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Abstract 

The alterations in functional relationships among brain regions associated with senile dementia are not 

well understood.  We present a machine learning technique using dynamic Bayesian networks (DBNs) 

that extracts causal relationships from functional magnetic resonance imaging (fMRI) data.  Based on 

these relationships, we build neural-anatomical networks that are used to classify patient data as 

belonging to healthy or demented subjects.  Visual-motor reaction time task data from healthy young, 

healthy elderly, and demented elderly patients (Buckner et al. 2000) was obtained through the fMRI 

Data Center.  To reduce the extremely large volume of data acquired and the high level of noise inherent 

in fMRI data, we averaged data over neuroanatomical regions of interest.  The DBNs were able to 

correctly discriminate young vs. elderly subjects with 80% accuracy, and demented vs. healthy elderly 

subjects with 73% accuracy.  In addition, the DBNs identified causal neural networks present in 93% of 

the healthy elderly studied.  The classification efficacy of the DBN was similar to two other widely used 

machine learning classification techniques: support vector machines (SVMs) and Gaussian naïve 

Bayesian networks (GNBNs), with the important advantage that the DBNs provides candidate neural 

anatomical networks associated with dementia. Networks found in demented but not healthy elderly 

patients included substantial involvement of the amygdala, which may be related to the anxiety and 
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agitation associated with dementia. DBNs may ultimately provide a biomarker for dementia in its early 

stages, and may be helpful for the diagnosis and treatment of other CNS disorders. 

Introduction 

Dementia is a progressive organic mental disorder characterized by impairments in short- and long-term 

memory combined with impairments in abstract thinking, judgment, disturbances of higher cortical 

function, personality change and increased anxiety and agitation (Volicer and Hurley 2003).  Dementia’s 

cause is most often Alzheimer's disease (AD), although other illnesses can produce dementia as well.  

Such global changes in behavior are likely to involve the disruption of activity across a variety of brain 

regions.  Post-mortem histology has shown that AD involves medial temporal regions first and foremost, 

with a progressive loss of associated regions through the progression of the illness, leading finally to 

death (Braak, Del Tredici and Braak 2003).  However, these histological methods cannot show the 

functional relationships among brain regions found to be affected or unaffected by neurodegeneration.  

Indeed, it is not entirely clear at what stage of degeneration the functionality of brain regions is fully 

impaired, nor to what degree functionality is compromised at intermediate stages of degeneration.  Such 

information must be obtained from patients in-vivo, not only by observing the activity of individual 

brain regions during rest or in response to stimuli and behavioral responses, but also by observing how 

activity in one brain region affects others, and how this relationship changes as the behavioral symptoms 

of a disease manifest themselves.   Information regarding such interactions among brain regions could 

prove useful for understanding the neural basis of dementia during intermediate stages of 

neurodegeneration, and may eventually lead to new methods for the diagnosis and treatment of this 

disorder. 

Buckner et al. (2000) examined the neurophysiological and hemodynamic correlates of healthy aging 

and dementia by acquiring fMRI data during a visual-motor response task.  The study consisted of three 

groups: 14 healthy young adults, 15 healthy adults and 11 demented adults.  Subjects were presented 



Burge et al., Page 3 

 

with flickering checkerboard stimuli and asked to press a button in response to stimuli.  Using the 

generalized linear model (GLM) for analysis, they found qualitatively similar activation maps among all 

groups, but quantitatively differing amplitude responses in only a select few regions—such as the visual 

cortex.  Over all, they found little quantitative differences among groups. 

Using dynamic Bayesian networks (DBNs), a machine learning modeling technique that does not make 

the same linearity or independence assumptions as the GLM (or other widely used analysis techniques 

such as multivariate regression), we have developed a method for extracting causal1 neuroanatomical 

networks differentiating activity among the three groups examined by Buckner et al. (2000).  To validate 

the method, a classifier based on the DBNs was created and its over all accuracy was compared with two 

other popular machine-learning classifiers: support vector machines (SVMs) (Burges 1998) and 

Gaussian naïve Bayesian networks (GNBNs).  (See the methods section for an overview on DBNs, 

GNBNs and SVMs.) 

Both the DBNs and the GNBNs are Bayesian techniques that fall under the general category of Bayesian 

networks.  However, the DBNs have the ability to explicitly model complex relationships among 

anatomical regions over time, whereas GNBNs collapse all temporal knowledge of a region into a few 

statistical values.  While GNBNs are unable to illuminate meaningful temporal relationships, the 

simplicity of the model allows for efficient learning and GNBNs often make good classifiers.   

In contrast, SVMs are not based on BNs, but are instead regression based-techniques that attempt to find 

optimal (possibly nonlinear) surfaces that separate sets of data points associated with different classes.  

For a general background on SVMs, we refer the reader to Burges (1998).  Typically, SVMs map a 

problem into a higher dimensional domain in which standard quadratic programming techniques can be 

————— 
1 Relationships expressed in a DBN can be strictly causal (when explicitly constructed from causal 

processes) or correlational (when extracted from pure data).  Traditionally, in Bayesian network 
research, we loosely refer to both types of relations as "causal".  Following this nomenclature, we refer 
to "causal arcs" or "causal relations" extracted from data, though we acknowledge that, lacking 
additional experiments, the networks we demonstrate are only correlational. 
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used to find optimal linear separators (which result in nonlinear separators in the original domain).  Like 

GNBNs, SVMs frequently make good classifiers, but they also do not readily provide useful information 

that could describe underlying neuroanatomical networks. 

The enormous amount of information generated by an fMRI scan poses a significant obstacle to 

applying machine learning techniques.  In order to reduce the size of the dataset while maintaining 

meaningful anatomical information, we averaged intensity data for voxels falling within each of the 150 

anatomical ROIs as defined by the Talairach database (Lancaster et al. 2000)2. This results in a reduction 

from approximately 7 million spatial by temporal values per patient down to 70,000 values per patient—

a reduction of two orders of magnitude. 

Training the DBN on the processed data, we find that the classification accuracy of the DBN is 

competitive with both the SVM and GNBN and is capable of extracting meaningful neuroanatomical 

relationships describing qualitative and quantitative differences among groups.  A method for measuring 

the confidence in the networks elucidated by the DBN is introduced and shows that, with high 

probability, many of the relationships reported in the neural anatomical networks are not due to random 

chance. 

Previous Work 

Much of the previous work in analyzing fMRI images uses statistical regression and hypothesis testing.  

A software tool commonly used to perform such analysis is SPM (Friston 2002).   GLMs are frequently 

used to determine if a stimulus is correlated with voxel activity (Friston et al 1995).  Derived from the 

GLM, the t-test has also been applied via SPM for fMRI analysis (Worsley & Friston 1995).   

Generally, these techniques are employed on a voxel by voxel basis.  However, Goutte et al. (1999) 

propose a method to cluster voxels with similar behavior into individual groups using both a K-means 

————— 
2 The database actually contains 151 anatomical regions, however, the precentral gyrus is duplicated, 

and one of the duplicates may be removed, resulting in 150 anatomical regions. 
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clustering algorithm and a hierarchical clustering algorithm that is capable of detecting clusters of voxels 

with correlations over varying time delays.  The main purpose of their study was exploratory, as 

opposed to inferential, and they were able to successfully identify groups of similarly behaving voxels. 

Discriminant analysis techniques (e.g., multivariate regression) are also commonly used to analyze 

neuroimaging data, and they share many modeling similarities with BNs.  Like BNs, they test 

hypotheses on the predictive ability of independent random variables on dependant random variables.  

However, BNs tend to test predictive ability in an information theory context as opposed to a statistical 

analysis of variance approach typically employed by multivariate regression techniques.  Using a 

multivariate regression on positron emission tomography (PET) data, Azari et al. examined the 

neurophysiological effects of dementia in elderly patients (Azari et al., 1993).  They were able to 

correctly classify patients with mild or moderate dementia from healthy patients with 87% accuracy.  

While the subject population between Buckner et al.’s study and Azari et al.’s study are similar, Buckner 

et al.’s patients were only diagnosed with either very mild or mild demented and presents a more 

difficult classification that the mild or moderate dementia present in Azari et al.’s study. 
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Figure 1.  ROC curves for classifying demented vs. 
healthy patients.  No single algorithm completely 
dominated although SVM was continually beaten by 
at least one other algorithm.  ‘ * ’  indicates a DBN 
with no parents (a multinomial model) 
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Figure 2.  ROC curves for classifying age of patient.  
GNBN narrowly beat out both the DBN and SVM, 
which generally performed equally as well. 
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Other Bayesian techniques have also been previously applied to fMRI data.  Hojen-Sorensen et al. 

(2000) use Hidden Markov Models (HMMs) to learn a model of the activity within the visual cortex 

from visual stimuli.  Using their technique, they were capable of reconstructing the visual stimulus 

presented to patients solely based on the patient’s fMRI data.   

The work most similar to ours is that of Mitchell et al. (2003).  They used a Bayesian approach to 

analyze fMRI data with the goal of classifying instantaneous cognitive states of a patient such as 

‘ reading a book’  or ‘ looking at a picture’ .  They use three separate algorithms for analyzing the fMRI 

data: a GNBN classifier, SVMs and a K-Nearest Neighbor (KNN) classifier.  They found that that KNN 

was uniformly outperformed by the SVM and GNBN, however, neither the SVM nor the GNBN clearly 

dominated the other. 

Friston, Harrison and Penny (2003) have also employed Bayesian network modeling techniques to 

attempt reconstruction of activation networks.  Like us, they employ dynamic (a.k.a. temporal) Bayesian 

networks, though they restrict their state transition function to bilinear functions of the current state and 

stimulus.  We instead assume a multinomial transition model and do not constrain the prior distribution 

of hemodynamic response.  Our more general model leads to a vastly more complex system 

identification problem that requires a number of approximations (see Methods section). 

Most significantly, our work differs from previous work in that we are extracting meaningful networks 

differentiating groups of patients by explicitly modeling causal temporal relationships between 

neuroanatomical regions.  Our primary focus is not that of classification, but learning how the relation 

between neuroanatomical regions changes between healthy and demented patients. 

Experimental Results and Discussion 

In this section, we describe the results of our experiments with the assumption the reader has some 

exposure to the Bayesian network terminology introduced in the Methods section. 
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Table 1.  LOOCV accuracy and confidence intervals.  ‘Raw’  
and ‘Talairach’  indicate the SVM used individual voxel values 
or Talairach anatomical regions as input, respectively.  
‘Highlow2’  and ‘Highlow’  indicate which dataset the DBN 
used.  5N and 30N indicate the setting for numBestToKeep and 
4P and 5P indicate the setting for numParents.  The highest 
accuracy results are bolded.  The GNBN and DBN classifiers 
were able to achieve equivalent classification accuracies.  See 
Methods section for parameter descriptions. 

Table 2.  LOOCV accuracy and confidence intervals 
for the DBN classifier with varying numParents
parameter.  The ‘Healthy’  column lists accuracy for 
classifying dementia and the age column lists accuracy 
for classifying age.  The Healthy classifier used the 
Highlow2 dataset with numBestToKeep equal to 5. The 
Age classifier used the Highlow dataset with 
numBestToKeep equal to 30.  The best accuracy 
results are bolded. 

Experiment Health CI Age CI 
SVM - Raw - Linear 0.63 0.18 0.67 0.14 
SVM - Raw - Gaussian 0.62 0.18 0.65 0.14 
SVM - Talairach - Linear 0.65 0.18 0.78 0.12 
SVM - Talairach - Gaussian 0.62 0.18 0.63 0.14 
DBN - Highlow2 - 5N - 4P 0.73 0.17 0.65 0.14 
DBN - Highlow - 30N - 5P 0.50 0.19 0.80 0.12 
GNBN - All Features 0.61 0.18 0.62 0.15 
GNBN - Best Features 0.73 0.17 0.80 0.12 

numParents Healthy CI Age CI 
0 0.65 0.18 0.57 0.15 
1 0.65 0.18 0.70 0.14 
2 0.69 0.17 0.65 0.14 
3 0.69 0.17 0.65 0.14 
4 0.73 0.17 0.72 0.13 
5 0.69 0.17 0.80 0.12 
6 0.69 0.17 0.77 0.13 
7 0.61 0.18 0.67 0.14 

Table 1 gives the classification accuracies for each of the three techniques we applied: DBNs, SVMs 

and GNBNs.  In classifying healthy vs. demented patients, both the DBN and GNBN performed equally 

well, showing significantly higher classification accuracies than the SVM.  However, the ROC curves 

given in Figures 1 and 2 clearly indicate that the classification behavior between the DBN and the 

GNBN was significantly different.   

The DBN correctly classified 73% of elderly subjects as healthy or demented and of the healthy patients, 

the DBN correctly classified 93% of them. Thus, in discriminating healthy vs. demented patients, the 

DBN did well, but did better identifying healthy subjects than demented patients on a case-by-case 

basis.  The GNBN also correctly classified 73% of elderly patients, however, only achieved an 84% 

accuracy rate on the healthy elderly patients.  While the GNBN and DBN had identical overall 

classification accuracies, the DBN more accurately classified healthy elderly patients and the GNBN 

more accurately classified demented patients. 

In overall accuracy for classifying the age of patients, all three models performed approximately 

equivalently.  Again, the SVM and DBN were capable of classifying one of the classes, the young class, 

with higher accuracy at the cost of lower accuracy for the other class, the elderly.  The GNBN showed 
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less bias for one class and achieved a more balance of classification accuracies between the two classes.  

This can be seen in the GNBN’s clear dominance in the ROC curves given in Figure 2. 

While the overall accuracy results between the GNBN and the DBN are largely similar, the information 

they are modeling on the patients is drastically different.  The GNBN compresses all of the temporal 

behavior of the fMRI data into single valued means and variances whereas the DBN is explicitly 

modeling behavior over time.  Initially, the classification ability of the DBN increases as more parents 

are added to each of the nodes representing neuroanatomical regions until model over fitting occurs 

(training accuracy reaches 100% after two parents are added).  Table 2 details the improvement of leave 

one out cross validation (LOOCV) accuracies as the number of parents in each node are increased.  This 

clearly indicates valuable temporal information exists in the fMRI time series that differentiates 

demented from healthy elderly individuals (as well as old from young). 

It is worth noting the importance of the quantization method (a.k.a. amplitude decimation) used in the 

datasets.  The three different quantization methods, Highlow, Highlow2 and Highlow4 each resulted in 

significantly different classification efficacies.  The best classification of age was achieved when using 

the Highlow dataset which results in poor results when applied to classification of dementia.  Likewise, 

use of the Highlow2 dataset resulted in the highest accuracy for dementia, but when applied to age 

classification did poorly.  The Highlow4 dataset, while containing more information than the other 

datasets, unilaterally resulted in lower classification accuracies. 

Comparison of DBN Structure Between Groups 

We have compared our structural results for the demented vs. healthy DBN structure search with 

previous literature regarding putative functions of these regions.  Table 3 lists the most predictive 

structures within each of the DBN classifiers as well as measures of confidence for those structures (see 

methods section for confidence analysis).  For each of the predictive structures, the parents of the 

structures are also listed.  If a structure is a parent of another structure, it indicates that the behavior of 
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the parent acts as a good predictor for the behavior of the other structure3.  Together, the child and 

parent regions compose a family.  These families form substructures within the DBN that indicate which 

neuroanatomical networks differentiate healthy patients from demented patients. 

The finding that the only common good predictive structure between demented and non demented 

patients is the average over the entire right cerebrum, and includes the left cerebrum and all of gray 

matter for healthy subjects, suggests that dementia is associated with global dysfunction over multiple 

brain regions, rather than being associated with focal dysfunction in discrete brain regions. 

————— 
3 The parent/child relationship in Bayesian networks is roughly analogous to the independent/dependent relationship 

between variables in multivariate analysis. 

Five Best Predictors of Class 
Healthy Elderly Demented Elderly 

Structure Parents Confidence Structure Parents Confidence 
Cuneus 30.17 Parietal Lobe 9.17 
Cingulate Gyrus 39.38 Amygdala 11.93 
Rectal Gyrus 24.58 Uvula of Vermis 10.50 

Gray 
Matter 

BA 34 9.18 

BA 40 

Lateral Dorsal Nucleus 7.64 
Cuneus 31.01 Inferior Parietal Lobule 8.75 
Cingulate Gyrus 34.35 Uvula of Vermis 11.19 
BA 13 21.33 Amygdala 11.33 

Left 
Cerebrum 

BA 28 8.37 

Inf. 
Parietal 
Lobule 

Inf. Occipital Gyrus 8.52 
BA 4 16.99 Inferior Parietal Lobule 14.10 
Occipital Lobe 22.12 Declive 17.00 
Pyramis 20.53 Amygdala 12.75 

BA 4 

Rectal Gyrus 11.94 

BA 7 

Inferior Semi Lunar Lobule 8.24 
Gray Matter 11.89 BA 31 12.61 
Paracentral Lobule 13.67 Insula 14.65 
Cerebellar Tonsil 11.02 Amygdala 10.55 

BA 6 

Dentate 6.12 

Right 
Cerebrum 

Inferior Semi Lunar Lobule 5.94 
Right Cerebrum 25.05 Parietal Lobe 9.08 
Cuneus 31.70 Right Cerebellum 10.26 
Dentate 19.82 Amygdala 7.75 

Right 
Cerebrum 

Uncus 7.54 

Parietal 
Lobe 

Lat. Dorsal Nucleus 4.86 
 Table 3.  The five most predictive structure networks found by the DBNs for classification of healthy elderly (left) 
and demented elderly (right) listed from highest to lowest BDE scores.  The parents of each DBN network are 
given in the second column.  The confidence for each network is the distance in the number of standard deviations 
of the network’s BDE score from a mean BDE score calculated from a distribution of networks learnt from 
randomly permuted data.  Notice that the structures with the highest BDE scores do not necessarily have the 
highest confidence measures.  Confidence values are related to subject number, so are larger for healthy elderly. 
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Figure 3. Visualization of the parent sets for the most predictive region in the demented patients 
(red, with black outline) and healthy elderly (green, with white outline), plotted onto a multi-
subject averaged normalized images for illustration. Slices positioned from 56 mm below the 
origin to 64 mm above the origin.  Regions overlapping demented and healthy subjects are 
shown in yellow.  The most predictive structure for the healthy elderly was gray matter as a 
whole.  The highlighted points indicate the union of the parents reported in the DBN search for 
this structure: the cuneus, cingulate gyrus, rectal gyrus and Brodmann area 34. The most 
predictive structure for the demented patients was Brodmann area 40.  The highlighted points 
indicate the union of the parents for this node: the parietal lobe, amygdala, uvula of the cerebellar 
vermis and lateral dorsal nucleus of the thalamus. 

The networks identified in most healthy elderly and some demented patients involved many visual, 

motor and attention regions already found to be involved in the visual-motor task by the GLM analysis 

of Buckner et al. (2000).  The whole of gray matter, as well as left and right cerebrum separately, all 

have the cuneus as a parent, indicating that the behavior of the cuneus acts as a good predictor of the 

overall behavior of much of the brain during performance of this visual-motor task. The cuneus is a 

region of visual cortex located on the medial aspect of the occipital lobe superior to the calcarine fissure 
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and medial to the parieto-occipital fissure.  This region was likely involved in identifying the visual 

stimuli presented in the study.  Motor areas BA4 and BA6 were both found to be children in the healthy 

subjects.  They are areas involved in initiating and coordinating responses to stimuli, and have parents 

that include other motor areas, as well as cerebellar regions likely involved in coordinating the motor 

response to stimuli, and perhaps other cognitive functions as well.  The cingulate gyrus is a parent for 

both gray matter and the left cerebrum.  Again, this is consistent with the role of the cingulate gyrus in 

response selection, attention and coordination of activity in other brain regions. 

Other regions were found in healthy elderly that are not directly involved in the visual-motor task used, 

but that can be affected in dementia, and therefore may provide a better classification of healthy vs. 

demented elderly.  These include the rectal gyrus, the uncus, BA 34, BA 28 and BA 13.  The rectal 

gyrus was found to be a parent for both global gray matter and BA4 children.  This region connects to 

the olfactory bulbs and is involved in olfaction, but may also be involved in emotional responses to 

stimuli (Clark et al. 2000, 2001; Clark 2002).  The uncus, BA 34 and BA 28 regions are also involved in 

olfaction and emotion as a part of the limbic system, as well as memory encoding.  Finally, BA 13 is a 

paralimbic region located within the insula.  While the visual-motor task would not be expected to 

involve olfaction per se, the other cognitive functions of the limbic system could be involved, including 

emotion, motivation, memory and integrative processing.  These functions are all disturbed in dementia, 

and one or more are likely to be evoked in some way by any stimulus or action.  The finding that the 

networks formed by these regions are more likely to be found in healthy than demented subjects is 

reasonable given that progressive dementia leads to a loss of temporal and limbic structures initially. 

The finding of a predominance of the amygdala as a parent for all 5 children associated with dementia, 

but for none of the healthy group, suggests that the amygdala exerts more control over the function of 

other brain regions in dementia relative to healthy ageing.  This is interesting given that one 

predominant symptom of advanced dementia is agitation, which is a state of anxiety accompanied by 
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motor restlessness.  Anxiety in dementia is often associated with feelings of impending danger, 

powerlessness, apprehension and tension.  Physiological responses associated with agitation and anxiety 

include increased heart rate, altered respiration rate, sweating, trembling, weakness and fatigue4. This 

pattern of anxious behavior might be expected to involve the amygdala.  Enhanced contribution of 

amygdalar activity to global brain function points to the possibility that these behavioral effects are 

related to specific alterations in brain function identified using the DBN. 

One previous study has found an increased contribution of the amygdala to the function of other brain 

regions in dementia.  Grady, Furey, Pietrini, Horwitz and Rapoport (2001) examined functional 

interactions between prefrontal and medial temporal brain areas during face memory using PET. They 

used a delayed face matching paradigm with delays from 1 to 16 s.  Memory performance was 

correlated with amygdalar activity of patients. In addition, activity in the left amygdala was correlated 

with activity in bilateral posterior parahippocampal gyri, a number of left prefrontal regions, anterior and 

posterior cingulate, thalamus, and insula.  By comparison, controls showed correlations between the left 

amygdala and fewer regions, mainly in temporal and occipital areas.  They interpreted these effects as 

resulting from patients processing the emotional content of the faces to a greater degree than healthy 

controls, and that patients used the amygdala in a compensatory role.  However, as patients were not 

likely to have processed the emotional content of the emotionally neutral checkerboard stimuli examined 

in the present study, this suggests a more general, or less task-dependent, role for the amygdala in brain 

function of demented patients. 

The present results and those of Grady et al (2001) are potentially contradictory when compared with 

previous research that has found consistent amygdalar volume reduction, hypometabolism and reduced 

acetylcholine esterase activity in dementia (Braak, Del Tredici and Braak 2003; Callen, Black and 

Caldwell 2002; Shinotoh et al. 2003).  A prediction from these findings might be that the amygdala 

————— 
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would contribute less to the control of global brain function in proportion to decline in its own level of 

function.  However, our results show the opposite, with an increased contribution of the amygdala to the 

function of other regions in dementia, especially the parietal lobe but also including the average over the 

entire right cerebrum.  A number of hypotheses could be presented to explain this phenomenon.  One is 

that even though mean metabolic activity of demented elderly is lower than in healthy elderly when 

averaged over minutes or hours (as in typical PET or SPECT studies), the variance in amygdalar activity 

over short time periods as observed using fMRI (2.6 sec in the present dataset) is relatively higher in 

demented than healthy elderly.  We examined this hypothesis by examining variance in BOLD fMRI 

signal, and found a larger average magnitude of amygdalar variance in the demented subjects (12.22%) 

when compared with healthy elderly (8.14%).   This did not result from a generally larger variance in the 

demented subjects overall, as shown by the smaller average variance found for the right cerebrum of 

demented subjects (1.77%) relative to healthy elderly (2.93%).  It is possible that greater variance in 

amygdalar activity of demented elderly produced a larger effect on global brain function through distal 

efferents, and so reveal more significant causal networks associated with amygdalar activity than in 

healthy elderly, even in the presence of reduced volume and metabolism.  

Another interesting feature of the networks found in demented patients are that 4 of the best 5 children 

are in the parietal lobe (BA 7 and 40, inferior parietal lobule and the whole parietal lobe) while none of 

the best 5 children are in the parietal lobe for the healthy elderly group.  In addition to the amygdalar 

contributions mentioned above, the parents of each of these children in the demented parietal lobe 

include other parietal regions and portions of the cerebellum and thalamus.  It is interesting that these 

regions all respond to stimuli that require a behavioral response, such as rare target stimuli presented in 

the oddball task (Clark et al. 2000; 2001; Clark 2002).  Indeed, evidence for this target response can be 

found in the parietal, thalamic and cerebellar regions of subjects in the original analysis of Buckner et al. 

(2000).  Of course, this previous analysis did not take into account causal relationships among brain 

regions.  Even though activity in these regions can be observed for both healthy and demented elderly 
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groups, the temporal causal relationships among them is more apparent in dementia.  The event-related 

potential response to target stimuli, termed the P300 or P3 response, has been observed even when all 

stimuli are targets, given that stimuli are spaced widely enough in time (Struber and Polich 2002).  The 

stimuli used by Buckner et al. were spaced approximately 21 seconds apart, which may have been wide 

enough to elicit a rare target-like response to all stimuli presented. 

Differences between demented and healthy control groups could have resulted from a variety of sources.  

If there were consistent hemodynamic delays between brain regions that differed in a consistent way 

between healthy and demented elderly, they might confound the causal DBN analysis used here.  

However, Buckner et al. (2000) found only small hemodynamic differences present between elderly and 

control subjects, suggesting that this was not the case.  Another possible source of differences in the 

causal networks reported here is that the neurodegeneration associated with dementia altered the 

location of brain regions sufficiently to disrupt the Talairach normalization procedure.  We have 

examined this by comparing the normalized images within and between groups.  We did not find 

substantial differences between groups to suggest that the normalization procedure failed in the 

demented group.  However, subtle differences could still be present between groups.  

Conclusions 

We have introduced a method for extracting time dependant causal relationship networks of neural 

anatomical regions based solely on the data contained within a patient’s fMRI scan, as well as a method 

for estimating the confidence in these network structures.  In order to address the extremely data 

intensive nature of fMRI data, we used the Talairach database to group individual voxels into anatomical 

regions.  We modeled the aggregate mean voxel activations of each of the regions with three separate 

techniques: dynamic Bayesian networks (DBNs), Gaussian naïve Bayesian networks (GNBNs) and 

support vector machines (SVMs).  While the overall classification accuracy of the GNBNs and DBNs 

were generally equivalent (with both more accurate than the SVM), only the DBNs are capable of 
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extracting time dependant neural anatomical network structures.  Increasing the number of parents each 

node in the DBNs was shown to increase the overall classification accuracy of the DBNs, which clearly 

indicates that there is useful temporal information contained within fMRI data. 

We noted the importance of quantization on the overall accuracy of the DBNs.  While using a specific 

quantized dataset in performing one type of classification may have yielded good results, use of the 

same quantized dataset on another classification would frequently yield poor results.  As of yet, we have 

only investigated simple types of quantization and we plan on investigating other quantization schemes 

in future work.  We also plan on testing out continuous DBNs to avoid the issue of quantization all 

together (albeit at the cost of making a Gaussian distribution assumption—an assumption that is violated 

given the distribution of AMVA values). 

Using this method with visual-motor reaction time task data (Buckner et al. 2000) obtained through the 

fMRI Data Center, the DBN was able to correctly discriminate demented vs. healthy elderly subjects 

with 73% accuracy.  In addition, the DBN identified causal neural networks present in 93% of healthy 

elderly studied, including visual-motor networks, and regions involved in emotion, motivation, memory 

and integrative processing.  Greater heterogeneity of causal structure was found in demented elderly, 

and included consistent input from the amygdala to bilateral parietal cortex as well as the whole right 

cerebrum, which may be related to anxiety and agitation associated with dementia in its later stages. 

While we found no explanation for this heterogeneity in the present dataset, it is possible that it may be 

associated with behavioral, environmental, genetic or other differences that were not examined or 

reported in the dataset provided.  Further research may provide some evidence as to the cause of these 

within-group differences, and ultimately increase the accuracy of this method. 

This is the first publication we are aware of to report a greater correlation of amygdalar activity to brain 

function in individual demented elderly patients during an emotionally neutral task, and agrees with a 

previous PET study showing increased correlation between the amygdala and other brain regions across 
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demented subjects (Grady et al. 2001).  Increased contribution of amygdalar control to the function of 

other brain regions could explain the higher incidence of anxiety and agitation in dementia.  This finding 

suggests that these symptoms might be reduced by disrupting these amygdalar networks. 

Future Work 

Ssignificant issue when dealing with DBNs is that of time delay.  In our current work, we only model 

the interaction between temporally consecutive time frames.  Increasing the time delay between 

examined relationships between neuroanatomical regions drastically increases the size of the search 

space, however, we are investigation techniques to address these issues.  One such technique recently 

introduced to alleviate the massive search structure problem inherent in DBNs  (and BNs in general) is 

that of Moore and Wong’s optimal reinsertion (Moore Wong 2003).  They introduce an efficient method 

for determining the optimal set of parents a node in a BN has and we believe their technique may hold 

promise in application to our DBNs.  A related issue involves the temporal smoothness of the 

hemodynamic response.  Changes in neural metabolic activity are reflected in subsequent changes in 

blood flow with a significant delay and temporal dispersion or “smearing”  (Maisog et al. 1995).  This 

results in significant sharing of information across separate BOLD fMRI acquisitions, and would tend to 

reduce the magnitude of changes in BOLD response over short periods as examined here using DBNs.  

While this may have some effect, our results show that the DBNs are still able to identify causal 

networks even with significant sharing of information across adjacent time points. 

The Talairach database allowed us to drastically reduce the amount of data to analyze.  Future work 

includes techniques designed to explicitly model the hierarchical structure of this database.  Of 

particular interest is a statistical technique commonly referred to as shrinkage.  Shrinkage allows for the 

combination of abundant general data with sparse specific data, i.e., it combines low variance/high bias 

data with high variance/low bias data.  This is exactly the relationship of information at different levels 

of the Talairach hierarchy.  At the highest level of granularity, there are only a few number of large 
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anatomical structures, each based off of copious numbers of voxels, i.e., data with low variance and high 

bias.  At the lowest level in the hierarchy, there are numerous small structures each based off of 

relatively few voxels, i.e., low bias high variance data.  Shrinkage has been successfully applied to other 

problems in machine learning, including text classification (McCallum, Rosenfeld and Mitchell 1998) 

and web page classification (Anderson, Domingos and Weld 2002). 

The hierarchical nature of the Talairach database also allows for more sophisticated approaches to DBN 

structure search algorithms in which different levels of granularity of the brain are consecutively 

searched.  A structure search could start with the coarsest level of granularity—which contains a mere 

six anatomical structures—and perform an exhaustive DBN structure search.  The results of that search 

could be used to guide the structure search for the next level of granularity, which contains too many 

nodes to perform an exhaustive search on.   

The techniques we have applied to the dataset provided by Buckner et al. and future improvements of 

our technique, may be applied to other fMRI datasets where different patient groups are compared.  

These methods may eventually prove useful for the diagnosis and treatment of a variety of CNS 

disorders. 

Methods 

Bayesian and Dynamic Bayesian Networks 
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For an introductory overview of Bayesian networks (BNs), we refer the reader to Charniak’s aptly titled 

“ Bayesian Networks without Tears”  (Charniak 1991), and for a detailed analysis to Heckerman, Geiger 

and Chickering (1995).  In this section, we briefly describe BNs and DBNs in the general case, and in 

the next section, Dynamic Bayesian Network Analysis, we apply the DBN framework to the fMRI 

domain. 

A Bayesian network is a compact representation of a general joint probability distribution over a set of 

random variables.  It can be thought of as a directed graph with nodes and arcs connecting the nodes.  

The nodes represent variables in the system being modeled and the arcs represent causal relationship 

between them. 

Figure 4 gives a hypothetical example of a Bayesian network that models the price of tea in China.  The 

arcs in the graph indicate that the price is directly influenced (stochastically) by both the supply and the 

demand for tea in China.  However, the absence of an arc from the Current Lunar Cycle to any of the 

other nodes in the graph indicates that the current lunar cycle does not statistically influence the price of 

tea in China.  The Price of Tea in China node is considered a child node with a parent set including the 

nodes Demand for tea in China and the Supply of tea in China. 

Price of 
tea in 

China 

Annual 

rain fall 

in China 

Demand 

for tea in 

China 

Supply of 

tea in 

China 

Current 

Lunar 

Cycle 

Figure 4. a) Example of a hypothetical Bayesian network modeling the price of tea in China.  The directed arcs 
indicate that the price of tea is directly influenced by both the demand and the supply of tea, and indirectly influenced 
by the annual rain fall in China.  Conversely, the absence of an arc indicates that the current lunar cycle has no 
statistical effect on the price of tea in China.  b)  The conditional probability table for the Price of tea in China node.  
The table indicates, among other things, that if the supply is high and the demand is low then 25% of the time the 
price will be high and the 75% of the time the price will be low.  Note that the Price node has two parents resulting in 
a 3 dimensional conditional probability table.  While not shown, there are also tables for all other nodes in the graph.
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Each node represents a random variable that may take on a set of values.  In the example, these values 

could be { high or low}  for the demand, supply and price of tea in China, { less than 50 inches, more than 

50 inches}  for the annual rain fall and { new, waxing, full, waning}  for the current lunar cycle.  In this 

network, each node takes on a discrete set of values, however, a Bayesian network can contain 

continuous-valued nodes as well.  Within each of the nodes in a Bayesian network is a set of conditional 

probabilities.   In the discrete case, these probabilities are generally given by a conditional probability 

table (CPT).  The CPT for the Price of Tea in China node is shown in Figure 4b.  CPTs are collections 

of multinomial distributions, with a single multinomial describing a node’s behavior for every unique 

setting of the node’s parents. In the continuous case, BO is typically represented by some conditional 

probability distribution function, such as the conditional Gaussian distribution. 

Formally, a Bayesian network is described by the pair (BS, BO) where BS is the graphical structure of the 

network and BO specifies the conditional probability information of the BN.  BS contains a set of nodes 

for every variable in the system, X = { X1, X2 , …,Xn} , and an arc for every causal dependency between 

nodes.  In the example given in Figure 4, BS would include the nodes, Annual rain fall in China, 

Demand for tea in China, Supply of tea in China, Price of tea in China and Current Lunar Cycle.  It 

would also contain the three arcs connecting these nodes.  Πi indicates the set of nodes that are parents 

of node Xi, and it can take on q possible configurations.  For the node Price of tea in China, Πi = 

{ Demand for tea in China, Supply of tea in China} . 

BO is the set of CPTs for all of the nodes in BS and encodes the degree and direction to which the nodes 

in Πi influence Xi.  If a node has k parents (i.e., |Πi|=k), then the CPT for that node will have k+1 

dimensions specifying Pr(ΧI | Πi)=Pr(ΧI | Πi
1, Πi

2,…, Πi
k) where Πi

� is the �th parent of Xi.  As the 

number of parents for a node grows, the size of the resulting CPT grows exponentially. 
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Of particular interest for this work are two specific categories of Bayesian networks: Gaussian naïve 

Bayesian networks (GNBNs) and dynamic Bayesian networks (DBNs).  In a GNBN there are two types 

of nodes: a single class node, and an arbitrary number of observable nodes.  The conditional probability 

information within each node is represented as a Gaussian probability density function.  A GNBN makes 

several strong assumptions about the underlying system being modeled: first, the distribution of values 

in a node are Gaussian distributed and second, the values in each observed node are statistically 

independent of the values in every other observed node given the value of the class node.  These are 

both strong assumptions that will almost certainly be violated to some degree, though, GNBNs have 

often been found to perform well in many applications.  An example of a 4-state GNBN is given in 

Figure 5d. 

Unlike a GNBN, a DBN explicitly models temporal processes.  The DBN is divided into columns of 

variables where each column represents a time frame in the process being modeled.  Each system 

variable is represented by a single node in each of the columns.  Casual relations are allowed to connect 

nodes between columns, provided the direction of the causal relation indicates a relation from a past 

time step to a future time step.  Isochronal links—links connecting nodes within the same column—may 

or may not be present in a DBN.  An example of  an eight state DBN is given in Figure 5g. 

Ideally, a DBN would contain one column of variables specifically for every time frame in the system 

being modeled.  However, for all but the simplest models, this is intractable.  To reduce the complexity 

of the DBN model, several assumptions can be (and are frequently) made.  The first assumption is the 

Markov assumption which requires the values a variable takes on at time t can be accurately predicted 

from only knowledge of its parent variables’  values from time t-m to time t, for some bounded history 

length m5.  The second assumption is stationarity which requires the dynamic behavior of a variable 

————— 
5 Frequently, m is set to 1.  When it is, the assumption is referred to as a first order Markov 

assumption. 
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from time t to time t+1 be independent of t.  Equation (1) expresses the Markov Property and (2) 

expresses the stationarity assumption, 

where Xt is a set of all variables in the column representing time step t. 

The assumptions made by the DBN are far less restrictive than the assumptions made by the GNBN, and 

allow for a more sophisticated representation of the data.  This causes the DBNs to be significantly more 

complex than GNBNs and introduces new challenges when DBNs are used as a modeling framework.  

Most significantly, if the causal structure of the DBN is unknown, as in the case of learning the 

neuroanatomical networks from fMRI data, learning the DBN structure purely from data is a difficult 

problem.  Technically, DBN structure learning falls into the complexity class non-deterministic 

polynomial complete (NP-Complete) (Chickering, Geiger and Heckerman 1994).  The most significant 

consequence of being NP-Complete is that as the number of nodes within a DBN grows, any process 

used to find the optimal network structure for the DBN must take exponentially longer to complete.  To 

attempt to find good solutions for NP-Complete problems, heuristics for searching the network structure 

must be devised. 

The formulation of the DBN search, and BN search in general, is a well-understood problem 

(Heckerman 1995).  Ideally, every possible structure in the DBN would be individually constructed and 

the structure that best modeled the data would be chosen.  Two significant problems arise.  First, a 

network score indicating how well a given structure fits the data must be devised. Second, as structure 

search is NP-Complete, it is not feasible to construct every possible structure.  

Several scoring metrics have been proposed including AIC (Akike 1973), BIC (Schwarz 1978), BDEU 

(Buntine 1991), BD (Cooper and Herskovits 1992) and most recently, BDE (Heckerman 1995).  We use 

( ) ( )1 2 1 1 1| , ,..., | , ,..., ,t t t t m t m tP P− − − + −=X X X X X X X X  (1) 

( ) ( )1 1| | , , ,t t t tP P t t′ ′− − ′= ∀X X X X  (2) 
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Heckerman’s BDE score as it is a widely used scoring metric with several significant advantages, such 

as its ability to easily incorporate prior knowledge and if two structures have the same posterior 

likelihood given a set of data, the BDE score for the two models will be the same.  Like most scoring 

metrics, the BDE metric is composed of the aggregation of the scores of each of the families—a node 

and the set of its parents—in the network. Equation (3) gives the scoring metric for the entire network, 

and (4) gives the score for a single family in the network, 

( ) ( ) ( )
1

, | , , , ,
n

S i i i ii
P D B P X score X Dξ

=
∝ ∏ ⋅ Π∏  (3) 

( ) ( )
( )

( )
( )1 1

, , ,i iq rij ijk ijk

i i j k
ij i j ijk

N N N
score X D

N N N= =

� �′ ′Γ Γ +
� �Π =

′ ′Γ + Γ� �� �
∏ ∏  (4) 

where ρ(Xi,∏i) is a structural prior allowing certain structures to be considered more likely than other 

structures.  Γ(⋅) is the gamma function. Nij is a count for the number of times the parent set of Xi is in 

configuration j.  Nijk is the count of the number of times the parent set of Xi is in configuration j while Xi 

= k.  ξ refers to the set of prior information, ( ){ }, , , , ,ij i jk t tN N X i j kρ′ ′ Π ∀ . 

Prior information influencing conditional probabilities is allowed in the form of the N’  virtual counts, 

which are analogous to N except they are not counted from dataset D but instead represent some 

hypothetical prior dataset that describes how variables in the system are thought to behave in relation to 

each other.  For instance, if we wanted to indicate that the Price of tea in China should be low when the 

Demand for tea in China is high and the Supply of tea in China is high,  we could set the N’ ijk count to a 

positive number where Xi = Price of tea in China, j = { high, high}  and k = low.  The  magnitude of the 

number would indicate the degree to which we believed this would be the case.  Networks connecting 

the Price of tea in China to either the Supply of tea in China or the Demand for tea in China would then 

receive a higher score even without sufficient supporting data.  In effect, the BDE metric measures the 
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amount of uniformity in the CPTs’ multinomial distributions.  The less uniform the distribution, the 

more informative the parents are and thus, the higher the score will be6. 

Experimental Design 

Details of the experiment can be found in Buckner et al. (2000).  Each patient participated in 60 trials, 

each of which presented a single or double flickering checkerboard stimulus to the patient.  Subjects 

were instructed to response to the stimulus with a button press.  In the single exposure trials, a patient 

would observe a solitary visual stimulus whereas in the double exposure trials, two temporally separated 

images would be observed.  During each trial, 8 volumes of T2*  weighted echo-planar images with a TR 

of 2.68 sec. were obtained resulting in a time series of 480 fMRI volumes per patient.  Each volume 

contained a grid of 64x64 voxels in 16 slices.  This results in a total of 16,384 voxels per image and 

7,864,320 voxels per patient.  

Data Preparation 

————— 
6 In practice, the network scores are astronomically small, on the order of 10-10,000, and must be 

represented in logarithmic space.  All results given in this paper for network scores are given as such. 
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Figure 5.  Experimental design flowchart.  (a) Raw data is first acquired. (b) The data is then grouped 
into ROIs by the Talairach database. (c) The aggregate mean voxel activation (AMVA) is computed 
for each ROI over time.  (d, f) The Gaussian naïve Bayesian network and support vector machine 
models are learnt from the AMVA time series.  (e) The AMVA time series is quantized (HighLow 
quantization shown). (g) The dynamic Bayesian network model is learnt. 
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To reduce the enormous quantity of the data produced by an fMRI scan, we abstract from the voxel level 

to the neuroanatomical region level.  Several databases describe such regions of interest (ROIs), with the 

most widely used being the Talairach database (Lancaster et al. 2000).  The Talairach database separates 

voxels into 150 different regions layered into four hierarchical levels (with further differentiation 

between gray matter, white matter and cerebro-spinal fluid).  Each hierarchical level roughly 

corresponds to a different level of granularity of the brain, with the topmost level containing the left and 

right cerebrum, cerebellum and brain stems, and the bottom most level containing specific regions such 

as the Brodmann areas and individual nuclei.  The Talairach data maps every voxel to five different 

anatomical regions; one for each level in the Talairach hierarchy, and one indicating gray or white 

matter.  We use this mapping to aggregate mean voxel activations to the ROI level and model the 

relational dependencies between ROIs. 

Figure 5 gives a flowchart for the overall experiment.  First, raw fMRI data is obtained for each of the 

patients.  Then, for each individual fMRI scans, voxels are grouped into the ROIs they compose (each 

voxel contributes to 5 regions, one for each level in the Talairach hierarchy).  For each structure, the 

aggregate mean voxel activation (AMVA) is computed resulting in a time series consisting of 480 time 

points each with 150 attributes.  This collection of all the patient’s data is referred to as dataset D = { D1, 

D2, … , D40}  where Di comprises the data available for the i th patient.  Each Di can be thought of as a 

table with the columns being Talairach regions, the rows being time slices, and each cell giving the 

AVMA of a single Talairach region within a single fMRI image. 

Four datasets were constructed from D: Dh, Dd, De and Dy.  They each contain data for the healthy 

patients, demented patients, elderly patients or young patients, respectively. For instance, Dh = { Di | 

class of Di = Healthy} .  De and Dy form a partition of D.  Dh and Dd form a partition of De.    

At this point, the data is ready to be used by both the SVM and the GNBN.  However, the DBN we 

employ is discrete in nature and requires the data to be quantized.  To quantize the data, it is first 
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separated into sequential non overlapping windows of eight fMRI images7.  A trend is then defined per 

window as the mean of the AMVA values that compose the window.  The offset of the AMVA values 

from the trend can then be used to tell when the activity of a region is in a ‘high’  state or a ‘ low’ state. 

Three quantized methods are employed.  The first method results in two quantized states; one state 

above the trend, and one state below the trend.  The second method resulted in four states, two above 

and below the trend, and the third method resulted in eight states, four above and four below the trend.  

They were respectively labeled Highlow, Highlow2 and Highlow4.  Figure 5e. illustrates the Highlow 

quantization for the AMVA time series in Figure 5c.  For the Highlow2 and Highlow4 quantizations, 

maximum and minimum AMVA values were determined for each window.  This defined an upper and 

————— 
7 A window of size eight was chosen since each trial in the experiment resulted in exactly eight 

fMRI scans. 
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Figure 6.  a) A possible structure resulting from the DBN search.  The left column represents the values of 
neuroanatomical regions at time t and the right column represents the values of neuroanatomical regions at time t+1 
which are dependant on regions it time t.  Arcs are dotted to emphasize that their existence must be searched for, and 
do not represent a static structure.  b) The structure for the GNBN.  The time series for each neuroanatomical region 
is represented by four statistical aggregates; the Trial1 mean, Trial2 mean, Trial1 variance and the Trial2 variance.  
The two sets of nodes for the Amygdala and the Uncus are shown, however, a set of four nodes exists in the GNBN 
for each of the 150 Talairach regions.  Unlike the DBN, the GNBN does not require a structure search, and its arcs are 
represent with solid lines to indicate a static structure. 
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lower range for quantized states located above and below the trend.  The two ranges were then equally 

divided into 2 or 4 quantization states for the two datasets, respectively.8 

Dynamic Bayesian Network Analysis 

Ideally, a DBN modeling the temporal interaction between ROIs in fMRI data would contain T columns 

of n nodes, where T equals the number of time steps in the experiment (i.e., the number of fMRI images) 

and n equals the number of ROIs.  Each node would represent the value of a specific ROI at a specific 

time step and an arc between the nodes would indicate a temporal relationship between the two ROIs.  

For example, an arc from node 1t
iX  to node 2t

jX would indicate a relationship between the value of the ith 

ROI at time step t1 and the value of the jth ROI at time step t2. Unfortunately, learning the structure 

(where to place the arcs) for such a DBN is intractable.  To reduce the size of the model, we make both 

the first order Markov and stationary assumption.  This reduces the DBN to two columns, each with n 

nodes.  Nodes in each of the columns no longer represent the values of ROIs at absolute time frames, but 

instead represent the statistical nature of ROIs across all time frames.   

Figure 6a illustrates a possible structure for a DBN.  In this example, the Amygdala node in column t is a 

parent of the Amygdala, Parietal Lobe, BA 7 and Right Cerebrum nodes in column t+1.  This indicates 

that there is a statistical relationship between the value of the Amygdala at one time step and the values 

of the child regions in the subsequent time step (and that this statistical relationship exists across all 

pairs of time steps in the data).  As a simple example, assume that the sequence of values the Amygdala 

takes on at time steps 1 through 10 is { high, high, low, high, high, high, low, low, high, high} and that 

the sequence of values the Parietal Lobe takes on during time steps 1 through 10 is { low, high, low, low, 

low, high, high, low, low, high} .  Notice that whenever the Amygdala is high at time t, there is a 66% 

chance that the Parietal Lobe is high at time t+1 and a 33% chance that it is low.  Thus, the value of the 

————— 
8 We examined other methods of quantization such as using medians and quartiles as opposed to 

means and extremum, and creating a separate region surrounding the trend constituting a ‘noisy’  state, 
but we found no significant impact on our results. 
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Amygdala node has some predictive ability on the subsequent value of the Parietal Lobe.  Given an arc 

between the two nodes, this statistical relationship would be encoded in the CPT for the Parietal Lobe 

child node. 

However, not all arcs in the model are equally meaningful and certain DBN structures will better fit the 

data.  If, for instance, the sequence of values for the BA 7 node was { high, low, high, low, low, low, high, 

high, low, low} , then the value of BA 7 would have 100% predictive ability on the subsequent value of 

the Parietal Lobe and a structure with a BA 7 as a parent of the Parietal Lobe would be a better match to 

the data than a structure with the Amygdala as a parent.  This would be reflected by the Parietal Lobe’s 

CPT being much less uniformly distributed, and would result in a significantly higher BDE score.  This 

simple example only includes pair-wise relationships, but CPTs are capable of modeling much more 

complex interactions between many simultaneous parents and children nodes.  It is the ability of a CPT 

1. Initialize structure BS with no arcs connecting nodes in column t to nodes in column t+1 

2. Repeat numParents times 

3.      Repeat for every node, Xi, in column t+1 

4.           Repeat for every node, Xk, in column t 

5.                Add Xk as a parent of Xi, i.e., insert Xk into �i 

6.                Calculate BDE score for Xi  (i.e., measure goodness of fit) 

7.                Remove Xk from �i 

8.           End 4. 

9.           Permanently add the parent Xk to node Xi with highest BDE score 

10.      End 3. 

11. End 2. 

12. Empty the parent set of all but numBestToKeep of the highest scoring families 

13. Return high scoring and high confidence structures 

 

Figure 7. DBN structure search algorithm used to locate structures that describe the data well.  Resulting structures 
contain families that describe the relations between neuroanatomical individual ROIs.  numParents indicates how 
many parents each node in column t+1 should have at the end of the algorithm and numBestToKeep indicates how 
many families will be allowed to keep their parents.  A family is composed of a single node in column t+1 and all of 
its parents in column t. 
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to describe complex relationships that sets it apart from continuous models that must make assumptions 

about the form of distributions, i.e., that they are linear, bi-linear, Gaussian, etc. 

Even though the number of possible DBN structures significantly decreases given the Markov and 

stationarity assumptions, there are still far too many structures to search them exhaustively.  However, 

due to the nature of DBN structure search, the parent set for each of the children nodes in the t+1 

column can be searched for independently from the other children nodes.  We employ a greedy 

algorithm, detailed in Figure 7, to perform the structure search. For each node in column t+1, the 

algorithm finds the single best predictive parent in column t.  It then searches for the second parent that 

makes the best predictor in conjunction with the previously selected first parent.  This process is 

repeated until a predetermined number of parents has been added.  The end result of the searching 

process is that each ROI is associated with a number of other ROIs that together can predict the its 

future behavior. 

As with all Bayesian techniques, prior information about the system can guide the results of the model.  

While calculating the BDE score for each proposed network (step 6 of the algorithm), we employ an 

uninformed structure prior and an uninformed conditional probability prior.  This makes the assertion 

that, prior to seeing any data on the patients, there is no bias towards believing any ROI is more or less 

likely to appear causally connected in the network, nor is there a bias towards how any discovered 

relationships should behave.  This is achieved by setting ρ(Xi, ∏i)=1, N’ ijk to 1 and 

1
, , ,

r

ij ijkk
N N i j k

=
′ ′= ∀� , where r is the number of states node k can be in. 

The search algorithm is parameterized by two variables, numParents and numBestToKeep.  numParents 

indicates how many parents each ROI should have.  This is required since adding a parent will always 

result in a higher BDE score but will eventually result in a loss of model generality and lower 

classification accuracy.  numBestToKeep indicates how many nodes should be allowed to retain their 

parents.  Generally, classification accuracy improves when only a certain subset of nodes are allowed to 
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retain their parents.  This is because many nodes contribute only noise or over fit the data, and reduce 

generalization ability of the model.   

Using this algorithm, four DBNs were learnt: DBNk, DBNd, DBNe and DBNy, each obtained by training 

solely from the Dh, Dd, De and Dy datasets, respectively.  In order to classify a new subject’s data, the 

posterior likelihood of each of the models given the subject’s data can be calculated.  The model with 

the highest posterior likelihood is then used to determine the class of the new subject.  Datasets Dh and 

Dd were used to differentiate between healthy and demented patients while De and Dy were used to 

differentiate between elderly and young patients.   

Tables 1 and 2 give 95% confidence intervals calculated via Equation (5), 

( )1 ,   1.96p p

ns CI s−= = ⋅  (5) 

where n indicates the number of patients in the dataset, p is the accuracy of the classification and CI is 

the confidence interval.  Given an empirically determined accuracy, and a confidence interval for that 

accuracy, it is possible to calculate a lower bound that, with 95% probability, the true accuracy is at least 

equal to or above.  With relatively few patients from which to train, the confidence intervals for the 

DBN and GNBN are approximately 0.13.  But, even with this wide confidence interval, with high 

probability, the two methods are able to classify patients significantly more accurately than would be 

expected from random chance alone. 

Quantifying DBN Family Network Confidence 
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We have developed a technique to measure the confidence in the results returned by the DBN structure 

search.  To measure confidence, we analyze the chance that the predictive ability of a family in a 

network (based on its BDE score) was due to random chance as opposed to an actual underlying 

temporal relationship among anatomical regions.  This is done by training alternative networks on 

samples from empirical distributions with the same first order statistics, but no temporal correlations. 

Recall that the data for each patient is stored in a table where the columns represent the activation values 

of neuroanatomical regions and the rows represent particular points in time.  Normally, the rows are 

ordered chronologically and dependencies from one time step to the next can be analyzed.  We 

randomly permuted the rows in each of the patient’s tables to destroy temporal correlations.  For any 

given row in the table, the relationships between the activation of regions are not affected, however, any 

temporal relationships among the ROIs are destroyed.  The DBN network structure learning algorithm is 

then applied to the randomly permuted data to calibrate BDE scores for a network based on data with no 

temporal relationships.  This process is repeated 20 times, and a distribution of BDE scores for the 

randomized data is created for each family in the DBN.  The BDE scores for the families in the networks 

learnt from the original data can then be compared to the distribution of BDE scores for the families in 

the networks learnt from the randomly permuted data.  We can then assign a measure of confidence to 

� 

� 

increasing score → 

Figure 8.  Visualization of the family confidence measure.  The confidence of families within a DBN trained on a true 
dataset vary in their reliability.  Computing the BDE score of families in DBNs trained on randomly permuted 
datasets yields a distribution of BDE scores occurring due to random chance.  The larger the distance of a true 
family’s BDE score from the BDE random mean, the more likely the true family did not occur by chance. 

Randomized model BDE score 

True BDE score (low confidence) 

True BDE score (moderate confidence) 

True BDE score (high confidence) 
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the candidate networks based on the distance between these BDE scores.  Equation 6 gives the 

confidence measure, 

( )rand

rand

x
Conf

µ
σ
−

=  (6) 

where x is the BDE score of the family trained on the true dataset, µrand is the mean BDE score and σrand 

is the standard deviation of the BDE score for the equivalent family trained on the randomly permuted 

data (the equivalent family trained on the randomly permuted data will have the same child as the 

original family).  Figure 8 gives a visualization of the confidence measure. 

For example, within the demented patients, the DBN search reports that the putamen’s parent set 

contains Brodmann area 31, the anterior lobe, the inferior semi-lunar lobule and the lateral dorsal 

nucleus.  The BDE score for this particular family is -3359.  However, the mean BDE score for the 

putamen based on the permuted data is -3427 with a standard deviation of 31.  The original BDE score 

of -3359 is only 2.16 standard deviations better than the random BDE mean score.  At this distance, 

there can be little confidence in the reported structure. 

Conversely, the DBN network search on the demented data results in the inferior parietal lobule’s parent 

set containing the inferior parietal lobule itself, the uvula of vermis, the amygdala and the  inferior 

occipital gyrus.  The BDE score for this family is -3032 (a value significantly higher than the BDE score 

of -3359 for the putamen’s family).  The BDE mean for the inferior parietal lobule in the randomized 

data is -3261 with a standard deviation of 26.  The candidate BDE score is 8.52 standard deviations 

away from the randomized mean BDE score and indicates that it is highly unlikely that a BDE score this 

high was generated by chance.  Table 3 lists the confidences for each of the top 5 network families for 

both the demented and healthy patients. 
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The confidence measures for the demented group, while significant, were generally smaller than the 

confidence measures for the healthy group.  This corresponds with the DBN classifier being able to 

more accurately classify healthy patients than demented patients.  

Support Vector Machine Analysis 

A detailed discussion on support vector machines is outside the scope of this paper.  In this section we  

give the specifics on training the SVMs we employed which would be required to replicate our efforts. 

Two datasets are created for analysis with the SVM, Draw and DT.  Draw uses the raw fMRI voxel 

information as dimensions for a single data point.  In this dataset, each patient is represented by sixty 

65,536 dimensional data points (one data point per fMRI image and 60 data points per patient).  DT 

contains the AMVA values the DBN used for each of the Talairach regions as dimensions of a single 

data point resulting in each patient being represented by sixty 150 dimensional data points.  

Each dataset is then trained on an SVM with a linear and a Gaussian kernel.  As SVMs are sensitive to 

having an imbalance in the number of representatives in each class, we modify the diagonal elements of 

the kernel matrices as suggested by Veropoulos, Campbell and Cristianini (1999).  We used the 

Proximal SVM (Fung and Mangasarian 2001) to perform the actual SVM classification. 

Gaussian Naïve Bayesian Network Analysis 

Two separate GNBNs were constructed, GNBNh and GNBNa.  GNBNh was trained on Dh ∪ Dd and was 

used to classify whether or not an elderly patient was demented.  GNBNa was trained on De ∪ Dy and 

was used to classify a patient as either young or elderly.   

Each GNBN contained a single binary class node and 600 observable nodes.  The 600 nodes were 

broken up into groups of four nodes with each group representing statistics on the entire fMRI data time 

series for a single one of the 150 anatomical regions.  The four nodes in each of the regions were the 

Trial1Mean(i), Trial1Var(i), Trial2Mean(i) and Trial2Var(i) nodes where (i) indicates the ith anatomical 
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region.  The Gaussian distributions in each of the nodes were the maximum likelihood estimate (MLE) 

distributions for either the means or the variances of the AMVA values across all of a patient’s fMRI 

images.  The means and variances for the Trial1 nodes were computed only on fMRI images that were 

scanned while the patient performed a trial with a single visual stimulus.  Similarly, the means and 

variances for the Trial2 nodes were computed on images taken when a patient performed a trial with 2 

visual stimuli.  The structure for the GNBN is given in Figure 6b. 

Classification of a patient as either healthy vs. demented or young vs. old was performed via standard 

BN inference.  In one experiment, all 600 nodes were used for classification and in another experiment, 

only the best 50 nodes were used in the classification.  ‘Best’  in this sense represents the nodes that 

contained two Gaussian distributions which gave the best class discriminative capabilities.  LOOCV 

accuracies are given in Table 1 and ROC curves are given in Figures 1 and 2. 
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