
A NEW OBJECT-ORIENTED STOCHASTIC MODELING LANGUAGE

DAN PLESS & GEORGE LUGER
Department of Computer Science,

University of New Mexico
Albuquerque, NM 87131

CARL STERN
SandiaView Software
1009 Bradbury Dr. SE

Albuquerque, NM 87106

ABSTRACT
A new language and inference algorithm for stochastic
modeling is presented. This work refines and generalizes
the stochastic functional language originally proposed by
[1]. The language supports object-oriented representation
and recursive functions. It provides a compact representa-
tion for a large class of stochastic models including
infinite models. It provides the ability to represent general
and abstract stochastic relationships and to decompose
large models into smaller components. Our work extends
the language of [1] by providing object encapsulation and
reuse and a new and effective strategy for caching. An
exact and complete inference algorithm is presented here
that is expected to support efficient inference over
important classes of models and queries.

KEYWORDS

Bayesian Networks, Stochastic Modeling, Probabilistic
Reasoning

INTRODUCTION

This paper describes a new object-oriented stochastic
modeling language. The language is capable of
representing a larger class of models than those
expressible as Bayesian Networks. It supports a powerful
form of object-oriented representation, allowing general
probabilistic relationships over object classes to be
expressed and computed. The inference algorithm for this
language achieves efficiency through modular
representation, lazy evaluation, goal-directed inference,
and compact factoring of conditional probability tables.

 The limitations of flat Bayesian Networks that use
simple random variables has been noted by other
researchers [2, 3]. These limitations have motivated a
variety of recent research in hierarchical and composable
Bayesian models [4, 5, 6, 7]. Most of these new Bayesian
modeling formalisms support model decomposition, often
based on an object-oriented approach. While these
provide more expressive and succinct representational
frameworks, few of these change the class of models that
may be represented.

 One important exception is the object-oriented
functional stochastic modeling language proposed by [1].
Their language provides the ability to use objects and
functions to represent general stochastic relationships. It
provides Turing completeness by allowing the

construction of objects representing infinite classes.
Furthermore, they define an inference algorithm
supporting effective computation over models embedding
such objects through the use of lazy evaluation.

Our work extends and refines this proposed framework in
a number of crucial ways. Their language has been
modified to enhance usability and to support a more
powerful object system. The objects defined by [1] are
limited and provide no obvious way to encapsulate model
components. On the other hand, the objects defined in our
language provide the important capability of model
encapsulation and reuse. We have also modified the
language to support a more efficient implementation of
the inference algorithm. The algorithm presented by [1]
depends for its efficiency on the use of caching to avoid
redundant computation. Unfortunately, caching in their
language is difficult if not impossible to implement
efficiently because it requires the recognition and
retrieval of similar networks. The algorithm for our
language requires only that identical networks be
recognized and retrieved from the cache.

 As just noted, our language is Turing complete. It
supports construction of objects that represent infinite
classes. This can be useful for pattern recognition and
language processing. An example in the next section
shows how this feature can be used to produce and
recognize classes of expressions generated by stochastic
context free grammars.

 The next section presents the language with its
component features and two examples. The following
section describes the inference algorithm. It is presented
incrementally in terms of inference algorithms for three
languages of increasing complexity. The first language is
equivalent in power to standard Bayesian Networks while
the last is a Turing complete stochastic modeling
language. Finally, implementation and efficiency issues
are discussed., These include effective implementation of
caching and lazy evaluation.

DESCRIPTION OF THE LANGUAGE

The elements of the outer language include variables,
compound structures called objects, attribute chains, and
functions. Statements in the language include assignment
statements and object and function definitions. Two

constructs, dist and case, are used to define new or
dependent distributions.

A model is defined by a list of assignments to variables

surrounded by brackets. The following is a simple
network model with three variables, x, y, and z:

[x = dist true: 0.6, false: 0.4
 y = dist true: 0.6, false: 0.4
 z = x]

From the first assignment, the value of x is true with a

probabilit y of 0.6 and false with a probabilit y of 0.4. Any
value between 0 and 1 can be used as a probabilit y in a
dist statement as long as the distribution sums to 1. The
second assignment does the same for y. However x and y
remain statistically uncorrelated despite sharing the same
probabilit y distribution. The third assignment gives z the
same value as x, thereby making x and z completely cor-
related in the model.

 Objects in this language add significant expressive
power. Object definitions assign a model to a variable.
The object’s model consists of a series of assignments to
variables. The variables on the left-hand side of these
assignments comprise the attributes of the object.

[x = dist true: 0.3, false: 0.7
 y = dist true: 0.4, false: 0.6
 o = [head = x tail = y]
 z = o.head]

Here the variable o is an object with two attributes:

head and tail. The head and tail attributes in the object o
are bound to values x and y respectively. The attributes of
o can be accessed with an attribute chain as shown in the
assignment to z. An attribute chain is a list of symbols
separated by periods that indicate a path through a series
of embedded objects.

 The language includes a case statement that is a
generalization of the if statement in [1]. Here is an
example using a case statement:

[x = dist true: 0.6, false: 0.4
 y = dist true: 0.6, false: 0.4
 r = case x true: y, false: false]

The case statement in the definitions of r works

similarly to case statements in other languages. When x
has value true, then r has the same value as y, and when it
is false, r is also false.

 One can assign an object to a variable, for example
z2 = o. Since variables can be distributions, they can also
be distributions over any combination of symbols and ob-
jects. The language also supports the reuse of object
definitions with the copy statement. z2 = copy o is an
example. Here copy copies the definition of o into the
current scope, creating a new uncorrelated instance of o.

There are a number of consequences deriving from the
fact that models and objects share the same structural
form. It means that one can model a piece of the domain

of interest and then incorporate that model as an object
into a larger model without modification.

The syntax for function definitions and calls is

ill ustrated in the following example:

[or(a, b) = case a true: true, false: b
 x = dist true: 0.3, false: 0.7
 y = dist true: 0.4, false: 0.6
 z = or(x, y)]

The first assignment in the list contains the definition

of the function or. Parentheses surrounding a set of
arguments indicates a function. or takes two arguments
and implements the or operation using a case statement.

In the outer language, function calls and case

statements may be nested. dist statements may be nested
within function calls and case statements but not vice
versa. Objects too may be nested in function calls and
case statements.

The inner language is identical to the outer language

with the following restrictions. There are no functions,
but the same capabiliti es can be obtained using objects as
explained below. The rules for the nesting of elements are
also much more limited. Finally, the inner language
supports only a restricted form of nested case statements:

case s {r11:e11, r12:e12,…}, {r21:e21, r22:e22,…}, …

To translate from the outer to the inner language, the
model is first “ flattened” by eliminating nested structures.
This is done by defining new variables that represent the
intermediate values from nested calculations. Next,
functions are converted into objects that use but do not
define their arguments. A special symbol is employed to
define the variable that represents the output of the
function. Finally, function calls are represented by
creating objects that define the arguments to the function.

AN EXAMPLE

We next show object decomposition in a simple model
of the electrical system of an automobile. The example
contains three components (Electrical, Ignition, and
Lighting) which have internal subcomponents. These
three are modeled as objects with fields representing the
subcomponents. There are two components, Headlight,
and Engine, that are treated as simple variables. The
Ignition system depends on the Electrical system since
Ignition.Plugs depends on Ignition.Current which is set
equal to Electrical.Current. This network demonstrates
how a stochastic model can be broken up into interacting
objects, each with its own internal structure:

[Electrical =

[Battery = dist charged: 0.9, weak: 0.08, dead: 0.02
 Wires = dist ok: 0.99, broken: 0.01
 Current = case Wires

broken: off,
ok: case Battery

charged: strong,
weak: weak,
dead: off]

 Ignition =
[Current = Electrical.Current
 Starter =

[Condition = dist good: 0.9, broken: 0.1
 Function = case Condition

broken: doesnt_turn_over,
good: case Current,

strong: turns_over,
otherwise: doesnt_turn_over]

Plugs = case Current
strong: fires,
otherwise: doesnt_fire]

Lighting =

[Switches_good = dist true: 0.95, false: 0.05
 Bulbs_good = dist true: 0.8, false: 0.2
 Wires_good = dist true: 0.99, false: 0.01
 System_good = Switches_good and Bulbs_good

and Wires_good]
Headlight = case Lighting.System_good

true: Electrical.Current,
false: off

Engine = case Ignition.Starter
doesnt_turn_over: dead,
turns_over: case Ignition.Plugs

fires: runs,
doesnt_fire: turns_over]

Next we show how a stochastic context free grammar

(SCFG) can be implemented. Consider a simple SCFG:

A⇒xA (p = 0.9)
A⇒y (p = 0.1)

In this example, we define a function A returning the

proper distribution of sentences in the grammar.
Sentences are represented by objects that are trees. These
objects contain a field called val that contains a terminal
symbol at the leaves and the symbol compound
internally. The internal nodes in this tree contain two
other fields, left and right for the branches of the tree.

The Linear function takes such a tree and converts it to

a linear form. The Sentence object (not specified here) is
compared with this linear form in the variable
Generated. Thus if a sentence is placed into the
Sentence object, Generated will contain a distribution
over true and false corresponding to the probabilit y that
the grammar will generate that sentence.

[A() = case (dist r1: 0.9, r2: 0.1)
r1: [val = y]
r2: [val = compound

 left = [val = x]
 right = A()]

 Compare(s1,s2) = case s1.head
x: case s2.head

x: compare(s1.tail, s2.tail),
y: false,
z: false;

y: case s2.head
x: false,
y: compare(s1.tail, s2.tail),
z: false;

z: case s2.head
x: false,
y: false,
z: true

 Linear1(t, xs) = case t.val
x: [head = x

 tail = xs],
y: [head = y

 tail = xs],
compound:
 Linear1(t.left, Linear1(t.right, xs))

 Linear(t) = Linear1(t, [val = z])
 Sentence = […]
 Generated = Compare(Linear(A()), Sentence)]

THE INFERENCE ALGORITHM

Space limitations force us to present an abbreviated
description of the inference algorithm For expositional
purposes we first describe inference algorithms for two
simpler languages. The first is equivalent in expressive
power to Bayesian Networks. The second supports a weak
form of objects that cannot import data and isn’ t Turing
complete. We then provide the inference algorithm for the
full l anguage described above. All of these are versions of
the inner language. Before going into the three languages
separately, we describe some of the commonality in
structure between them and define some helpful
operations that are used in the algorithms.

The inference algorithm is based on one initially

proposed by [1]. We follow them in dividing the
algorithm into two functions, peval and pprocess. The
higher level function, peval, is called directly, performing
pre- and postprocessing for the second. The lower level
function, pprocess contains methods for handling each
construct in the language on a case by case basis.

Both functions take three arguments: a network model

N, a variable x to be fully evaluated and a set of variables
of interest, whose correlations must be tracked. They
return a distribution of network models. A distribution,
denoted {<N1, p1>, <N2, p2>,…}, is a set of distinct
networks, each weighted by a probabilit y.

Two features of this inference algorithm are worth

noting. First, it represents joint probabilit y distributions
internally as distributions over networks. By calculating
joint and marginal distributions only as needed, the
algorithm employs a form of lazy evaluation [8, 9]. Since
networks generally provide a compact representation of
joint distributions, this can provide significant savings in
the space required for inference.

Second, the algorithm employs a recursive approach

that reduces and augments the networks passed in and out
of recursive calls. Network reduction and augmentation is
done in such a way as to ensure that the networks
evaluated in recursive calls contain exactly the
information required to reconstruct distributions over
specific subsets of variables. This approach is generally
referred to as goal-directed inference [10, 11, 12].

We now describe some functions and operators needed

to implement this approach. cone(x, N) is defined as the
set consisting of x and all of its ancestors in a network
model N. N|V denotes the network N reduced to the

variable set V, i.e. reduced to assignments to variables in
V and their ancestors. It is the union of the cones of all of
the variables in V. N[M] denotes the network N
augmented with the assignments in M (pruning redundant
assignments in N).

seenby(V, x, N) is used to maintain information

necessary to track correlations between variables. The
argument x is the variable of interest, N is a network, and
V is the set of variables whose correlations to x must be
tracked. Intuitively, this function finds the minimal set of
variables in the cone of x that makes the cone of x cond-
itionally independent of V. This allows the inference
algorithm to focus on the single variable x while main-
taining enough information about the set of correlated
variables in the network to recover their full joint probab-
ility distribution later. In the first language this can be
described fairly simply. seenby(V, x, N) returns the
union of seenby(y, x, N) for all y∈V. For a single
variable y, if y is in the cone of x, then seenby returns y.
Otherwise it returns seenby over the parents of y.

The first language has no embedded objects or attribute

chains. It supports only dist and case statements over
simple variables. Despite these limitations, it is powerful
enough to represent any Bayesian Network model.

This is the inference algorithm for the first language:

peval(N, x) = peval(N, x, {})

peval(N, x, V) = ∑ ∪∗ V{x}|N[M] P

 <M, P> ∈∈ pprocess(N|{x}, x, {x}∪∪Seenby(V, x, N))

pprocess(N, x, V) = case over definition of x:
 x = dist a1:p1, a2:p2,…

return {<[x=a1], p1>, <[x=a2], p2>,…}
 x = case s r1:e1, r2:e2, …

return V)x,],epeval(M[x P i∑ =∗ where s=ri∈M

<M, P> ∈∈ peval(N, s, V)

 x = s
 if s∈N then

 return]eM[x P ∑ =∗ where s=e∈M

<M, P> ∈∈ peval(N, s, V)

 else
 return {<N, 1>}

peval first reduces the network N to just the variables
needed to evaluate x. Using the seenby function, it
calculates a subset of variables in the cone of x that need
to be tracked in order to keep the proper distribution for
the original V. It passes this set to pprocess for
inference. pprocess examines the type of expression
assigned to x, determines the parents of x (if any), then
uses peval recursively to compute the distributions over
the parents of x. The distribution for the parents are then
incorporated into a set of networks and probabiliti es,
<M,P>, that are returned by pprocess to the original
peval call . Finally, peval uses this distribution of
networks (including parent information) to augment the
original network N, extracts the pertinent information
about x, and then sums over the resulting distributions.

 The second language adds objects and attribute chains
to the first. However, the objects in this language are non-
recursive and are not permitted to use variables from an
outer context. To extend the algorithm to handle this
richer language, a number of changes are needed.

 First, a new version of pprocess is needed to handle
the situation where x is not a variable, but an attribute
chain. peval is applied the head of the chain and
determines the distribution of objects that are denoted.
Then peval is applied to the tail of the chain within each
of the objects in the distribution. When entering an
embedded object, some care must be taken to correctly
track the correlations between variables within the set V.
This is done by modifying the set V before the recursive
call . Any attribute chain in that set that doesn’ t have the
same head as x is dropped. The rest are retained, deleting
their heads.

 Second, cases for object expressions must be added to
pprocess. This is simple, since an object cannot be
evaluated further. Finally, a function called translate is
added. When an attribute chain is evaluated, peval
returns a distribution of networks. Each network contains
the value referred to by the attribute chain. translate
locates and returns those values. We define translate:

translate(N, x) = e where x=e∈N
translate(N, x1.x2…xn) = case over definition of x1 in N:
 x1 = y1.y2…
 return translate(N, y1.y2…ym.x2.x3…)
 x1 = [s1=e1, s2=e2,…] (referred to as O)
 return translate(O, x2.x3…)

 The full l anguage adds two new features: recursion and
interaction between objects. These two features provide
Turing completeness.

 The definition of seenby is now extended to handle
the fact that objects can be parents of other objects. The
result is that seenby uses delayed evaluation to avoid
infinite loops in tracing dependencies between objects.

 In the full l anguage, unlike the second, variables and
attribute chains cannot always be fully evaluated to
terminal symbols and objects. This is because objects can
use non-terminal symbols that are defined in the
enclosing context. When the algorithm reaches such a
situation, it must drop back to the enclosing object.

 Case statement are also extended. Since objects can
now have variables defined in the enclosing object, fully
evaluating a variable may not be possible. If this happens
to the head of a case statement, a diff iculty arises. To
handle this, the translate function copies the statement
from the inner to the outer context, modifying object and
variable references as appropriate.

 The third algorithm requires some new notations. The
symbol % is used for the attribute chain set dereferencing
operation. A set V is dereferenced by a symbol x (V%x)

by first removing all attribute chains in V that don’ t have
x as their head. All the rest of the chains are retained, but
without their heads.

 The variable set representation is also expanded. It is
sometimes necessary to delay part of the computation of a
variable set, particularly in the case of infinitely long
attribute chains arising from the recursive interactions of
objects. This is handled by a delay operator that produces
a structure representing a future computation. A statement
of the form V.delay(calculation) indicates that every
attribute chain in V is appended with the result of
calculation. The delayed calculation finally takes place
when an attribute chain is dereferenced to the point at
which the head of the chain is the delay object.

 The seenby function must be implemented in a more
sophisticated way in order to handle potentially infinite
attribute chains. Here is an algorithmic description of the
third algorithm version of seenby:

seenby(y1.y2.y3…, x, N) =
 if y1∈cone(x, N) then {y1.y2.y3…}
 else if y1∉N then {}
 else case over definition of y1 in N:
 y1 = dist a1:p1, a2:p2,… : {}
 y1 = z1.z2… : seenby(z1.z2…y2.y3…, x, N)
 y1 = case s of {r11:e11…},… :

seenby({s, e11.y2.y3, …}, x, N)
 y1 = [s1=e1, s2=e2,…] (referred to as O) :
 Uz∈Pa(O) seenby(z, x, N).delay(seenby(y2.y3…, z, O)%z)

Likewise peval and translate are be updated for the
third algorithm as follows:

peval(N, x, V) =

if x∈N then

∑ ∪∗ V{x}|N[M] P

 <M, P> ∈∈ pprocess (N|{x}, x, {x}∪∪seenby(V, x, N))

 else
 {<N, 1>}

pprocess(N, x1.x2.x3…, V) = W ∑
 <M, P> ∈∈ peval(N, x1, V)

 where W = case over definition of x1 in M:
 x1 = y1.y2…ym
 return peval(M, y1.y2…ym.x2.x3…, V)
 x1 = [s1=e1, s2=e2,…] (referred to as O)

 return]O'M[x P 1∑ =∗

 <M, P> ∈∈ peval(O, x2.x3…, V%x1)

 otherwise
 return {<M, 1>}

pprocess(N, x, V) = case over definition of x in N:
 x = dist a1:p1, a2:p2,…
 return {<[x=a1], p1>, <[x=a2], p2>,…}
 x = case s
 return peval(N[x=s], x, V)
 x = case s {r11:e11, r12:e12, …}, {r21:e21, r22:e22, …},

{r31:e31, r32:e32, …},…

 return W ∑
 <M, P> ∈∈ peval(N, s, V)

 where W =

 let h = translate(M, s) in case over definition of h
 h = r1i
 peval(M[x=case ei {r21:e21, r22:e22, …},

{r31:e31, r32:e32, …},…], x, V)
 h = s
 {<M, 1>}
 h = [s1=e1, s2=e2, …]
 throw error
 h = case s’ {r’11:e’11, r’12:e’12, …},

{r’21:e’21, r’22:e’22, …}, …
 peval(M[x= case s’ {r’11:e’11, r’12:e’12, …},

{r’21:e’21, r’22:e’22, …}, …,
 {r11:e11, r12:e12, …}, {r21:e21,
r22:e22, …}, {r31:e31, r32:e32,
…},…], x, V)

 h = s’
peval(M[x = case s' {r11:e11, r12:e12, …},{r21:e21,
r22:e22, …}, {r31:e31, r32:e32, …},…], x, V)

x = [s1=e1, s2=e2,…]
 return {<N, 1>}

x = s1.s2.s3… (potentially a single symbol)

 return W ∑
 <M, P> ∈∈ peval(N, s1.s2.s3…, V)

 where W =
let h = translate(M, s1.s2.s3…) in

 if h = [s1=e1, s2=e2,…] or h = s1.s2.s3… then
 {<M, 1>}
 else
 peval(M[x=h], x, V)

translate(N, x1.x2.x3…xn) =
 if x1∉N then
 return x1.x2.x3…xn
 else if n = 1 then
 return h where x1=h∈N
 else
 case over definition of x1 in N:
 x1 = y1.y2…
 return translate(N, y1.y2…ym.x2.x3…)
 x1 = [s1=e1, s2=e2,…] (referred to as O)
 let h = translate(O, x2.x3…) but modify:
 for each attribute chain a in the definition of
 h whose head is defined in O replace by x1.a
 return the modified h

x1 = case s {r11:e11, r12:e12, …}, {r21:e21, r22:e22, …}…
return case s {r11:e11, r12:e12, …}, {r21:e21, r22:e22, …}…

This completes the third inference algorithm.

IMPLEMENTATION AND EFFICIENCY

 There are three major implementation features that
affect computational eff iciency. The first is caching. For
this algorithm to run eff iciently on sizable problems, it
must cache and reuse results of intermediate calculations.
The simplest form of this is to cache resulting distribu-
tions returned by pprocess, keyed by the triplet of the
network, variable, and variable set passed in to it. This is
slightly different from the caching proposed in [1]. There
it is necessary for caching to identify similar networks,
which often is diff icult to do eff iciently. In our approach,
the caching need only recognize exact matches.

 We are also developing more advanced caching that
can identify for reuse all calls involving a subset of the
same attribute chains in the variable set of interest. This

may seem at first difficult to do efficiently. However one
can cache lists of such sets keyed on the exact network
and variable to be evaluated. These lists are expected to
be small, and thus a sequential check is sufficiently fast,
given that the subsets can be matched quickly.

 A second feature affecting both efficiency and
completeness of inference is lazy evaluation. The
inference algorithm does not compute any distribution
until it is needed. This not only improves efficiency; it
also serves as the basis for exact inference over a larger
(Turing complete) class of models. Without lazy
evaluation, inference on models with infinite objects
would fail to terminate.

 Finally, the inference algorithm obtains efficiency by
exploiting the modular domain representation supported
by objects. It evaluates one object at a time independent
of the outer context, only referencing the outer context to
acquire needed information. This type of decomposition
has been found effective for reducing computation time in
other systems [6].

 There are other lesser efficiencies implicit in our
algorithm design. For example, the use of case statements
rather than explicit conditional probability tables (CPTs)
allows implicit factoring of CPTs. Because the inference
algorithm operates directly on these case statements, it
can take advantage of the computational reductions that
factored CPTs offer. Other efficiencies derive from the
implicit query optimization and goal-directed strategies
that are incorporated into the inference algorithm.

CONCLUSION

 A new stochastic modeling language has been
presented. This language supports object-oriented features
that are effective in the development of component-based
hierarchical models. Object-oriented abstraction and
recursive functions give this language significant
expressive power (e.g., Turing completeness). These
additional capabilities are paired with an exact efficient
inference algorithm that can exploit the domain decom-
position implicit in object-oriented representations.

 In the future, this algorithm will be extended to include
an approximation scheme that further enhances
efficiency. In addition, parallel distributed computation
will be supported, where the cache is the only data
structure that needs to be shared between threads. Finally,
the outer language will be extended to include additional
high level constructs that simplify knowledge
representation.

ACKNOWLEDGEMENT

 This work was supported by NSF Grant 115-9800929
and NSF Phase I SBIR #DMI-996-937

REFERENCES

 [1] D. Koller, D. McAllester, and A. Pfeffer, Effective
Bayesian Inference for Stochastic Programs, Proceedings
of The Fourteenth National Confererence on Artificial
Intelligence, (Cambridge: MIT Press, 1997).
 [2] Y. Xiang, D. Poole, and M. Beddoes, Multiply
Sectioned Bayesian Networks and Junction Forests for
Large Knowledge-Based Systems, Computational
Intelligence, 9(2), 1993, 171-220.
 [3] K. Laskey and S. Mahoney, Network Fragments:
Representing Knowledge for Constructing Probabilistic
Models, Proceedings of the Thirteenth Annual
Conference on Uncertainty in Artificial Intelligence, (San
Francisco: Morgan Kaufmann, 1997).
 [4] D. Koller and A. Pfeffer, Object-oriented Bayesian
Network, Proceedings of the Thirteenth Annual
Conference on Uncertainty in Artificial Intelligence, (San
Francisco: Morgan Kaufmann, 1997).
 [5] D. Koller and A. Pfeffer, Probabilistic Frame-Based
Systems, Proceedings of The Fifteenth National
Confererence on Artificial Intelligence, Cambridge: (MIT
Press, 1998).
 [6] A. Pfeffer, D. Koller, B. Milch, and K.
Takusagawa, 1999. SPOOK: A System for Probabilistic
Object-Oriented Knowledge Representation, Proceedings
of the Fifteenth Annual Conference on Uncertainty in
Artificial Intelligence, (San Francisco: Morgan
Kaufmann, 1999).

[7] Y. Xiang, K.G. Olesen, and F.V. Jensen, Practical
Issues in Modeling Large Diagnostic Systems with
Multiply Sectioned Bayesian Networks, International
Journal of Pattern Recognition and Artificial Intelligence,
14 (1), 2000, 59-71.
 [8] A. Madsen, and F. Jensen LAZY Propagation: A
Junction Tree Inference Algorithm Based on Lazy
Evaluation, Artificial Intelligence, 113, 1999, 203-245.
 [9] Y. Xiang and F. Jensen, Inference in Multiply
Sectioned Bayesian Networks with Extended Shafer-
Shenoy and Lazy Propagation, Proceedings of the
Fifteenth Annual Conference on Uncertainty in Artificial
Intelligence, (San Francisco: Morgan Kaufmann, 1999).
 [10] R.D. Shachter, An Ordered Examination of
Influence Diagrams, Networks, 20, 1990, 535-563.
 [11] E. Castillo, J.M. Gutierrez, and A.S. Hadi, Goal
Oriented Symbolic Propagation in Bayesian Networks,
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, (Cambridge: MIT Press, 1996).
 [12] M. Baker and T.E. Boult, Pruning Bayesian
Networks for Efficient Computation, Proceedings of the
Sixth Annual Conference on Uncertainty in Artificial
Intelligence, (Amsterdam: North Holland, 1990).

