
Identifying the Sources of Latency in a Splintered Protocol∗

Wenbin Zhu, Arthur B. Maccabe
Computer Science Department
The University of New Mexico

Albuquerque, NM 87131

Rolf Riesen
Scalable Computing Systems Department

Sandia National Laboratories
Org 9223, MS 1110

Albuquerque, NM 87185-1110

Abstract

Communication overhead and latency are critical fac-
tors for application performance in cluster computing
based on commodity hardware. We propose a general strat-
egy, splintering, to improve communication performance.
In the splintering strategy, previously centralized function-
ality is broken into pieces, and the pieces are distributed
among the processors in a system, in such a way that en-
sures system integrity and improves performance.

In a previous paper we demonstrated the benefits of us-
ing splintering to reduce communication overhead. In this
paper, we describe our efforts to use splintering to reduce
communication latency. To date, our efforts have not re-
sulted in the improvement that we originally anticipated. In
order to identify the sources of latency, we have done a thor-
ough instrumentation of our implementation. Based on our
analysis of our measurements, we propose several modifi-
cations to the MPI library and the NIC firmware.

Keywords: Communication latency, splintering, per-
formance measurement

1. Introduction

Protocol splintering is the process by which the func-
tions in a protocol stack are broken into small pieces which
are then redistributed among the processors in a system to
improve performance while ensuring system integrity. In
particular, we consider distribution among the host proces-
sor and the processor in a programmable NIC, an arrange-
ment that is common in cluster computing systems [3]. In
an earlier paper, we reported our success in using splintering
to reduce communication overhead. Using splintering, we
were able to reduce the host processor utilization for large
messages by 80% while maintaining high bandwidth [7].

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

While communication overhead is commonly cited as
the most critical factor affecting application scalability [5,
6], communication latency is also an important performance
bottleneck for many applications. In this paper, we report
our initial experiences in using splintering to reduce com-
munication latency.

1.1. Splintering

Splintering allows incremental adjustment to system
workload distribution. Each previously centralized function
is broken into pieces, and these pieces are distributed to en-
sure both system integrity and improved performance.

Splintering is closely related to OS-bypass and protocol
offloading. However, there are important differences be-
tween these approaches. In contrast to OS-bypass, splinter-
ing seeks to retain the OS as the central coordinator of re-
sources. Rather than trying to bypass the OS, we are careful
to engage the OS as needed. In contrast to protocol offload-
ing, we do not attempt to break functionality at protocol
boundaries. Instead, we offload bits and pieces of different
protocols and re-combine them to improve performance.

While we are currently investigating splintering in the
context of programmable network interface cards, splinter-
ing could be used in many more contexts. Functionality that
does not endanger a system’s safety nor violate a system’s
sharing policy can be splintered and distributed to other
parts of the system. The target of a splintered activity could
be another processor in a SMP system, another computer in
a distributed system, or to a hardware component if the sys-
tem has intelligent hardware components. The distribution
of splinters can be static (e.g., during system configuration)
or dynamic. The principles of the splintering strategy are:

• Distributing operating system functionality to improve
performance should be selective, based on system ar-
chitecture as well as system and application software
characteristics.

• Improvements in performance must not compromise

protected

App

library

processing

library

App

kernel

user

protected
processing

splinteringnormal protocol processing

protocol processing

NIC NIC

host host

Figure 1. Applying splintering to network pro-
tocol processing

system integrity. Control of resources should remain
centralized or carefully delegated (as splinters are dis-
tributed) among the processors available in a system.

• When splinters are dynamically distributed, the operat-
ing system is in control of splinter distribution. The op-
erating system decides whether to splinter functional-
ity based on the capabilities of the system components,
and the overall performance of the system. Similarly,
when splintered functionality is no longer needed in
the system or splintering does not yield better perfor-
mance, the operating system can gather the distributed
splinters back to centralized processing again.

Figure 1 presents a graphical representation of a splin-
tered protocol. In the initial implementation, all levels of the
protocol are implemented on the host processor – parts of
the implementation are split between the OS address space
and the user address space. When the protocol is splintered,
parts of the selected layers are implemented on the network
interface card (NIC)hardware.

1.2. Previous Work

Using splintering, we were able to greatly reduce the
host processor utilization [7]. We use host processor avail-
ability as our measurement for the host processor utiliza-
tion. The host processor availability is defined as the ra-
tio of available host processor cycles with communica-
tion processing versus the one that without. In our step-
by-step splintering implementation, we first offloaded the
receive-side data movement handling to a programmable
NIC. which results in a 2X improvement in the CPU avail-
ability. In the second step, we offloaded the send-side data
movement handling, which results in another 2X improve-
ment.

Figure 2. Conceptual view of the network pro-
tocol stack

Encouraged by our earlier implementation, we decided
to use splintering to reduce the communication latency. In
this paper we describe how our effort did not yield the ex-
pected result and how we have identified the obstacles in
the protocol processing that have prevented us from attain-
ing our goal.

The remainder of this paper is organized as follows. The
next section explains the protocol stack we use to do the
splintering implementation, and how will we use splinter-
ing to reduce communication latency in that protocol stack.
Section 3 shows the initial results, and Section 4 introduces
the difficulties as well as our solutions to do the measure-
ment, in order to identify the time-consuming components.
Section 5 shows the measurement results and Section 6
gives the analysis of the measurement results. In Section 7
we discuss the difference between our work and related
work. Section 8 suggests the efforts we should put on to
reduce the communication latency as our future work.

2. The Network Protocol Stack

In this section we describe the software layers that a mes-
sage traverses on its way to and from a remote node. Fig-
ure 2 shows a graphical representation.

The application in our case is our simple micro bench-
mark. It is linked to the MPI library and uses basic MPI
functions to send and receive short messages. The MPI li-

brary is MPICH version 1.2.0 and uses the Portals 3 API
calls to transmit messages.

Portals 3 [4] is a low-level message passing mechanism,
ideally suited to the implementation of message passing li-
braries, such as MPI, and runtime libraries. Our imple-
mentation of Portals 3 straddles the user space and kernel
boundary. A thin user space library forwards the Portals 3
API calls into the Portals 3 implementation which resides
inside the kernel. The Network Adaption Layer (NAL) is
the mechanism our implementation uses to transport infor-
mation between the two protection domains.

Most of the semantics of Portals 3 are implemented as
a Linux kernel module. This module sends messages by
calling the Reliable Message Passing Protocol (RMPP) [9]
module below it. When new messages arrive, the RMPP
module calls back into the Portals 3 module, which per-
forms the matching and then informs the RMPP module
where, in user space, to deposit the payload of the message.

The RMPP module implements a very simple protocol
that is based on the assumption that network errors are rare
and messages should be sent optimistically. Error detec-
tion and recovery takes a little longer, but should be rare in
a good network. The RMPP module consists of two logi-
cal components. The protocol engine itself and the packe-
tization functions that deal with the handling of individual
packets.

Packets flow from the RMPP module to the Acenic
kernel-level device driver and from there into the NIC itself.
Incoming packet is transferred from the NIC through inter-
rupt to the device driver, then it is passed into the RMPP
module and processed by the Portals 3 module. This is not
true for data packets which flow directly from and to user
space and the NIC.

As we analyze the protocol stack, message matching
looks like a good candidate to splinter to a programmable
NIC. The matching information is pre-posted by the receive
process, as shown in step 1 in Figure 3. Therefore it can
be put into the NIC before a message arrives. In step 2,
the send process calls into the Portals 3 module to create a
buffer descriptor. This modules validates and pins the send
buffer, returning a token for future reference. This token is
used in a subsequent Portals 3 put operation shown as step
3 in Figure 3. When the NIC gets the notification from its
driver, it first DMAs the buffer descriptor (bd) from the host
in step 4, then it DMAs the data to be sent out in step 5. In
step 6, the packet arrives at the receive NIC, which checks
the packet’s match information. On a successful match, the
data is DMAed to the receiver’s buffer, which is labeled as
step 7. Then it updates the receiver’s event queue in step 8
and acknowledges the sender in step 9. Finally, the packet
header is sent to the operating system through an interrupt
in step 10.

Using our splintering approach, we have moved some

application

MPI lib

portals lib

acenic driver

host

user
kernel

post_recv

match

match info

DMA
event

data
DMA

yes
no

hdr
interrupt

packet

nic

match
info?

nic

host

send

MDBind

application

portals lib

MPI lib

NAL

PtlPut

acenic driver

RMPP RMPP

NAL

DMA
engine

MAC
engine

firmware

bd data

user

kernel

1

2

3

4 5

6

7
8

10

9

portals kernel module portals kernel module

Figure 3. Splintering incoming packet match-
ing to NIC

of the matching usually performed by the Portals 3 module
into the NIC itself, so we can perform our evaluation of
this approach. Acknowledgments, usually performed by the
RMPP module, are also done in the NIC now.

3. Initial Results

We use 20-byte application level messages to do the
measurements. Message size can be as short as zero bytes,
but the measurements would not show the overhead asso-
ciated with buffer management. A message of 20 bytes is
long enough for the application to do some event notifica-
tion between its peers, yet short enough to ignore the propa-
gation latency. The latency of a message is composed of the
protocol stack overhead, buffer management overhead and
latencies that are imposed by the system.

Our splintered implementation was done in three steps.
In the first step, the NIC DMAs the data into the ap-
plication buffer. All other processing is still left to the
host processor. The result is labeled DMAdata in Fig-
ure 4. In the second step, the NIC generates the ac-
knowledgment to the sender, this result has the label
DMAdata ackSender. In the third step, the NIC updates
the event queue to notify the receiving process. This result
is labeled DMAdata ackSender updateEQ.

An interesting observation is that generating an acknowl-
edgment on the NIC increases the latency, rather than reduc-
ing it. Our measurements show that handling send acknowl-
edgments on the NIC takes about 8µs, while doing it on the
host reduces this to approximately 3µs.

The final step of updating the event queue entry on the
NIC has very good performance. It lowers the latency by
about 20µs.

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

L
at

en
cy

 (
us

ec
)

Message Number

DMAdata
DMAdata_ackSender

DMAdata_ackSender_updateEQ

Figure 4. Latency results of three steps of
splintering

At the time we finished this work, we noticed that our
sends were still using the standard Linux kernel skbuffs,
which are dispatched by the kernel network stack. Since our
system is a dedicated system, and each node runs only one
application, it is reasonable to dispatch to the device driver
directly. This optimization gave us another 8µs reduction in
latency.

Figure 5 shows the latency difference between the orig-
inal implementation versus the final splintered implemen-
tation. NICmatch refers to when the NIC is doing the
matching, acknowledging the sender and updating the event
queue. NICmatch- f stSnd refers to when sending bypasses
the kernel standard network stack. The original implemen-
tation has a latency of 110.5µs, and the splintered NICmatch
implementation has a latency of 94.5µs. The final NIC-
match with fast sending has a latency of 86µs. Splintering
of the protocol results in a 22% reduction in latency.

The resulting 86µs is still significantly higher than our
expectation of 50µs. We suspect that the protocol has some
large overhead components. In order to identify these, we
did a thorough measurement of the protocol processing us-
ing short messages.

4. Measurement Techniques

Doing the measurement is not quite easy. First, it in-
volves many components, crossing multiple address spaces.
Second, the whole protocol stack crosses different hosts,
and different processors within a node. As a result, some
of the intervals we are interested in measuring span mul-
tiple clocks. In this section we present our measurement
goals as well as the techniques we used.

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

L
at

en
cy

 (
us

ec
)

Message Number

orig
NICmatch

NICmatch-fastSnd

Figure 5. The latency difference between orig-
inal versus splintered

4.1. Timing goals

Following are the components in the protocol stack that
we planned to measure the time spent on:

• The MPI library.

• The reference library (LIB).

• The Network Abstraction Layer (NAL).

• The device driver for the Alteon Acenic.

• The PCI bus.

• The firmware running on the NIC.

• The hardware latency, including the latencies of the
DMA engines, the MAC engines, and the physical
wire.

• Interrupt overhead.

Although the firmware controls the DMA engines to read
and write to the host memory, we count its latency as hard-
ware latency. The reason is that DMA engine start time and
transfer time are totally determined by the hardware. Even
though coordinating DMA and MAC engine to work well to
obtain good performance is controlled by the software, we
wish to isolate the DMA and MAC latency so as to be able
to trade off the hardware and software cost. The higher the
DMA latency, the more software effort should be put on to
merge multiple DMAs.

4.2. Four clocks

The hardest part of doing the measurement is that it in-
volves four clocks. One clock on the send host processor,
one on the send NIC processor, and symmetrically, two
clocks on the receive host and NIC. The difficulty comes
when trying to measure a time interval that starts on one
clock and ends on another. In order to eliminate the consid-
eration for synchronizing different clocks, we always start
and stop the timer on the same clock. By doing the measure-
ments on selected intervals, we still be able to get accurate
or approximate results on all time intervals.

We used two general approaches to address the problems
posted by multiple clocks: ping-pong and deduction from
multiple measurements.

4.2.1 Using Ping-Pong

Using ping-pong test, we always start and stop the timer on
the same clock. Using this technique, we obtained PCI bus
latency, read DMA latency on the NIC, write DMA latency
on the NIC, one-way latency of a message going through
two hosts, and one-way latency of the MAC engine and
physical wire.

As an example, to measure the PCI bus latency, we did a
ping-pong test between the device driver and the NIC. The
timer starts when the driver updates a PCI register to sig-
nal the NIC. When the NIC receives the signal, it updates
another shared PCI register immediately. The timer stops
when the driver notices the change on that PCI register.
Note that we assume PCI read and PCI write are symmetric.

4.2.2 Using Multiple Measurements

Some time intervals do not have an explicit start point or
end point defined by a single clock. Therefore it is impos-
sible to do the measurement directly on that interval by a
single clock. The measurements of the read DMA latency,
the write DMA latency, and the interrupt overhead fall into
this category.

Interrupt overhead is the CPU cycles taken away by a
single interrupt. The interrupt is initiated on the NIC, but is
handled on the host. On the NIC, we do not know the end
time, and on the host, we cannot get the start time. We mea-
sured the interrupt overhead by doing multiple measure-
ments: MPI receive handling without interrupt, MPI send
handling without interrupt, and MPI receive and send han-
dling with interrupt.

We measured the time intervals of MPI library send han-
dling as (12µs), receive handling as (2µs). We also mea-
sured the interval from the start of a receive until a new send
starts in the MPI library on the pong node. It turned out
to be 23µs instead of 12(sending) + 2(receiving) = 14µs.
The 9µs difference is the interrupt handling overhead, which

interrupt

ping

interrupt handling

MPI receive handling

MPI send handling

2

X

12 − X

23
(9)172

MPI send handling

MPI send handling

ping node pong node

MPI receive handling

pong

timer
start

stop
timer

Figure 6. The interrupt overhead (time unit µs)

is counted into the whole message latency. The interrupt
comes in sometime before the host finished the receive or
send processing, so it is interrupted. As we measure the in-
dividual latency of the receive and send handling in the MPI
library, we always take the shortest number, which does not
include the interrupt overhead. This is shown in Figure 6.

Another example is the measurement of read and write
DMA on the NIC. These time intervals also span multiple
clocks, with start point and end point on different clocks,
host processor clock and NIC clock in this case. The read
DMA latency is measured using two ping-pong tests be-
tween two NICs. In one ping-pong test, each NIC just re-
ceives and echoes back a local packet. The measured inter-
val includes the latencies of the MAC engine, the physical
wire and firmware latency of send and receive processing.
In the other ping-pong test, each NIC does a read DMA and
sends that data to the other NIC. The time difference of the
two ping-pong tests is the latency of two read DMAs.

Write DMA is measured in the similar way, it uses two
ping-pong tests between the host and the NIC. It is always
the host that does the timing. In one ping-pong test, the host
signals the NIC, and the NIC simply interrupts the host. The
time interval includes the PCI write latency, the interrupt
overhead and the firmware latency to do a processing on the
PCI signal. In the other test, the host signals the NIC, the
NIC does a write DMA to the host memory, then interrupts
the host. The time difference is the latency of one write
DMA.

An unsolved problem is the overlap that happens in the
protocol processing. We know that the DMA engines and
the MAC engines on the NIC do work during the NIC pro-
cessor is doing other work. Our individual measurement
only shows how much latency for each stand-alone compo-
nent, we have not found a good technique to analyze the
overlap.

4.3. The timing tools

We chose the Intel 64-bit cycle counter as our timing tool
on the host side. The cycle counter is incremented every
clock cycle, and the measurement overhead is 70 cycles on
a 500 MHz machine, which is 0.14µs. Therefore, it is a
reasonably accurate timing tool. Another reason we choose
the cycle counter is that our measurement goes across all
address spaces, including application, different kernel mod-
ules, and the core kernel. The cycle counter is address space
neutral, so the results obtained from various parts of the sys-
tem would be fair to compare.

On the NIC, we use the timer register on the NIC, which
is updated every microsecond, so each measurement on the
NIC has an error of ±1µs. We reduce the error by doing
multiple measurements.

5. Measurement Results

In this section, we summerize our measurement results
using the techniques we described in Section 4. We split
the result into two categories: host-side and NIC-side. The
host-side latency refers to latencies of the host side pro-
cessing, as well as the PCI bus latency and the interrupt
overhead. The NIC-side latency includes firmware latency,
DMA latencies, and transfer latency.

5.1. Host-side Latency Measurement

Figure 7 shows the host-side latency. The measured re-
sult of the round trip time of a ping-pong test is 172µs.
Therefore our one-way latency is 86µs. The numbers fol-
lowed by RTT is the round trip time, because those time
intervals go across different clocks.

MPI library uses 12µs for send, and 2µs for receive. The
Portals 3 library consumes 2µs for send processing. RMPP
uses 10µs to do send processing. And the device driver
uses 2µs for building the buffer descriptor and translating
a physical address to a bus address. Interrupt overhead, as
mentioned before, is 9µs. PCI bus latency is 1.5µs.

The total host-side latency is 38.5µs, therefore the NIC-
side latency can be counted up to 47.5µs.

5.1.1 NIC-side Latency Measurement

Figure 8 shows the latency measurement on the NIC-side.
The numbers in parentheses are derived numbers, using
techniques described in Section 4.

There are two read DMAs on the send path, one for the
buffer descriptor, the other one is for data. Each individual
read DMA takes 3.5µs, so we count total read DMA latency
as 7µs. Firmware latency on send is 10.5µs. On receive,
the firmware latency is 20µs. The total latency for the send

MAC engine to start putting data on the wire, till the data
goes across the wire, and received by the receive MAC en-
gine is 2µs. We have 8µs left, which is counted as write
DMA latency on the receive side.

6. Analysis of the Measurement Results

Figure 9 shows the summary of the measurement, the
numbers in parentheses are derived numbers. Counting the
latency as three components: host processing latency, hard-
ware latency, and NIC processing latency, the results can be
broken to:

• Host processing latency, 28µs. This includes time used
by the MPI library, Portals 3 library, RMPP module
and device driver. We can do optimization in this pro-
cessing path to reduce this latency.

• Hardware latency, 27.5µs. This includes interrupt
overhead, read DMA, write DMA, MAC engine, wire,
and PCI bus latency. We cannot change each individ-
ual latency, but we can eliminate some of them to lower
the total latency. For example, we can remove the in-
terrupt, and one of the two read DMAs.

• NIC processing latency, 30.5µs. This involves send
and receive processing of the firmware running on the
NIC. To reduce this latency, we should simplify the
firmware processing, especially for receiving.

The only dubious place is the calculation only leaves 8µs
for the three write DMAs on the receiving processing on
the NIC. Our measurement shows that one write DMA con-
sumes 10µs. The inconsistency comes from several places:

• The timer on the NIC is updated every microsecond,
this gives us an error rate of ±1µs for each measure-
ment. Even though we did multiple measurements for
each timing interval, we still cannot guarantee up to
one microsecond accuracy.

• There are possible overlaps between sending MAC and
read DMA, and between write DMA and interrupt han-
dling. Therefore, send-side read DMAs may be low-
ered less than 7µs, so receive-side write DMAs can be
accounted for longer time.

The shaded areas are the large time consumers. The first
one is the MPI library. In the current implementation, it
takes 12µs to send and 2µs to notify the receiver. The other
one is the firmware. It takes 10.5µs to process a send and
20µs to process a receive. The sending processing involves
two DMAs from the host memory, which is merged to one
in the EMP [10] implementation. The receiving processing
incurs three write DMAs to the host memory.

86

APP
REF
LIB

Device
Driver

Ping node Pong node

12

14

24

172

14 RTT

1.5 4 RTT

23

MPI PCI FW Wire FW MPI APP MPI Wire MPIFW APP

Ping node

26

2

RMPP

Figure 7. The host-side latency (time unit µs)

enq_mac wire rx_comp

20

45

enq_mac

2 2

bd_ready data_ready wire rx_comp
Ping node

Pong node

Ping node

DMA
read

(47.5)

14 = 10.5 + 3.5 3.5

write DMA

(8)

Figure 8. The NIC-side latency (time unit µs)

12

10

Firmware recv
3 write DMA

interrupt

MPI
APPAPP

MPI
Ref lib

Device Driver
PCI latency
Firmware send

2

(9)

(8)
20

2

2

MAC and wire

86 MPI
Ref lib
RMPP
Device Driver
PCI latency
Firmware send/receive

two read DMA
DMA latency
interrupt

14

2

30.5
1.5

(9)
MAC and wire2

86

7
10.5
1.5

(15)

+

2
10

2

one−way latency

RMPP

Figure 9. One-way latency layout (time unit µs)

7. Related Work

There have been a great deal of research in message pass-
ing performance measurement. Some have been done at the
message level, where the message level latency and band-
width are measured. The methodology is ping-pong test in
most cases [2, 11, 13, 12].

Anderson et al., from DEC did a good job of detailed
profiling of the whole system [1]. Pratt from NASA devel-
oped an infrastructure, GODIVA [8], for instrumentation of
the source code, which is similar to our approach. However,
both systems use linear measurement, where instrumention
code is inserted into the execution path. It is not possible
to obtain information of host-NIC interaction, or host-host
interaction.

The EMP [10] uses the same programmable NIC as we
do. Our measurement showed that EMP has a 28µs latency
on our machines with MPI message length of 20 bytes.

In contrast to previous research, the novelty of our ap-
proach is the instrumentation on both the host and the NIC
to obtain information of host-host and host-NIC interac-
tions. This information includes: PCI bus latency, interrupt
overhead, firmware latency on the NIC, and MAC engine
and physical wire latency.

8. Future Work

Looking at the numbers of latencies and overhead in our
protocol, several places appear to be good candidates for
improvement. The firmware running on the NIC takes too
much time. The DMA latency is big, 3.5µs for a read DMA
and 10µs for a write DMA, we should definitely reduce the
number of DMAs in the protocol processing. The MPI li-
brary and RMPP each also takes a big share. We propose
the following strategies to reduce the latency in our future
work:

• Firmware The largest time consumer is the firmware,
which takes 30.5 µs out of the total of 86µs. Out of the
30.5µs, receive processing takes 20µs. By combining
the two read DMAs to one, the send processing on the
NIC can be cut in half. By simplifying matching for
receives, we should be able to cut the receive process-
ing in half too. This can reduce the firmware latency
from 30.5µs to 15µs.

• DMA latency Three write DMAs on receiving is too
much. The header DMA is only there to ask the oper-
ating system to release the receive buffer registration.
Therefore it can be done in the background, and we
can remove that DMA it from the critical path. If we
can change the MPI library so it reserves a small data
buffer in each event entry, then data DMA and event

DMA can be merged into one for short messages. On
the send side we can reduce latency by combining the
two read DMAs. Overall, we should be able to reduce
the DMA latency by half; from 15µs to 8µs.

• Interrupt We will remove the 9µs interrupt overhead
from the critical path. Interrupts will be queued and
handled by the operating system when it is idle. This
requires the operating system to provide a mechanism
to process queued interrupts.

• MPI library Improvements in the MPI library by tun-
ing it should help short message latency.

• NAL The prototype network abstraction layer has too
much overhead and we expect it can be reduced by half
to about 5µs.

Adding up all these savings, we should be able to reach a
latency of 49.5µs, which was our original goal for this work.
The thorough measurement explained in this paper, make it
possible to target the problem areas very specifically.

Acknowledgments

We wish to thank Pete Wyckoff of OSC for making EMP
available and answering all our questions about it. Patricia
Crowley of UNM has helped us with the code that runs on
the Acenic, which is greatly appreciated. Patrick Bridges
of UNM made many good suggestions on what to measure.
Finally, we want to thank the other members of the Scalable
Systems Lab (SSL) at UNM.

References

[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandervoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profil-
ing: Where have all the cycles gone? ACM Transactions on
Computer Systems, 15(4), Nov. 1997.

[2] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, and
J. Philbin. User-space communication: A quantitative study.
In Proceedings of Supercomputing’98 (CD-ROM), Orlando,
FL, Nov. 1998. ACM SIGARCH and IEEE.

[3] R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson,
M. Levenhagen, A. B. Maccabe, and R. Riesen. Massively
parallel computing using commodity components. Parallel
Computing, 26(2–3):243–266, Feb. 2000.

[4] R. Brightwell, T. Hudson, R. Riesen, and A. B. Maccabe.
The Portals 3.0 message passing interface. Technical report
SAND99-2959, Sandia National Laboratories, 1999.

[5] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and v. Thorsten. LogP: Towards
a realistic model of parallel computation. In Proceedings
of the Fourth ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, pages 1–12, May 1993.

[6] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing locality and concurrency in a shared memory
multiprocessor operating system. In Proceedings of the 3rd
Symposium on Operating Systans Design and Implementa-
tion (OSDI-99), pages 87–100, Berkeley, CA, Feb. 22–25
1999. Usenix Association.

[7] A. B. Maccabe, W. Zhu, J. Otto, and R. Riesen. Experience
in offloading protocol processing to a programmable NIC.
In Proceedings of IEEE 2002 international conference on
cluster computing, Chicago, Illinois, Sept. 23–26 2002.

[8] T. W. Pratt. How to ”quantify” an ap-
plication code to create a benchmark.
http://ct.gsfc.nasa.gov/eval/Round2/quantify.html, June 30
1999.

[9] R. Riesen. Message-Based, Error-Correcting Protocols for
Scalable High-Performance Networks. PhD thesis, The Uni-
versity of New Mexico, Computer Science Department, Al-
buquerque, NM 87131, July 2002.

[10] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven gigabit ethernet message passing. In Pro-
ceedings of Supercomputing’01 (CD-ROM), Denver, Nov.
2001. ACM SIGARCH/IEEE.

[11] D. Turner and X. Chen. Protocol-dependent message-
passing performance on linux clusters. In Proceedings of
IEEE 2002 international conference on cluster computing,
Chicago, Illinois, Sept. 23–26 2002.

[12] J. Vetter. Performance analysis of distributed applications
using automatic classification of communication inefficien-
cies. In Conference Proceedings of the 2000 International
Conference on Supercomputing, pages 245–254, Santa Fe,
New Mexico, May 8–11, 2000. ACM SIGARCH.

[13] J. Vetter. Dynamic statistical profiling of communication
activity in distributed applications. In S. T. Leuteneg-
ger, editor, Proceedings of the 2002 International Confer-
ence on Measurement and Modeling of Computer Systems
(SIGMETRICS-02), volume 30, 1 of SIGMETRICS Perfor-
mance Evaluation Review, pages 240–251, New York, June
15–19 2002. ACM Press.

