connected network, where K = N

and the Boolean functions are randomly assigned, for each state, the successor state

is randomly chosen. On average, the distance between successive states is half of N

or approximately N/2. So what you would expect from trajectories which join in a

common pathway is that they stay about 50% apart and suddenly merge together.

Hence, for networks where K = N , having transients in the same basin of attraction

which fuse, there is no reason to believe their Hamming distance will shrink with

proximity to the point of fusion. Thus, with respect to [7], it can be presumed that

a mapping of a cell to an RBN would yield a network of a small K-value.

It was hypothesized that between pairs of transients which fuse, the Hamming dis-

tance measured between states along the trajectory would decrease or converge

smoothly with proximity to the point of fusion similar to behavior observed in dif-

ferentiating cells. We consider four classes of transients which converge:

• Purely Homeostatic: A pair of transients that originate from perturbations of

the same state cycle and terminate after fusing on the same state cycle; i.e.,

AA → A.

• Non-homeostatic A-type: A pair of transients that originate from perturbations

of the same state cycle and terminate after fusing on a different state cycle;
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i.e., AA → B.

• Non-homeostatic B-type: A pair of transients that originate from perturbations

of different state cycles and terminate after fusing on the source state cycle of

one of the transients; i.e., AB → B.

• Non-homeostatic C-type: A pair of transients that originate from perturbations

of different state cycles and terminate on a third state cycle; i.e., AB → C.

To measure the Hamming distance between the fusing pairs of transients, pairs of

states from the transients were compared beginning with the states at the point of

fusion. The Hamming distance was then measured pairwise at each step, by moving

back towards the respective source state cycles up to the first state from the state

cycle on transients of equal lengths.

Figure 5.6 is typical of the four fusion classes described above. Generally, the char-

acteristics of the four classes are similar. The Hamming distance decreases as the

attractor is approached and is generally greater for larger values of K. The results

show that for stable, critical, and slightly chaotic K-values of transients which fuse,

the Hamming distance decreases smoothly as the point of fusion is approached.

5.3.2 A Quantitative Comparison of Fusion Statistics

Figure 5.7 compares the number of transients with respect to fusion and homeostasis

for K = 1, . . . , 4. The histograms reveal that as K gets larger, the number of fused

homeostatic transients grows smaller and the number of unfused non-homeostatic

transients grows larger. This indicates a higher convergence in state space for net-

works in the stable and critical regimes where K = 1 and 2 respectively, than for

networks in the chaotic regime, where K > 2. It is hypothesized that the ratio of
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Figure 5.6: C-type fusion AB− > C, n = 40, K = 2, 3, 4

fused homeostatic transients to unfused non-homeostatic transients is a marker of

the critical regime and is therefore measurable.

5.4 Trajectory Hamming Distance

It was hypothesized that the Hamming distance between successive states along

the transient trajectory would be monotonically decreasing. The network values of

successive states were recorded and the mean Hamming distance between them was

calculated. All K input values exhibit similar behavior (see figures 5.8 and 5.9 ).

The Hamming distance between successive states on the transient decreases until

it reaches the attractor. Of course, at the attractor, the mean Hamming distance

between states on the state cycle remains stable. These findings tend to support a

gene array study undertaken at the Harvard Children’s Hospital [7] showing similar
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behavior on pathways of differentiation in living cells. A caveat to these results is

that the standard deviation measured for the Hamming distance between successive

states is large which suggests that for any given trajectory, the gradual trend towards

convergence would be difficult to notice in the simulated networks.

5.5 Distribution of Gene Flips as a Function of

Transient Length

Figures 5.10-5.13 show the distribution of the fraction of times along a transient

that a gene changes state, averaged over transients of all lengths in networks for

N = 40, and K = 1, 2, 3, 4 graphed for homeostatic and non-homeostatic transients.

The figures show a remarkable difference between networks in the ordered and critical
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Figure 5.8: Non-homeostatic trajectory K = 2, 3, 4.

regimes, where K = 1 and K = 2 respectively, and networks in the chaotic regime for

K = 3 and K = 4. Where K = 1 and K = 2, there is a wide distribution of fractions

of times along transients that genes flip. Conversely, the chaotic networks for K = 3

and K = 4, show that a large fraction of genes never change state and a generally

exponential drop off for larger fractions of times. The lengths of transients increase

sharply in the chaotic regime. These features should be experimentally testable.
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Figure 5.9: Homeostatic trajectory K = 2, 3, 4.
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Discussion

This research is the first examination of pathways of differentiation under the hy-

pothesis that cell types are attractors and pathways of differentiation correspond to

perturbations of one attractor that place the network into another basin of attraction.

Using the model of deterministic random Boolean networks, a number of qualities of

pathways of differentiation become open to inspection.

The number of fusing pairs represented by the four fusion classes on page 22, suggests

that fusing pathways of differentiation can be found and the results indicate that

the Hamming distance between pathways which fuse become closer together with

proximity to the point of fusion. However, it should be noted that the profusion of

fusion pathways is a general quality of Boolean networks and that the extent to which

this mapping is valid for transient fusion in real cells still needs to be examined.

With respect to individual transients, the Hamming distances between successive

states along transients terminating at the same attractor was observed to shrink.

This behavior along with results obtained from the gene array study in [7] gives

evidence that the use of random Boolean networks is appropriate. Because the
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Hamming distances for large K was consistently greater than the Hamming distances

for small K input values, we can predict that cells in the ordered regime are closer

or more similar than cells in the chaotic regime.

6.1 Discrete vs. Continuous

It is important and necessary to establish a credible mapping from synchronous

Boolean networks to the asynchronous real-time nature of living cells. A drawback

of using Boolean networks is that it is difficult to model the continuous nature of

genetic regulatory networks with discrete values. Boolean networks are synchronous

in that each discrete step of the network is generated from the Boolean functions

in a single step using the network state from the previous step. A synchronous

Boolean network acts as if one central clock is directing activity. In contrast, genetic

regulatory networks have no discrete clock. Cells which are differentiating are neither

synchronized with other cells nor internally synchronized with expressed gene values.

A genetic regulatory network is difficult to label as being precisely in one state or

another. Even though gene activity on a molecular scale is made up of discrete events

occurring in parallel [15], it is difficult to measure a differentiating cell as being in a

specific state.

The mapping given by the results shown in figure 5.5 on page 21, suggests a linear

relation between transient lengths in RBNs and the number of times which genes

have altered their activity. If this is a valid mapping, it should be possible using

gene arrays, to take a time series at closely timed intervals and binarize the data to

yield a binary time series for each of the N examined genes. Using the previously

mentioned mapping, we should be able to map transient lengths in terms of the total

number of gene variations.
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6.2 Determinism vs. Non-Determinism

If we remove the clock from the random Boolean network model and randomly

update each of the nodes asynchronously at each time step, we introduce an element

of non-determinism. The network can have more than one successor state. Rather

than having state cycles in which a series of states is repeated, the dynamics of the

network yields a closed set of possible states, or ergodic set, which can be accessed by

the network. A basin of attraction then contains the states of the ergodic set plus all

states which can reach the ergodic set. Perturbation would then initiate a pathway

from one ergodic set. The pathway from the one ergodic set could have branches to

more than one basin of attraction. The nature of these kinds of networks has not

been well studied with respect to pathways of differentiation and is a topic for future

study.

6.3 Proposed Gene Array Experiments

The following experiments could be implemented using gene arrays to provide vali-

dation of the predictions given by the RBN model.

1. Examine homeostatic transients: take a cell line, such as HL60 and first show

that it is at a steady state using a gene array. Perturb the gene samples using

retinoic acid 1 and perturb the gene’s activity using a short exposure. Follow

relaxation to HL60 with a time series of gene arrays. Retinoic acid is known to

differentiate HL60 cells into white cells (polymorphoneutrophils). If the HL60

cells remain the same for small perturbations, then we know that the cells

are stable to perturbations. This would provide proof we can get homeostatic

perturbations from cells. There are about 15 known chemicals which cause

1Vitamin A.
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HL60 cells to differentiate. It is possible to try small perturbations with all of

them.

2. Examine pathways to other attractors: using the HL60 cell line, a long ex-

posure to a high dose of retinoic acid can be done to see if the outcome is a

polymorphoneutrophil (PMN). If a PMN results, that would show that a flow

to another attractor could be achieved.

3. Examine trajectories within a basin of attraction: using different chemicals

which are shown to differentiate HL60 cells into PMN’s would show that there

are different trajectories which lead to the same attractor. Different trajectories

which lead to the same attractor would show that different trajectories in the

same basin of attraction flow to the same attractor.

4. To test if there is a linear mapping between the number of gene variations

and the transient length, we can count how many times a gene changes state

during cell differentiation and binarize the data using some statistical clustering

method. Ask how many times we change activity and binarize the data as a

function of real time (30 minute samples). The results can be averaged over all

the genes (about 20, 000). It is not clear this will work in the ordered regime

if we recall that for K = 1, the graph was not monotonic.

5. To test for transient fusion, we can take the 10 chemicals known to differentiate

HL60 cells into PNMs and initiate differentiation. Asking the question if any

of these trajectories fuse before reaching the attractor. Using gene arrays, we

can measure the concentrations of RNA and see if the last part of the pathways

is the same between samples using pairs of chemicals.

6. The test to see whether the Hamming distance between successive states along

a transient reduces with proximity to an attractor can be done with HL60 cells

and differentiation initiated with retinoic acid using a gene array. The array
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can be probed at closely timed intervals and the difference between subsequent

samples can be measured. However, for our purposes, this has already been

verified by the study done at Harvard Children’s Hospital [7].
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Summary

The results represent the first analysis of pathways of differentiation under the the-

ory that cell types are analogous to attractors and that pathways of differentiation

correspond to perturbations of one attractor that place the network in the basin of

attraction of another attractor.

A number of features of these pathways of differentiation have been measured. While

it was not expected that random Boolean networks would yield a comprehensive

model of cells, the results have exhibited some behaviors which should be measurable

in living cells using current gene array techniques, such as:

• Measure the ratio of fused homeostatic transients to unfused non-homeostatic

transients in cell types as a criterion for stability.

• Measure that the Hamming distance between successive states on a pathway

of cell differentiation gets closer together (done [7]).

• Measure that the Hamming distance between pairs of differentiating cells gets

closer together as they approach a terminal cell type.
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• Confirm that the amount of gene activity in genetic regulatory networks can

be mapped to transient length in Boolean networks via gene flips.

Our results show that the statistics of pathways of differentiation vary substantially

in networks with different architectures, and hence suggest that measurements on

real cells can yield important information.
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Directions for Future Work

The explorations into RBNs to model pathways of differentiation in genetic regula-

tory networks has prompted discussion on how to improve the model to more closely

approximate the biology. Medusa networks and Asynchronous Random Boolean

Networks may provide more clues into how the biology of cell differentiation works.

8.1 Medusa Networks

The Medusa network concept is the idea that a small group of genes called the

“Medusa head” controls themselves and a larger group of genes or “Medusa tail” .

What makes Medusa networks interesting is that they may more closely model the

biology. Research in yeast cells suggests that the ratio of regulator to regulated genes

in living cells is quite small, about 1:10 [13]. Intuitively we might assume that the

stability of a genetic regulatory network is inversely proportional to the number of

genes controlling the network, but we really don’t know if this is true. The study of

Medusa networks may enable the study of networks having a larger N value. Since

the nodes in the Medusa tail do not control any other nodes, the network can be
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represented using only those relevant nodes in the head whose value have an effect

on changing the network state.

8.2 Asynchronous Boolean Networks

Another avenue of study in pathways of differentiation may be based on Asyn-

chronous Random Boolean Networks (ARBNs). With ARBNs, nodes are chosen

to update individually at random. The notable difference between classic ran-

dom Boolean networks and asynchronous Boolean networks is the addition of non-

determinism [5]. ARBNs may be able to more closely mimic the continuous nature

of cell differentiation [6].
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