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ABSTRACT 
A new language and inference algorithm for stochastic 
modeling is presented. This work refines and generalizes 
the stochastic functional language originally proposed by 
[1]. The language supports object-oriented representation 
and recursive functions. It provides a compact representa-
tion for a large class of stochastic models including 
infinite models. It provides the ability to represent general 
and abstract stochastic relationships and to decompose 
large models into smaller components. Our work extends 
the language of [1] by providing object encapsulation and 
reuse and a new and effective strategy for caching.  An 
exact and complete inference algorithm is presented here 
that is expected to support efficient inference over 
important classes of models and queries. 
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INTRODUCTION  

This paper describes a new object-oriented stochastic 
modeling language. The language is capable of 
representing a larger class of models than those 
expressible as Bayesian Networks. It supports a powerful 
form of object-oriented representation, allowing general 
probabilistic relationships over object classes to be 
expressed and computed. The inference algorithm for this 
language achieves efficiency through modular 
representation, lazy evaluation, goal-directed inference, 
and compact factoring of conditional probability tables. 

 
 The limitations of flat Bayesian Networks that use 
simple random variables has been noted by other 
researchers [2, 3]. These limitations have motivated a 
variety of recent research in hierarchical and composable 
Bayesian models [4, 5, 6, 7]. Most of these new Bayesian 
modeling formalisms support model decomposition, often 
based on an object-oriented approach. While these 
provide more expressive and succinct representational 
frameworks, few of these change the class of models that 
may be represented. 
 
 One important exception is the object-oriented 
functional stochastic modeling language proposed by [1]. 
Their language provides the ability to use objects and 
functions to represent general stochastic relationships. It 
provides Turing completeness by allowing the 

construction of objects representing infinite classes. 
Furthermore, they define an inference algorithm 
supporting effective computation over models embedding 
such objects through the use of lazy evaluation. 
 
Our work extends and refines this proposed framework in 
a number of crucial ways. Their language has been 
modified to enhance usability and to support a more 
powerful object system. The objects defined by [1] are 
limited and provide no obvious way to encapsulate model 
components. On the other hand, the objects defined in our 
language provide the important capability of model 
encapsulation and reuse. We have also modified the 
language to support a more efficient implementation of 
the inference algorithm. The algorithm presented by [1]  
depends for its efficiency on the use of caching to avoid 
redundant computation. Unfortunately, caching in their 
language is difficult if not impossible to implement 
efficiently because it requires the recognition and 
retrieval of similar networks.  The algorithm for our 
language requires only that identical networks be 
recognized and retrieved from the cache. 
 
 As just noted, our language is Turing complete. It 
supports construction of objects that represent infinite 
classes. This can be useful for pattern recognition and 
language processing.  An example in the next section 
shows how this feature can be used to produce and 
recognize classes of expressions generated by stochastic 
context free grammars. 
 
 The next section presents the language with its 
component features and two examples. The following 
section describes the inference algorithm. It is presented 
incrementally in terms of inference algorithms for three 
languages of increasing complexity. The first language is 
equivalent in power to standard Bayesian Networks while 
the last is a Turing complete stochastic modeling 
language. Finally, implementation and efficiency issues 
are discussed., These include effective implementation of 
caching and lazy evaluation. 
 
DESCRIPTION OF THE LANGUAGE 

The elements of the outer language include variables, 
compound structures called objects, attribute chains, and 
functions. Statements in the language include assignment 
statements and object and function definitions. Two 



constructs, dist and case, are used to define new or 
dependent distributions.  

 
A model is defined by a list of assignments to variables 

surrounded by brackets. The following is a simple 
network model with three variables, x, y, and z: 
 

[x = dist true: 0.6, false: 0.4 
 y = dist true: 0.6, false: 0.4 
 z = x] 

 
From the first assignment, the value of x is true with a 

probabilit y of 0.6 and false with a probabilit y of 0.4. Any 
value between 0 and 1 can be used as a probabilit y in a 
dist statement as long as the distribution sums to 1. The 
second assignment does the same for y. However x and y 
remain statistically uncorrelated despite sharing the same 
probabilit y distribution. The third assignment gives z the 
same value as x, thereby making x and z completely cor-
related in the model.  

 
 Objects in this language add significant expressive 
power. Object definitions assign a model to a variable. 
The object’s model consists of a series of assignments to 
variables. The variables on the left-hand side of these 
assignments comprise the attributes of the object. 
  

[x = dist true: 0.3, false: 0.7 
 y = dist true: 0.4, false: 0.6 
 o = [head = x   tail = y] 
 z = o.head] 
 
Here the variable o is an object with two attributes: 

head and tail. The head and tail attributes in the object o 
are bound to values x and y respectively. The attributes of 
o can be accessed with an attribute chain as shown in the 
assignment to z. An attribute chain is a list of symbols 
separated by periods that indicate a path through a series 
of embedded objects.  

 
 The language includes a case statement that is a 
generalization of the if statement in [1]. Here is an 
example using a case statement: 
 

[x = dist true: 0.6, false: 0.4 
 y = dist true: 0.6, false: 0.4 
 r = case x true: y, false: false] 

 
The case statement in the definitions of r works 

similarly to case statements in other languages.  When x 
has value true, then r has the same value as y, and when it 
is false, r is also false. 

 
  One can assign an object to a variable, for example 
z2 = o. Since variables can be distributions, they can also 
be distributions over any combination of symbols and ob-
jects. The language also supports the reuse of object 
definitions with the copy statement. z2 = copy o is an 
example. Here copy copies the definition of o into the 
current scope, creating a new uncorrelated instance of o. 
 

There are a number of consequences deriving from the 
fact that models and objects share the same structural 
form. It means that one can model a piece of the domain 

of interest and then incorporate that model as an object 
into a larger model without modification.  

 
The syntax for function definitions and calls is 

ill ustrated in the following example: 
 

[or(a, b) = case a   true: true,   false: b 
 x = dist true: 0.3, false: 0.7 
 y = dist true: 0.4, false: 0.6 
 z = or(x, y)] 

 
The first assignment in the list contains the definition 

of the function or. Parentheses surrounding a set of 
arguments indicates a function. or takes two arguments 
and implements the or operation using a case statement.  

 
In the outer language, function calls and case 

statements may be nested. dist statements may be nested 
within function calls and case statements but not vice 
versa. Objects too may be nested in function calls and 
case statements. 

 
The inner language is identical to the outer language 

with the following restrictions. There are no functions, 
but the same capabiliti es can be obtained using objects as 
explained below. The rules for the nesting of elements are 
also much more limited. Finally, the inner language 
supports only a restricted form of nested case statements:  
 

case s {r11:e11, r12:e12,…}, {r21:e21, r22:e22,…}, … 
 

To translate from the outer to the inner language, the 
model is first “ flattened” by eliminating nested structures. 
This is done by defining new variables that represent the 
intermediate values from nested calculations. Next, 
functions are converted into objects that use but do not 
define their arguments. A special symbol is employed to 
define the variable that represents the output of the 
function. Finally, function calls are represented by 
creating objects that define the arguments to the function.  

 
AN EXAMPLE 

We next show object decomposition in a simple model 
of the electrical system of an automobile. The example 
contains three components (Electrical, Ignition, and 
Lighting) which have internal subcomponents. These 
three are modeled as objects with fields representing the 
subcomponents. There are two components, Headlight, 
and Engine, that are treated as simple variables. The 
Ignition system depends on the Electrical system since 
Ignition.Plugs depends on Ignition.Current which is set 
equal to Electrical.Current. This network demonstrates 
how a stochastic model can be broken up into interacting 
objects, each with its own internal structure: 

 
[Electrical = 

[Battery = dist charged: 0.9, weak: 0.08, dead: 0.02 
 Wires = dist ok: 0.99, broken: 0.01 
 Current = case Wires 

broken: off, 
ok: case Battery 

charged: strong, 
weak: weak, 
dead: off] 



 Ignition = 
[Current = Electrical.Current 
 Starter = 

[Condition = dist good: 0.9, broken: 0.1 
 Function = case Condition 

broken: doesnt_turn_over, 
good: case Current, 

strong: turns_over, 
otherwise: doesnt_turn_over] 

Plugs = case Current 
strong: fires, 
otherwise: doesnt_fire] 

  
Lighting = 

[Switches_good = dist true: 0.95, false: 0.05 
 Bulbs_good = dist true: 0.8, false: 0.2 
 Wires_good = dist true: 0.99, false: 0.01 
 System_good = Switches_good and Bulbs_good 

and Wires_good] 
Headlight = case Lighting.System_good   

true: Electrical.Current, 
false: off 

Engine = case Ignition.Starter 
doesnt_turn_over: dead, 
turns_over: case Ignition.Plugs 

fires: runs, 
doesnt_fire: turns_over] 

 
Next we show how a stochastic context free grammar 

(SCFG) can be implemented. Consider a simple SCFG: 
 
A⇒xA (p = 0.9) 
A⇒y  (p = 0.1) 

 
In this example, we define a function A returning the 

proper distribution of sentences in the grammar. 
Sentences are represented by objects that are trees. These 
objects contain a field called val that contains a terminal 
symbol at the leaves and the symbol compound 
internally. The internal nodes in this tree contain two 
other fields, left and right for the branches of the tree. 

 
The Linear function takes such a tree and converts it to 

a linear form. The Sentence object (not specified here) is 
compared with this linear form in the variable 
Generated. Thus if a sentence is placed into the 
Sentence object, Generated will contain a distribution 
over true and false corresponding to the probabilit y that 
the grammar will generate that sentence. 
 

[A() = case (dist r1: 0.9, r2: 0.1) 
r1: [val = y] 
r2: [val = compound 

  left = [val = x] 
  right = A()] 
 

 Compare(s1,s2) = case s1.head 
x: case s2.head 

x: compare(s1.tail, s2.tail), 
y: false, 
z: false; 

y: case s2.head 
x: false, 
y: compare(s1.tail, s2.tail), 
z: false; 

z: case s2.head 
x: false, 
y: false, 
z: true 
 

 Linear1(t, xs) = case t.val 
x: [head = x 

 tail = xs], 
y: [head = y 

                                     tail = xs], 
compound: 
     Linear1(t.left, Linear1(t.right, xs)) 

 Linear(t) = Linear1(t, [val = z]) 
 Sentence = […] 
 Generated = Compare(Linear(A()), Sentence)] 

 
THE INFERENCE ALGORITHM 

Space limitations force us to present an abbreviated 
description of the inference algorithm For expositional 
purposes we first describe inference algorithms for two 
simpler languages. The first is equivalent in expressive 
power to Bayesian Networks. The second supports a weak 
form of objects that cannot import data and isn’ t Turing 
complete. We then provide the inference algorithm for the 
full l anguage described above. All of these are versions of 
the inner language. Before going into the three languages 
separately, we describe some of the commonality in 
structure between them and define some helpful 
operations that are used in the algorithms. 

 
The inference algorithm is based on one initially 

proposed by [1]. We follow them in dividing the 
algorithm into two functions, peval and pprocess. The 
higher level function, peval, is called directly, performing 
pre- and postprocessing for the second. The lower level 
function, pprocess contains methods for handling each 
construct in the language on a case by case basis. 

 
Both functions take three arguments: a network model 

N, a variable x to be fully evaluated and a set of variables 
of interest, whose correlations must be tracked. They 
return a distribution of network models. A distribution, 
denoted {<N1, p1>, <N2, p2>,…}, is a set of distinct 
networks, each weighted by a probabilit y. 

 
Two features of this inference algorithm are worth 

noting. First, it represents joint probabilit y distributions 
internally as distributions over networks. By calculating 
joint and marginal distributions only as needed, the 
algorithm employs a form of lazy evaluation [8, 9]. Since 
networks generally provide a compact representation of 
joint distributions, this can provide significant savings in 
the space required for inference.  

 
Second, the algorithm employs a recursive approach 

that reduces and augments the networks passed in and out 
of recursive calls. Network reduction and augmentation is 
done in such a way as to ensure that the networks 
evaluated in recursive calls contain exactly the 
information required to reconstruct distributions over 
specific subsets of variables. This approach is generally 
referred to as goal-directed inference [10, 11, 12]. 

 
We now describe some functions and operators needed 

to implement this approach. cone(x, N) is defined as the 
set consisting of x and all of its ancestors in a network 
model N. N|V denotes the network N reduced to the 



variable set V, i.e. reduced to assignments to variables in 
V and their ancestors. It is the union of the cones of all of 
the variables in V. N[M] denotes the network N 
augmented with the assignments in M (pruning redundant 
assignments in N).  

 
seenby(V, x, N) is used to maintain information 

necessary to track correlations between variables. The 
argument x is the variable of interest, N is a network, and 
V is the set of variables whose correlations to x must be 
tracked. Intuitively, this function finds the minimal set of 
variables in the cone of x that makes the cone of x cond-
itionally independent of V. This allows the inference 
algorithm to focus on the single variable x while main-
taining enough information about the set of correlated 
variables in the network to recover their full joint probab-
ility distribution later. In the first language this can be 
described fairly simply. seenby(V, x, N) returns the 
union of seenby(y, x, N) for all y∈V. For a single 
variable y, if y is in the cone of x, then seenby returns y. 
Otherwise it returns seenby over the parents of y.  

 
The first language has no embedded objects or attribute 

chains. It supports only dist and case statements over 
simple variables. Despite these limitations, it is powerful 
enough to represent any Bayesian Network model.  

 
This is the inference algorithm for the first language: 

 
peval(N, x) = peval(N, x, {}) 

peval(N, x, V) = ∑ ∪∗ V{x}|N[M] P  

 <M, P> ∈∈ pprocess(N|{x}, x, {x}∪∪Seenby(V, x, N))   

pprocess(N, x, V) = case over definition of x: 
 x = dist a1:p1, a2:p2,… 

return {<[x=a1], p1>, <[x=a2], p2>,…} 
 x = case s r1:e1, r2:e2, … 

return V)x,],epeval(M[x P i∑ =∗  where s=ri∈M 

<M, P> ∈∈ peval(N, s, V)   

 x = s 
   if s∈N then 

  return ]eM[x P ∑ =∗  where s=e∈M 

<M, P> ∈∈ peval(N, s, V)   

   else 
  return {<N, 1>} 
 

peval first reduces the network N to just the variables 
needed to evaluate x. Using the seenby function, it 
calculates a subset of variables in the cone of x that need 
to be tracked in order to keep the proper distribution for 
the original V. It passes this set to pprocess for 
inference. pprocess examines the type of expression 
assigned to x, determines the parents of x (if any), then 
uses peval recursively to compute the distributions over 
the parents of x. The distribution for the parents are then 
incorporated into a set of networks and probabiliti es, 
<M,P>, that are returned by pprocess to the original 
peval call . Finally, peval uses this distribution of 
networks (including parent information) to augment the 
original network N, extracts the pertinent information 
about x, and then sums over the resulting distributions. 

 The second language adds objects and attribute chains 
to the first. However, the objects in this language are non-
recursive and are not permitted to use variables from an 
outer context. To extend the algorithm to handle this 
richer language, a number of changes are needed. 
 
 First, a new version of pprocess is needed to handle 
the situation where x is not a variable, but an attribute 
chain. peval is applied the head of the chain and 
determines the distribution of objects that are denoted. 
Then peval is applied to the tail of the chain within each 
of the objects in the distribution. When entering an 
embedded object, some care must be taken to correctly 
track the correlations between variables within the set V. 
This is done by modifying the set V before the recursive 
call . Any attribute chain in that set that doesn’ t have the 
same head as x is dropped. The rest are retained, deleting 
their heads. 
 
 Second, cases for object expressions must be added to 
pprocess. This is simple, since an object cannot be 
evaluated further. Finally, a function called translate is 
added. When an attribute chain is evaluated, peval 
returns a distribution of networks. Each network contains 
the value referred to by the attribute chain. translate 
locates and returns those values.  We define translate: 
 
translate(N, x) = e where x=e∈N 
translate(N, x1.x2…xn) = case over definition of x1 in N: 
   x1 = y1.y2… 
    return translate(N, y1.y2…ym.x2.x3…) 
   x1 = [s1=e1, s2=e2,…]   (referred to as O) 
    return translate(O, x2.x3…) 
 
 The full l anguage adds two new features: recursion and 
interaction between objects. These two features provide 
Turing completeness.  
 
 The definition of seenby is now extended to handle 
the fact that objects can be parents of other objects. The 
result is that seenby uses delayed evaluation to avoid 
infinite loops in tracing dependencies between objects. 
 
 In the full l anguage, unlike the second, variables and 
attribute chains cannot always be fully evaluated to 
terminal symbols and objects. This is because objects can 
use non-terminal symbols that are defined in the 
enclosing context. When the algorithm reaches such a 
situation, it must drop back to the enclosing object. 
 
 Case statement are also extended. Since objects can 
now have variables defined in the enclosing object, fully 
evaluating a variable may not be possible. If this happens 
to the head of a case statement, a diff iculty arises. To 
handle this, the translate function copies the statement 
from the inner to the outer context, modifying object and 
variable references as appropriate. 
 
 The third algorithm requires some new notations. The 
symbol % is used for the attribute chain set dereferencing 
operation. A set V is dereferenced by a symbol x (V%x) 



by first removing all attribute chains in V that don’ t have 
x as their head. All the rest of the chains are retained, but 
without their heads. 
 
 The variable set representation is also expanded. It is 
sometimes necessary to delay part of the computation of a 
variable set, particularly in the case of infinitely long 
attribute chains arising from the recursive interactions of 
objects. This is handled by a delay operator that produces 
a structure representing a future computation. A statement 
of the form V.delay(calculation) indicates that every 
attribute chain in V is appended with the result of 
calculation. The delayed calculation finally takes place 
when an attribute chain is dereferenced to the point at 
which the head of the chain is the delay object. 
 
 The seenby function must be implemented in a more 
sophisticated way in order to handle potentially infinite 
attribute chains. Here is an algorithmic description of the 
third algorithm version of seenby: 
 
seenby(y1.y2.y3…, x, N) = 
 if y1∈cone(x, N) then {y1.y2.y3…} 
 else if y1∉N then {} 
 else case over definition of y1 in N: 
  y1 = dist a1:p1, a2:p2,… : {} 
  y1 = z1.z2… : seenby(z1.z2…y2.y3…, x, N) 
  y1 = case s of {r11:e11…},… : 

seenby({s, e11.y2.y3, …}, x, N) 
  y1 = [s1=e1, s2=e2,…] (referred to as O) : 
   Uz∈Pa(O) seenby(z, x, N).delay(seenby(y2.y3…, z, O)%z) 
 

Likewise peval and translate are be updated for the 
third algorithm as follows: 
 
peval(N, x, V) = 

if x∈N then 

∑ ∪∗ V{x}|N[M] P  

         <M, P> ∈∈ pprocess (N|{x}, x, {x}∪∪seenby(V, x, N))   

 else 
  {<N, 1>} 

pprocess(N, x1.x2.x3…, V) = W ∑   
 <M, P> ∈∈ peval(N, x1, V)   

 where W = case over definition of x1 in M: 
  x1 = y1.y2…ym 
   return peval(M, y1.y2…ym.x2.x3…, V) 
  x1 = [s1=e1, s2=e2,…]   (referred to as O) 

   return ]O'M[x P 1∑ =∗  

                 <M, P> ∈∈ peval(O, x2.x3…, V%x1) 

  otherwise  
   return {<M, 1>} 
 
pprocess(N, x, V) = case over definition of x in N: 
 x = dist a1:p1, a2:p2,… 
  return {<[x=a1], p1>, <[x=a2], p2>,…} 
 x = case s 
  return peval(N[x=s], x, V) 
 x = case s {r11:e11, r12:e12, …}, {r21:e21, r22:e22, …}, 

{r31:e31, r32:e32, …},… 

  return W ∑   
    <M, P> ∈∈ peval(N, s, V) 

    
 
 

 
  where W = 

   let h = translate(M, s) in case over definition of h 
    h = r1i 
     peval(M[x=case ei {r21:e21, r22:e22, …}, 

{r31:e31, r32:e32, …},…], x, V) 
    h = s 
     {<M, 1>} 
    h = [s1=e1, s2=e2, …] 
     throw error 
    h = case s’ {r’11:e’11, r’12:e’12, …}, 

{r’21:e’21, r’22:e’22, …}, … 
     peval(M[x= case s’  {r’11:e’11, r’12:e’12, …}, 

{r’21:e’21, r’22:e’22, …}, …, 
    {r11:e11, r12:e12, …}, {r21:e21, 
r22:e22, …}, {r31:e31, r32:e32, 
…},…], x, V) 

    h = s’ 
peval(M[x = case s' {r11:e11, r12:e12, …},{r21:e21, 
r22:e22, …}, {r31:e31, r32:e32, …},…], x, V) 
 

x = [s1=e1, s2=e2,…] 
  return {<N, 1>} 

x = s1.s2.s3… (potentially a single symbol) 

  return W ∑   
    <M, P> ∈∈ peval(N, s1.s2.s3…, V)   

   where W = 
let h = translate(M, s1.s2.s3…) in 

    if h = [s1=e1, s2=e2,…] or h = s1.s2.s3… then 
     {<M, 1>} 
    else 
     peval(M[x=h], x, V) 

 
translate(N, x1.x2.x3…xn) = 
 if x1∉N then 
  return x1.x2.x3…xn 
 else if n = 1 then 
  return h where x1=h∈N 
 else 
  case over definition of x1 in N: 
   x1 = y1.y2… 
    return translate(N, y1.y2…ym.x2.x3…) 
   x1 = [s1=e1, s2=e2,…]   (referred to as O) 
    let h = translate(O, x2.x3…) but modify: 
     for each attribute chain a in the definition of 
     h whose head is defined in O replace by x1.a 
     return the modified h 

x1 = case s {r11:e11, r12:e12, …}, {r21:e21, r22:e22, …}… 
return case s {r11:e11, r12:e12, …}, {r21:e21, r22:e22, …}… 

 
This completes the third inference algorithm. 
 
IMPLEMENTATION AND EFFICIENCY 

 There are three major implementation features that 
affect computational eff iciency. The first is caching. For 
this algorithm to run eff iciently on sizable problems, it 
must cache and reuse results of intermediate calculations. 
The simplest form of this is to cache resulting distribu-
tions returned by pprocess, keyed by the triplet of the 
network, variable, and variable set passed in to it. This is 
slightly different from the caching proposed in [1]. There 
it is necessary for caching to identify similar networks, 
which often is diff icult to do eff iciently. In our approach, 
the caching need only recognize exact matches. 
 
 We are also developing more advanced caching that 
can identify for reuse all calls involving a subset of the 
same attribute chains in the variable set of interest. This 



may seem at first difficult to do efficiently. However one 
can cache lists of such sets keyed on the exact network 
and variable to be evaluated. These lists are expected to 
be small, and thus a sequential check is sufficiently fast, 
given that the subsets can be matched quickly. 
 
 A second feature affecting both efficiency and 
completeness of inference is lazy evaluation. The 
inference algorithm does not compute any distribution 
until it is needed. This not only improves efficiency; it 
also serves as the basis for exact inference over a larger 
(Turing complete) class of models. Without lazy 
evaluation, inference on models with infinite objects 
would fail to terminate. 
 
 Finally, the inference algorithm obtains efficiency by 
exploiting the modular domain representation supported 
by objects. It evaluates one object at a time independent 
of the outer context, only referencing the outer context to 
acquire needed information. This type of decomposition 
has been found effective for reducing computation time in 
other systems [6]. 
 
 There are other lesser efficiencies implicit in our 
algorithm design. For example, the use of case statements 
rather than explicit conditional probability tables (CPTs) 
allows implicit factoring of CPTs. Because the inference 
algorithm operates directly on these case statements, it 
can take advantage of the computational reductions that 
factored CPTs offer. Other efficiencies derive from the 
implicit query optimization and goal-directed strategies 
that are incorporated into the inference algorithm.   
 
CONCLUSION 

 A new stochastic modeling language has been 
presented. This language supports object-oriented features 
that are effective in the development of component-based 
hierarchical models. Object-oriented abstraction and 
recursive functions give this language significant 
expressive power (e.g., Turing completeness). These 
additional capabilities are paired with an exact efficient 
inference algorithm that can exploit the domain decom-
position implicit in object-oriented representations. 
 
 In the future, this algorithm will be extended to include 
an approximation scheme that further enhances 
efficiency. In addition, parallel distributed computation 
will be supported, where the cache is the only data 
structure that needs to be shared between threads. Finally, 
the outer language will be extended to include additional 
high level constructs that simplify knowledge 
representation.  
 
ACKNOWLEDGEMENT 

 This work was supported by NSF Grant 115-9800929 
and NSF Phase I SBIR #DMI-996-937 
 

REFERENCES 

 [1] D. Koller, D. McAllester, and A. Pfeffer, Effective 
Bayesian Inference for Stochastic Programs, Proceedings 
of The Fourteenth National Confererence on Artificial 
Intelligence, (Cambridge: MIT Press, 1997). 
 [2] Y. Xiang, D. Poole, and M. Beddoes, Multiply 
Sectioned Bayesian Networks and Junction Forests for 
Large Knowledge-Based Systems, Computational 
Intelligence, 9(2), 1993, 171-220. 
 [3] K. Laskey and S. Mahoney, Network Fragments: 
Representing Knowledge for Constructing Probabilistic 
Models, Proceedings of the Thirteenth Annual 
Conference on Uncertainty in Artificial Intelligence, (San 
Francisco: Morgan Kaufmann, 1997). 
 [4] D. Koller and A. Pfeffer, Object-oriented Bayesian 
Network, Proceedings of the Thirteenth Annual 
Conference on Uncertainty in Artificial Intelligence, (San 
Francisco: Morgan Kaufmann, 1997). 
 [5] D. Koller and A. Pfeffer, Probabilistic Frame-Based 
Systems, Proceedings of The Fifteenth National 
Confererence on Artificial Intelligence, Cambridge: (MIT 
Press, 1998). 
 [6] A. Pfeffer, D. Koller, B. Milch, and K. 
Takusagawa, 1999. SPOOK: A System for Probabilistic 
Object-Oriented Knowledge Representation, Proceedings 
of the Fifteenth Annual Conference on Uncertainty in 
Artificial Intelligence, (San Francisco: Morgan 
Kaufmann, 1999). 

[7] Y. Xiang, K.G. Olesen, and F.V. Jensen, Practical 
Issues in Modeling Large Diagnostic Systems with 
Multiply Sectioned Bayesian Networks, International 
Journal of Pattern Recognition and Artificial Intelligence, 
14 (1), 2000, 59-71. 
 [8] A. Madsen, and F. Jensen LAZY Propagation: A 
Junction Tree Inference Algorithm Based on Lazy 
Evaluation, Artificial Intelligence, 113, 1999, 203-245.  
 [9] Y. Xiang and F. Jensen, Inference in Multiply 
Sectioned Bayesian Networks with Extended Shafer-
Shenoy and Lazy Propagation, Proceedings of the 
Fifteenth Annual Conference on Uncertainty in Artificial 
Intelligence, (San Francisco: Morgan Kaufmann, 1999).  
 [10] R.D. Shachter, An Ordered Examination of 
Influence Diagrams, Networks, 20, 1990, 535-563. 
 [11] E. Castillo, J.M. Gutierrez, and A.S. Hadi, Goal 
Oriented Symbolic Propagation in Bayesian Networks, 
Proceedings of the Thirteenth National Conference on 
Artificial Intelligence, (Cambridge: MIT Press, 1996). 
  [12] M. Baker and T.E. Boult, Pruning Bayesian 
Networks for Efficient Computation, Proceedings of the 
Sixth Annual Conference on Uncertainty in Artificial 
Intelligence, (Amsterdam: North Holland, 1990). 
   
  
 


