
CS 361 Data Structures and Algorithms I Fall 2001

AVL Trees — Do They Really Work

This last phase the term project is designed to test whether the excellent per-
formance of AVL trees suggested by the theory is reflected in what happens in
practice—while the theory cannot be wrong, there is the overhead of building
the stack of pointers on the way down the tree and a potentially long walk up
the tree where you have to figure out which case applies (and when you have to
perform rotations they do take a bit more time). In this phase of the project
you are to design an experiment that will test how well AVL trees perform
when compared to some other data structure we have discussed this semester
(vanilla-flavored binary search trees, heaps [since any binary search tree can
be used as a heap by adding a member function DeleteMin that just deletes
the leftmost leaf in the tree, returning its key and associated data], or hash
tables [which provide less functionality than a binary search tree]). You can
also use a data structure with similar capabilities that we haven’t discussed
(there are other balanced tree structures, like 2-3 trees and red-black trees, as
well as something called splay trees, which have O(log n) performance in an
“amortized sense,” something you will learn about in CS 461 [if you are going
to do splay trees, talk to me about it first]).

The simplest experiment you could perform would be to compare the running
time of vanilla-flavored binary search trees and AVL trees under a regimen of
random finds, inserts, and deletes. In fact, all you would have to do to accom-
plish this is clean up my driver by removing the calls to Check and Iterate and
then time both your BST and AVL packages. Needless to say, this is not an ade-
quate experiment—you need to do something more substantial and interesting.

Here are some suggestions, some being better than others (and also involving
more work).

1. Do the experiment just described, but don’t restrict yourself to the reg-
imen of random inserts and deletes. Construct sequences of operations
that aren’t random, in an attempt to make the vanilla-flavored binary
search trees, which have good average-case performance, but poor worst-
case performance, perform badly; confirming that AVL trees do not show
a performance degradation. Don’t just do the extreme worst case.

2. Determine where the AVL tree algorithm is spending its time. While each
each insert can do at most one rotation, a delete can do many rotations.
How many are actually performed (on average)? How many times do you
have to propagate up the tree?



3. How well do binary-search trees perform as priority queues when com-
pared to heaps? While vanilla-flavored binary search trees might get
unbalanced with this regimen, AVL trees always stay balanced.

4. How well do AVL trees compare to hashing? The theory says that hashing
should, if the table is not close to full, wipe out AVL trees. But if the
keys are strings, most of the comparisons can be resolved in one or two
characters and hashing has to use the whole key to form the hash. Is
enough time spent computing the hash that the advantage of hashing is
dissipated?

5. How well do AVL trees (the oldest of the balanced tree structures) com-
pare in performance to a newer type (2-3, red-black, splay).

The only ground rule for your experiment is that it has to involve AVL trees.

Note that the information I mailed back to you when I tested your programs
might suggest that your implementation of AVL trees is doing excess element
comparisons. This might affect the running time you report for some exper-
iments, since for some data types key comparisons can take a relatively long
time. If you are one of these people (there weren’t very many) you will need to
do some clean up before starting to do your experiment.

As you can see, the choices are wide open and there are lots of interesting
experiments you can perform (besides those listed above). You will be graded
on the thoughtfulness of your experiment and the care with which you measure
whatever it is you measure. That is, you will be graded on the design of your
experiment and how well you carry it out. This is very important; a simple, not-
very-much-work experiment will not receive a good grade. Don’t delay getting
started, or you simply won’t have enough time to do a good project.

In addition to performing the experiment, you need to provide me with a written
report that describes your experiment, the results you obtained, and (especially
if the results seem strange) why they are the way they are. This report should
be 5–10 pages (this is only a suggestion, you might need more or [rather unlikely]
fewer pages). The report will very likely contain diagrams, tables, and graphs.
I won’t know about the details of your experiment if you do not describe it well
in your report. A poorly written report might well result in a poor grade, even
though you did a careful and interesting experiment—if you don’t communicate
it to me, how am I to know what you did? Your report will be graded for the
quality of the presentation as well as the quality of the underlying work.

Some ground rules: You can code up the other data structure you use (that
is good, because both programs being tested will have the same coding style,
so one won’t be faster than the other just because somebody is a hotshot pro-
grammer). This is the natural thing to do for heaps or hashing, because the

2



data structures aren’t very complex and the code for heaps is actually in the
text (in Pascal). If you are going to use a more complex data structure, unless
you are a hotshot programmer yourself, you won’t have time to learn about
it and code it and do the experiment and analyze the results in the six weeks
remaining in the semester (red-black trees and splay trees are in the text; I can
point you to other books for 2-3 trees). So you can go out on the web and find
a code for these data structures, as long as you give credit where credit is due
(you may need to modify the code a little to fit into the style used for our AVL
assignment). You can also get the code for your non-AVL data structure from
a book or research paper (though you’ll have to type it in). There are some
neat things out there to be found.

Due: Wednesday, December 5, 2001 at 9:00AM. Note that late days may
not be used on this phase of the project (it said that in the policy statement).
Late reports will not be accepted. You should probably have completed your
experimental work by December 1 so as to give yourself enough time to write
the report properly.

What to turn in. You should turn in a notebook that contains the following
sections, in this order:

1. Your report. This is primarily what I will be grading.

2. Any code you wrote to do the project. This includes driver code, code
for the data structure(s) you compared AVL trees to, including any code
you got off the Web and modified (or didn’t modify). Don’t forget to say
where the code came from.

3. Your completed AVL tree package. Turn in a clean listing that includes
any upgrades and corrections you made after I turned it back.

4. All the old graded work for AVL and BST trees.

Note: If your AVL tree program does not successfully run through my secret
driver you cannot get a passing grade for this phase of the project. I will be
happy to run your BST and AVL tree programs against the secret driver at any
time. Just send me mail, making sure I know where your files are and making
sure that your files are accessible.

3


