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Abstract

Part I of this paper showed that the hidden subgroup problem over the symmetric group—including
the special case relevant to Graph Isomorphism—cannot be efficiently solved by strong Fourier sampling,
even if one may perform an arbitrary POVM on the coset state. In this paper, we extend these results
to entangled measurements. Specifically, we show that the hidden subgroup problem on the symmetric
group cannot be solved by any POVM applied to pairs of coset states. In particular, these hidden
subgroups cannot be determined by any polynomial number of one- or two-register experiments on coset
states.

1 Introduction: the hidden subgroup problem

Many problems of interest in quantum computing can be reduced to an instance of the Hidden Subgroup
Problem (HSP). This is the problem of determining a subgoup H of a group G given oracle access to a
function f : G→ S with the property that

f(g) = f(hg) ⇔ h ∈ H .

Equivalently, f is constant on the cosets of H and takes distinct values on distinct cosets.
All known efficient solutions to the problem rely on the standard method or the method of Fourier

sampling [3], described below.

Step 1. Prepare two registers, the first in a uniform superposition over the elements of G and the second
with the value zero, yielding the state

ψ1 =
1√
|G|

∑
g∈G

|g〉 ⊗ |0〉 .

Step 2. Query (or calculate) the function f defined on G and XOR it with the second register. This
entangles the two registers and results in the state

ψ2 =
1√
|G|

∑
g∈G

|g〉 ⊗ |f(g)〉 .

Step 3. Measure the second register. This puts the first register in a uniform superposition over one of f ’s
level sets, i.e., one of the cosets of H, and disentangles it from the second register. If we observe the
value f(c), we have the state ψ3 ⊗ |f(c)〉 where

ψ3 = |cH〉 =
1√
|H|

∑
h∈H

|ch〉 .
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Step 4. Carry out the quantum Fourier transform on ψ3 and measure the result.

The result of Step 3 above is the coset state |cH〉, where c is chosen uniformly from G. Expressing this
as a mixed state, let

ρH =
1
|G|

∑
c∈G

|cH〉 〈cH| .

We shall focus on the hidden conjugate problem, where the hidden subgroup is a random conjugate Hg =
g−1Hg of a known (non-normal) subgroup H. It was shown in the first part of this paper that when G = S2n,
the symmetric group on 2n letters, and H is a the subgroup generated by the involution (1 2) . . . (2n−1 2n),
the outcome of any measurement on ρH is nearly independent of the random choice of g ∈ Sn. In particular,
no polynomial number of coset state experiments can determine such a hidden subgroup with non-negligible
probability.

It is known, however, that a measurement exists to determine hidden subgroups of a group G from
k = poly log |G| independent copies of ρH . In light of the discussion above, this measurement cannot, in
general, be a product measurement: it must involve entangled measurement operators. In this paper, we
extend the framework of part I to such entangled measurements, showing that for the subgroup H of S2n

described above, the result of any measurement of the two-coset state ρHg ⊗ ρHg is nearly independent
of g. In particular, no polynomial number of two-register coset-state experiments can determine H with
non-negligible probability.

Related work. Both Simon’s and Shor’s seminal algorithms rely on the standard method over an Abelian
group. In Simon’s problem [29], G = Zn

2 and f is an oracle such that, for some y, f(x) = f(x + y) for all
x; in this case H = {0, y} and we wish to identify y. In Shor’s factoring algorithm [28] G is the group Z∗n
where n is the number we wish to factor, f(x) = rx mod n for a random r < n, and H is the subgroup of
Z∗n whose index is the multiplicative order of r. (Note that in Shor’s algorithm, since |Z∗n| is unknown, the
Fourier transform is performed over Zq for some q = poly(n); see [28] or [10, 11].)

For such abelian instances; it is not hard to see that a polynomial number (i.e., polynomial in log |G|)
of experiments of this type determine H. In essence, each experiment yields a random element of the dual
space H⊥ perpendicular to H’s characteristic function, and as soon as these elements span H⊥ they, in
particular, determine H.

While the nonabelian hidden subgroup problem appears to be much more difficult, it has very attractive
applications. In particular, solving the HSP for the symmetric group Sn would provide an efficient quantum
algorithm for the Graph Automorphism and Graph Isomorphism problems (see e.g. Jozsa [17] for a review).
Another important motivation is the relationship between the HSP over the dihedral group with hidden shift
problems [4] and cryptographically important cases of the Shortest Lattice Vector problem [23].

So far, algorithms for the HSP are only known for a few families of nonabelian groups, including wreath
products Zk

2 o Z2 [24]; more generally, semidirect products K n Zk
2 where K is of polynomial size, and

groups whose commutator subgroup is of polynomial size [16]; “smoothly solvable” groups [7]; and some
semidirect products of cyclic groups [14]. Ettinger and Høyer [5] provided another type of result, by showing
that Fourier sampling can solve the HSP for the dihedral groups Dn in an information-theoretic sense. That
is, a polynomial number of experiments gives enough information to reconstruct the subgroup, though it is
unfortunately unknown how to determine H from this information in polynomial time.

To discuss Fourier sampling for a nonabelian group G, one needs to develop the Fourier transform over
G. For abelian groups, the Fourier basis functions are homomorphisms φ : G → C such as the familiar
exponential function φk(x) = e2πikx/n for the cyclic group Zn. In the nonabelian case, there are not enough
such homomorphisms to span the space of all C-valued functions onG; to complete the picture, one introduces
representations of the group, namely homomorphisms ρ : G → U(V ) where U(V ) is the group of unitary
matrices acting on some C-vector space V of dimension dρ. It suffices to consider irreducible representations,
namely those for which no nontrivial subspace of V is fixed by the various operators ρ(g). Once a basis for
each irreducible ρ is chosen, the matrix elements ρij provide an orthogonal basis for the vector space of all
C-valued functions on G.
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The quantum Fourier transform then consists of transforming (unit-length) vectors in C[G] =
{
∑

g∈G αg |g〉 | αg ∈ C} from the basis {|g〉 | g ∈ G} to the basis {|ρ, i, j〉} where ρ is the name of an
irreducible representation and 1 ≤ i, j ≤ dρ index a row and column (in a chosen basis for V ). Indeed,
this transformation can be carried out efficiently for a wide variety of groups [2, 13, 21]. Note, however,
that a nonabelian group G does not distinguish any specific basis for its irreducible representations which
necessitates a rather dramatic choice on the part of the transform designer. Indeed, careful basis selection
appears to be critical for obtaining efficient Fourier transforms for the groups mentioned above.

Perhaps the most fundamental question concerning the hidden subgroup problem is whether there is
always a basis for the representations of G such that measuring in this basis (in Step 4, above) provides
enough information to determine the subgroup H. This framework is known as strong Fourier sampling.
Part I of this article answers this question in the negative, showing that natural subgroups of Sn cannot
be determined by this process; in fact, it shows this for an even more general model, where we perform
an arbitrary positive operator-valued measurement (POVM) on coset states |cH〉. We emphasize that this
result includes the most important special cases of the nonabelian HSP, as they are those to which Graph
Isomorphism naturally reduces. Namely, as in [12] we focus on order-2 subgroups of the form {1,m}, where
m is an involution consisting of n/2 disjoint transpositions; then if we fix two rigid connected graphs of size
n/2 and consider permutations of their disjoint union, then the hidden subgroup is of this form if the graphs
are isomorphic and trivial if they are not.

The next logical step is to consider multi-register algorithms, in which we prepare multiple coset states
and subject them to entangled measurements. Ettinger, Høyer and Knill [6] showed that the HSP on arbi-
trary groups can be solved information-theoretically with a polynomial number of registers, although their
algorithm takes exponential time for most groups of interest. Kuperberg [20] devised a subexponential
(2O(

√
log n)) algorithm for the HSP on the dihedral group Dn that works by performing entangled mea-

surements on two registers at a time, and Bacon, Childs, and van Dam [1] have determined the optimal
multiregister measurement for the dihedral group.

Whether a similar approach can be taken for the symmetric group is a major open question. In this
paper, we take a step towards answering this question by showing that if we perform arbitrary entangled
measurements over pairs of registers, distinguishing H = {1,m} from the trivial group in Sn requires a
superpolynomial number (specifically, eΩ(

√
n/ log n)) of experiments.

2 Two combinatorial representations

With apologies to the reader, we will rely on the introductory sections of Part I rather than repeating them
here. However, here we introduce two combinatorial representations that will be extremely useful to us.

For a group G, we let Ĝ denote a collection of unitary representations of G consisting of exactly one from
each isomorphism class. We let C[G] denote the group algebra of G; this is the |G|-dimensional vector space
of formal sums {∑

g

αg · g | αg ∈ C
}

equipped with the unique inner product for which 〈g, h〉 is equal to one when g = h and zero otherwise. (Note
that C[G] is precisely the Hilbert space of a single register containing a superposition of group elements.)

We introduce two combinatorial representations related to the group algebra. The first is the regular
representation R, given by the permutation action of G on itself. Then R is the representation R : G →
U(C[G]) given by linearly extending left multiplication, R(g) : h 7→ gh. It is not hard to see that its character
χR is given by

χR(g) =

{
|G| g = 1 ,

0 g 6= 1 ,

in which case we have 〈χR, χρ〉G = dσ for each ρ ∈ Ĝ. Thus R contains dρ copies of each irreducible ρ ∈ Ĝ,
and counting dimensions on each side of this decomposition implies |G| =

∑
ρ∈ bG d2

ρ.
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The other combinatorial representation we will rely on is the conjugation representation C, given by the
conjugation action of G on C[G]. Specifically, C : G → U(C[G]) is the map obtained by linearly extending
the rule C(g) : h 7→ ghg−1. While the decomposition of C into irreducibles is, in general, unknown, one does
have the decomposition

C =
⊕
ρ∈ bG

ρ⊗ ρ∗ and therefore χC(g) =
∑
ρ∈ bG

χρ(g)χρ(g)∗ . (2.1)

Here ρ∗ denotes the complex conjugate representation of ρ, which acts on vectors u∗ as ρ∗(g)u = (ρ(g)u)∗.
We also note that an elementary argument shows that

χC(g) =
|G|
|[g]|

,

where [g] = {h−1gh | h ∈ G} denotes the conjugacy class of g.

3 Background from Part I

3.1 The structure of the optimal measurement

As in Part I, we focus on the special case of the hidden subgroup problem called the hidden conjugate problem
in [22]. Here there is a (non-normal) subgroup H, and we are promised that the hidden subgroup is one of
its conjugates, Hg = g−1Hg for some g ∈ G; the goal is to determine which.

The most general possible measurement in quantum mechanics is a positive operator-valued measurement
(POVM). Part I of this paper establishes that the optimal POVM for the Hidden Subgroup Problem on a
single coset state consists of measuring the name ρ of the irreducible representation, followed by a POVM
on the vector space V on which ρ acts. In the special case of a von Neumann measurement, this corresponds
to measuring the row of ρ in some orthonormal basis; in general it consists of measuring according to some
over-complete basis, or frame, B = {b} with positive real weights ab that obeys the completeness condition∑

b

abπb = 1 , (3.1)

where πb denotes the projection onto the unit length vector b. We remark that the frame B weighted
according to a is energy-conserving in the sense that

‖x‖2 = 〈x,1x〉 = 〈x,
∑
b

a(b)πb(x)〉 =
∑
b

ab‖πb(x)‖2 .

During Fourier sampling, the probability we observe ρ, and the conditional probability that we observe
a given b ∈ B, are given by

P (ρ) =
dρ|H|
|G|

rk ΠH (3.2)

P (ρ,b) = aj
‖ΠHb‖2

rk ΠH
(3.3)

where ΠH is the projection operator 1/|H|
∑

h∈H ρ(h). In the case where H is the trivial subgroup, ΠH = 1dρ

and P (ρ,bj) is given by
P (ρ,b) =

ab
dρ

. (3.4)

We call this the natural distribution on the frame B = {b}. In the case that B is an orthonormal basis,
ab = 1 and this is simply the uniform distribution. This probability distribution over B changes for a
conjugate Hg in the following way:

P (ρ,b) = aj
‖ΠHgb‖2

rk ΠH

4



where we write gb for ρ(g)b. It is not hard to show that, for any b ∈ V , the expected value of ‖ΠH(gb)‖2,
over the choice of g ∈ G, is rk ΠH/dρ.

3.2 The expectation and variance of an involution projector

The following lemmas are proved in Part I; we repeat them here for convenience.

Lemma 1. Let ρ be a representation of a group G acting on a space V and let b ∈ V . Let m be an element
chosen uniformly from a conjugacy class I of involutions. If ρ is irreducible, then

Expm〈b,mb〉 =
χρ(I)
dim ρ

‖b‖2
.

If ρ is reducible, then

Expm〈b,mb〉 =
∑
σ≺ρ

χσ(I)
dimσ

‖Πρ
σb‖2

.

Lemma 2. Let ρ be a representation of a group G acting on a space V and let b ∈ V . Let m be an element
chosen uniformly at random from a conjugacy class I of involutions. Then

Expm |〈b,mb〉|2 =
∑

σ≺ρ⊗ρ∗

χσ(I)
dimσ

∥∥∥Πρ⊗ρ∗

σ (b⊗ b∗)
∥∥∥2

.

Given an involutionm and the hidden subgroupH = {1,m}, let Πm = ΠH denote the projection operator
given by

Πmv =
v +mv

2
.

Then the expectation and variance of ‖Πmb‖2 are given by the following lemma.

Lemma 3. Let ρ be an irreducible representation acting on a space V and let b ∈ V . Let m be an element
chosen uniformly at random from a conjugacy class I of involutions. Then

Expm ‖Πmb‖2 =
1
2
‖b‖2

(
1 +

χρ(I)
dim ρ

)
(3.5)

Varm ‖Πmb‖2 ≤ 1
4

∑
σ≺ρ⊗ρ∗

χσ(I)
dimσ

∥∥∥Πρ⊗ρ∗

σ (b⊗ b∗)
∥∥∥2

. (3.6)

Finally, we point out that since

Expm ‖Πmb‖2 = ‖b‖2 rk Πm

dim ρ

we have
rk Πm

dim ρ
=

1
2

(
1 +

χρ(I)
dim ρ

)
. (3.7)

3.3 The representation theory of the symmetric group

We will use several specific properties of the symmetric group Sn and its asymptotic representation theory;
we refer the reader to Section 5 of Part I for more background and notation. Recall that the irreducible
representations Sλ of Sn are labeled by Young diagrams λ, and that the number of irreducible representations
is the partition number p(n). We denote the dimension and character of Sλ as dλ and χλ, respectively. Recall
also that the Plancherel distribution assigns the probability d2

ρ/|G| to each irreducible representation ρ. Then
we will rely on the following results of Vershik and Kerov.
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Theorem 4 ([30]). Let Sλ be chosen from Ŝn according to the Plancherel distribution. Then there exist
positive constants c1 and c2 for which

lim
n→∞

Pr
[
e−c1

√
n
√
n! ≤ dλ ≤ e−c2

√
n
√
n!
]

= 1 .

Theorem 5 ([30]). There exist positive constants č and ĉ such that for all n ≥ 1,

e−č
√

n
√
n! ≤ max

Sλ∈cSn

dλ ≤ e−ĉ
√

n
√
n! .

In Part I we prove the following:

Lemma 6. Let Sλ be chosen according to the Plancherel distribution on Ŝn.

1. Let δ = π
√

2/3. Then for sufficiently large n, Pr
[
dλ ≤ e−δ

√
n
√
n!
]
< e−δ

√
n.

2. Let 0 < c < 1/2. Then Pr[dλ ≤ ncn] = n−Ω(n).

Finally, we will also apply Roichman’s [25] estimates for the characters of the symmetric group:

Definition 1. For a permutation π ∈ Sn, define the support of π, denoted supp(π), to be the cardinality of
the set {k ∈ [n] | π(k) 6= k}.

Theorem 7 ([25]). There exist constants b > 0 and 0 < q < 1 so that for n > 4, for every conjugacy class
C of Sn, and every irreducible representation Sλ of Sn,∣∣∣∣χλ(C)

dλ

∣∣∣∣ ≤ (max
(
q,
λ1

n
,
λ′1
n

))b·supp(C)

,

where supp(C) = supp(π) for any π ∈ C.

In our application, we take n to be even and consider involutions m in the conjugacy class of elements
consisting of n/2 disjoint transpositions, M = Mn = {σ ((12)(34) · · · (n − 1 n))σ−1 | σ ∈ Sn}. Note that
each m ∈Mn is associated with one of the (n− 1)!! perfect matchings of n things, and that supp(m) = n.

3.4 Strong Fourier sampling on one register

The main result of Part I is the following.

Theorem 8. Let B = {b} be a frame with weights {ab} satisfying the completeness condition (3.1) for
an irreducible representation Sλ. Given the hidden subgroup H = {1,m} where m is chosen uniformly at
random from M , let Pm(b) be the probability that we observe the vector b conditioned on having observed
the representation name Sλ, and let N be the natural distribution (3.4) on B. Then there is a constant δ > 0
such that for sufficiently large n, with probability at least 1− e−δn in m and λ, we have

‖Pm −N‖1 < e−δn .

The proof strategy is to bound Varm ‖Πmb‖2 using Lemma 3, and apply Chebyshev’s inequality to
conclude that it is almost certainly close to its expectation. Recall, however, that our bounds on the variance
of ‖Πmb‖2 depend on the decomposition of Sλ⊗(Sλ)∗ is into irreducibles and, furthermore, on the projection
of b ⊗ b∗ into these irreducible subspaces. Matters are somewhat complicated by the fact that certain Sµ

appearing in Sλ ⊗ (Sλ)∗ may contribute more to the variance than others. While Theorem 7 allows us to
bound the contribution of those constituent irreducible representations Sµ for which µ1 and µ′1 are much
smaller than n, those which violate this condition could conceivably contribute large terms to the variance
estimates. Fortunately, in this single coset case, the total fraction of the space Sλ ⊗ (Sλ)∗, dimensionwise,
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consisting of such Sµ is small with overwhelming probability. Despite this, we cannot preclude the possibility
that for a specific vector b, the quantity Var ‖Πmb‖2 is large, as b may project solely into spaces of the type
described above. On the other hand, as these troublesome spaces amount to a small fraction of Sλ ⊗ (Sλ)∗,
only a few b can have this property.

Specifically, let 0 < c < 1/4 be a constant, and let Λ = Λc denote the collection of Young diagrams µ
with the property that either µ1 ≥ (1 − c)n or µ′1 ≥ (1 − c)n. Then Part I establishes the following upper
bounds on the cardinality of Λ and the dimension of any Sµ with µ ∈ Λ:

Lemma 9. Let p(n) denote the number of integer partitions of n. Then |Λ| ≤ 2cnp(cn), and dµ < ncn for
any µ ∈ Λ.

As a result, the representations associated with diagrams in Λ constitute a negligible fraction of Ŝn;
specifically, from Lemma 6, part 2, the probability that a λ drawn according to the Plancherel distribution
falls into Λ is n−Ω(n). The following lemma shows that this is also true for the distribution P (ρ) induced on
Ŝn by weak Fourier sampling the coset state |H〉.

Lemma 10. Let d < 1/2 be a constant and let n be sufficiently large. Then there is a constant γ > 0 such
that we observe a representation Sλ with dλ ≥ ndn with probability at least 1− n−γn.

On the other hand, for a representation Sµ with µ /∈ Λ, Theorem 7 implies that∣∣∣∣χµ(M)
dµ

∣∣∣∣ ≤ (max(q, 1− c)
)bn ≤ e−αn (3.8)

for a constant α ≥ bc > 0. Thus the contribution of such an irreducible to the variance estimate of Lemma 3
is exponentially small. The remainder of the proof of Theorem 8 uses a combination of Chebyshev’s and
Markov’s inequalities to bound the total variation distance between Pm and the natural distribution.

4 Variance and decomposition for multiregister experiments

We turn now to the multi-register case, where Steps 1, 2 and 3 are carried out on k independent registers.
This yields a state in C[Gk], i.e.,

|c1H〉 ⊗ · · · ⊗ |ckH〉
where the ci are uniformly random coset representatives. The symmetry argument of Section 3 of Part I
applies to each register, so that the optimal measurement is consistent with first measuring the representation
name in each register. However, the optimal measurement generally does not consist of k independent
measurements on this tensor product state; rather, it is entangled, consisting of measurement in a basis
whose basis vectors b are not of the form b1 ⊗ · · · ⊗ bk. As mentioned above, for the dihedral groups
in particular, a fair amount is known: Ip [15] showed that the optimal measurement for two registers is
entangled, Kuperberg [20] showed that an entangled measurement yields a subexponential-time algorithm for
the hidden subgroup problem, and Bacon, Childs and van Dam [1] have calculated the optimal measurement
on k registers.

Extending the results of part I to this case involving multiple coset states will proceed in three steps:

• In Section 4.1, we generalize the expectation and variance bounds of Lemma 3 to the algebra C[Gk],
viewed as a representation of G.

• As in the single register proof, we must control the decomposition of the representations that appear
in the expressions for expectation and variance. Unfortunately, the naive bounds applied in part I
(relying on the fact that 〈χσ, χρχτ 〉G ≤ dσ for irreducible representations ρ, σ, and τ) are insufficient
for controlling these decompositions. In Section 4.2, we show how to bound the decomposition of these
representations on average.

• Finally, in Section 5, we show how to apply these results to eliminate the possibility of solving the HSP
over Sn with any polynomial number of two-register experiments on coset states.
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4.1 Variance for Fourier sampling product states

We begin by generalizing Lemmas 1, 2, and 3 of Part I to the multi-register case. The reasoning is analogous
to that of Section 4 of Part I; the principal difficulty is notational, and we ask the reader to bear with us.

We assume we have measured the representation name on each of the registers, and that we are currently
in an irreducible representation of Gk labeled by ρ1⊗· · ·⊗ρk. Given a subset I ⊆ {1, . . . , k}, we can separate
this tensor product into the registers inside I and those outside, and then decompose the product of those
inside I into irreducibles σ:

ρ1 ⊗ · · · ⊗ ρk =
⊗
i∈I

ρi ⊗
⊗
i/∈I

ρi

=

( ⊕
σ≺⊗i∈Iρi

aI
σσ

)
⊗
⊗
i/∈I

ρi

where aI
σ is the multiplicity of σ in ⊗i∈Iρi. Now given an irrep σ, let ΠI

σ denote the projection operator
onto the subspace acted on by

aI
σσ ⊗

⊗
i/∈I

ρi .

In other words, ΠI
σ projects the registers in I onto the subspaces isomorphic to σ, and leaves the registers

outside I untouched. Note that in the case where I is a singleton we have Π{i}
ρi = 1.

As before, the hidden subgroup is H = {1,m} for an involution m chosen at random from a conjugacy
class M . However, we now have, in effect, the subgroup Hk ⊂ Gk, and summing over the elements of Hk

gives the projection operator ΠHk = Π⊗k
m . The probability we observe an (arbitrarily entangled) basis vector

b ∈ ρ1 ⊗ · · · ⊗ ρk is then

Pm(b) =

∥∥Π⊗k
m b

∥∥2

rk Π⊗k
m

. (4.1)

When we calculate the expectation of this over m, we will find ourselves summing the following quantity
over the subsets I ⊆ {1, . . . , k}:

EI(b) =
∑

σ≺⊗i∈Iρi

χσ(M)
dimσ

∥∥ΠI
σb
∥∥2

(4.2)

with E∅(b) = ‖b‖2 (since an empty tensor product gives the trivial representation).
For the variance, we will find ourselves dealing with pairs of subsets I1, I2 ⊆ {1, . . . , k} and decompositions

of the form

(ρ1 ⊗ · · · ⊗ ρk)⊗ (ρ∗1 ⊗ · · · ⊗ ρ∗k) =

(⊗
i∈I1

ρi ⊗
⊗
i∈I2

ρ∗i

)
⊗

⊗
i/∈I1

ρi ⊗
⊗
i/∈I2

ρ∗i


=

 ⊕
σ≺

N
i∈I ρi⊗

N
i∈I2

ρ∗i

aI1,I2
σ σ

⊗

⊗
i/∈I1

ρi ⊗
⊗
i/∈I2

ρ∗i


just as we considered ρ ⊗ ρ∗ in the one-register case. We can then define a projection operator ΠI1,I2

σ onto
the subspace acted on by

aI1,I2
σ σ ⊗

⊗
i/∈I1

ρi ⊗
⊗
i/∈I2

ρ∗i


and we define the following quantity,

EI1,I2(b) =
∑

σ≺
N

i∈I ρi⊗
N

i∈I2
ρ∗i

χσ(M)
dimσ

∥∥ΠI1,I2
σ (b⊗ b∗)

∥∥2
(4.3)
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with E∅,∅(b) = ‖b‖4.
We can now state the following lemma. The reader can check that (4.5) corresponds exactly to Equation

(4.3) of part I in the one-register case.

Lemma 11. Let b ∈ ρ1 ⊗ · · · ⊗ ρk and let m be an element chosen uniformly from a conjugacy class M of
involutions. Then

Expm

∥∥Π⊗k
m b

∥∥2
=

1
2k

1 +
∑

I⊆{1,...,k}:I 6=∅

EI(b)

 (4.4)

Varm

∥∥Π⊗k
m b

∥∥2
=

1
4k

∑
I1,I2⊆{1,...,k}:I1,I2 6=∅

EI1,I2(b)− EI1(b)EI2(b)∗ . (4.5)

Proof. Let mI denote the operator that operates on the ith register by m for each i ∈ I and leaves the other
registers unchanged. This acts on b as τ(m) where τ =

⊗
i∈I ρi(m), and Lemma 1 implies that

Expm〈b,mIb〉 = EI(b) .

Then (4.4) follows from the observation that

Π⊗k
m b =

1
2k

∑
I⊆{1,...,k}

mIb

and so

Expm

∥∥Π⊗k
m b

∥∥2
= Expm〈b,Π⊗k

m b〉 =
1
2k

∑
I⊆{1,...,k}

Expm〈b,mIb〉 =
1
2k

∑
I⊆{1,...,k}

EI(b) .

Separating out the term E∅(b) = ‖b‖2 completes the proof of (4.4).
Similarly, let the operator mI1 ⊗mI2 act on b⊗ b∗ by multiplying the ith register of b by m whenever

i ∈ I1, and multiplying the ith register of b∗ whenever i ∈ I2. Then it acts as τ(m) where τ =
⊗

i∈I1
ρi(m)⊗⊗

i∈I2
ρ∗i (m), and Lemma 1 implies

Expm〈b⊗ b∗, (mI1 ⊗mI2)(b⊗ b∗)〉 = EI1,I2(b) .

Then analogous to Lemmas 2 and 3, the second moment is

Expm

∥∥Π⊗k
m b

∥∥4
= Expm〈b,Π⊗k

m b〉〈b∗,Π⊗k
m b∗〉

= Expm〈b⊗ b∗, (Π⊗k
m ⊗Π⊗k

m )(b⊗ b∗)〉

=
1
4n

∑
I1,I2⊆{1,...,k}

Expm〈b⊗ b∗, (mI1 ⊗mI2)(b⊗ b∗)〉

=
1
4n

∑
I1,I2⊆{1,...,k}

EI1,I2(b)

and so the variance is

Varm

∥∥Π⊗k
m b

∥∥2
= Expm

∥∥Π⊗k
m b

∥∥4 −
(
Expm

∥∥Π⊗k
m b

∥∥2
)2

=
1
4k

∑
I1,I2⊆{1,...,k}

EI1,I2(b)− EI1(b)EI2(b)∗ .

Finally, (4.5) follows from the fact that the two terms in the sum cancel whenever I1 or I2 is empty.
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4.2 The associated Clebsch-Gordan problem

The expressions EI(b) and EI1,I2(b) above depend on the decomposition of representations of the form

⊗
i∈I1

ρi ⊗
⊗
i∈I2

ρ∗i =

 ⊗
i∈I1\I2

ρi ⊗
⊗

i∈I2\I1

ρ∗i

⊗
⊗

i∈I1∩I2

(ρi ⊗ ρ∗i ) .

Moreover, since the Plancherel distribution is symmetric with respect to conjugation, this is a tensor product
of |I14I2| representations ρi with |I1 ∩ I2| representations σj ⊗ σ∗j , where both the ρi and the σj are chosen
according to the Plancherel distribution. This motivates the following definition.

Definition 2. For non-negative integers k and ` and ρ = (ρ1, . . . , ρk) ∈ Ĝk and σ = (σ1, . . . , σ`) ∈ Ĝ`, let
V (ρ, σ) denote the representation

k⊗
i=1

ρi ⊗
⊗̀
j=1

(σj ⊗ σ∗j ) .

Of particular interest is the dimensionwise fraction of such representations consisting of low-dimensional
irreducibles. For these representations, the naive decomposition results of Equation (6.4) of Part I no longer
suffice to obtain nontrivial estimates. Fortunately, the combinatorial representations R and C discussed in
Section 2 can be used to control the structural properties of these tensor products on average. We will apply
this machinery in Section 5 to control general two-register experiments.

Recall that the multiplicity of an irreducible representation τ in the decomposition of a representation V
into irreducibles is the inner product 〈χτ , χV 〉G, and that [g] denotes the conjugacy class of g.

Lemma 12. Fix τ ∈ Ĝ and let ρ and σ be random variables taking values in Ĝk and Ĝ`, respectively, so
that each ρi and σj is independently distributed according to the Plancherel distribution. Then

Expρ,σ

〈
χτ , χV (ρ,σ)

〉
G

dimV (ρ, σ)
=

dτ

|G|
if k > 0 ,

Expρ,σ

〈
χτ , χV (ρ,σ)

〉
G

dimV (ρ, σ)
≤ dτ

|G|
∑

g

1
|[g]|`

if k = 0 .

Proof. The two permutation representations R and C will play a special role in the analysis: in particular,
we will see that the expectation of interest can be expressed in terms of these combinatorial characters.
Specifically,

Expρ,σ

[〈
χτ , χV (ρ,σ)

〉
G

dimV (ρ, σ)

]
=
∑

ρ∈ bGk

∑
σ∈ bG`

(∏
i

d2
ρi

|G|

)∏
j

d2
σj

|G|

 〈χτ , χV (ρ,σ)〉G
dimV (ρ, σ)

(4.6)

=
1

|G|k+`

∑
ρ∈ bGk

∑
σ∈ bG`

(∏
i

dρi

)
〈χτ , χV (ρ,σ)〉G (4.7)

=
1

|G|k+`

〈
χτ ,

∑
ρ∈ bGk

∑
σ∈ bG`

(∏
i

dρi
χρi

)∏
j

χσj
χ∗σj

〉
G

(4.8)

=
1

|G|k+`

〈
χτ , χ

k
Rχ

`
C

〉
G

(4.9)

where the equality of line (4.7) follows from the fact that the dimension of V (ρ, σ) is
∏

i dσi
·
∏

j d
2
σj

and the
equality of line (4.8) follows from the fact that the character of V (ρ, σ) is

∏
i χρi

∏
j χσjχ

∗
σj

.
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Recall that for any representation υ we have χυ(1) = dυ. As χR is a multiple of the delta function δg,
whenever k > 1 we have 〈χτ , χ

k
Rχ

`
C〉G = dτ |G|k+`−1 and

Expρ,σ

[〈
χτ , χV (ρ,σ)

〉
G

dimV (ρ, σ)

]
=

dτ

|G|
.

On the other hand, when k = 0 we have

Expρ,σ

[〈
χτ , χV (ρ,σ)

〉
G

dimV (ρ, σ)

]
=

1
|G|`

〈
χτ , χ

`
C

〉
G

=
1

|G|`+1

∑
g

χ∗τ (g)χ`
C(g)

=
1

|G|`+1

∑
g

χ∗τ (g)
|G|`

|[g]|`
=

1
|G|

∑
g

χ∗τ (g)
1

|[g]|`

≤ dτ

|G|
∑

g

1

|[g]|`
,

where the last inequality follows from the fact that |χτ (g)| ≤ dτ for all g.

Now note that the sum
∑

g 1/ |[g]|` can also be written as a sum over the conjugacy classes C. In
particular, if ` ≥ 2, ∑

g

1

|[g]|`
=
∑
C

1
|C|`−1

≤
∑
C

1
|C|

.

In the case of the symmetric group Sn, the next lemma shows that this quantity is in fact 1 + o(1).

Lemma 13. Given a partition λ = (λ1, . . . , λt) with
∑

i λi = n and λi ≥ λi+1 for all i, let Cλ denote the
conjugacy class of Sn consisting of permutations with cycle structure λ. Then∑

λ

1
|Cλ|

= 1 + o(1) .

Proof. First note that if we group the λi into blocks consisting of τ1 1s, τ2 2s, and so on (such that
∑

i τii = n)
then the size of the conjugacy class is given by

|Cλ| =
n!

(
∏

i τi!) (
∏

i λi)

since we can cyclically permute the elements of each cycle, and permute cycles of the same size with each
other. Thus ∑

λ

1
|Cλ|

=
∑

λ

1
n!

(∏
i

τi!

)(∏
i

λi

)
. (4.10)

Now suppose that the conjugacy class consists of elements with support s, i.e., with τ1 = n− s fixed points.
Since we can specify such a partition with a partition of s objects, the number of such partitions is at most
p(s). Moreover we have ∏

i

τi! = (n− s)!
∏
i≥2

τi! ≤ (n− s)! (s/2)!

and ∏
i

λi =
∏
λ>1

λ ≤ es/e .

11



since this is true for any set of reals λ ≥ 0 such that
∑
λ = s. Then (4.10) becomes

∑
λ

1
|Cλ|

≤
n∑

s=0

(n− s)! (s/2)!
n!

p(s)es/e (4.11)

Now, for s >
√
n, we have

(n− s)! (s/2)!
n!

=
1(
n
s

) (s/2)!
s!

≤ (s/2)!
s!

<

(
2s
e

)−s/2

≤ n−s/4 (4.12)

and for s ≤
√
n, for sufficiently large n a stronger bound holds,

(n− s)! (s/2)!
n!

≤ (
√
n/2)s/2

(n− s)s
≤ n−3s/4 .

Thus (4.12) holds for all s. Using the absurdly crude bound p(s) es/e < 4s, (4.11) then becomes

∑
λ

1
|Cλ|

≤
n∑

s=0

n−s/44s <
1

1− 4n−1/4
= 1 +O(n−1/4) .

On the other hand, if ` = 1 then the sum
∑

g 1/ |[g]| is simply the number of conjugacy classes. Therefore,
in the case of the symmetric group, we have the following corollary of Lemma 12.

Corollary 14. Let G = Sn and k, `, ρ, and σ as in Lemma 12. Then

Expρ,σ

〈
χτ , χV (ρ,σ)

〉
Sn

dimV (ρ, σ)
≤ (1 + o(1))

dτ

n!

unless ` = 1 and k = 0, in which case

Expρ,σ

〈
χτ , χV (ρ,σ)

〉
Sn

dimV (ρ, σ)
≤ dτp(n)

n!
.

5 Two registers are insufficient for the symmetric group

In this section we show that no polynomial number of two-register experiments can distinguish the invo-
lutions we have been considering in Sn from each other or from the trivial subgroup. As in Section 4, we
assume we have measured the representation name on each of the two registers, and that we observed the
irreducible representations Sλ and Sµ. For simplicity we present the proof for von Neumann measurements;
the generalization to arbitrary frames {b} proceeds exactly as in the proof of Theorem 8.

Theorem 15. Let B = {b} be an orthonormal basis for Sλ ⊗ Sµ. Given the hidden subgroup H = {1,m}
where m is chosen uniformly at random from M , let Pm(b) be the probability that we observe the vector b
conditioned on having observed the representation names Sλ and Sµ, and let U be the uniform distribution
on B. Then there is a constant δ > 0 such that for sufficiently large n, with probability at least 1−e−δ

√
n/ log n

in m, λ and µ, we have
‖Pm − U‖1 < e−δ

√
n/ log n .
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Proof. For k = 2, Lemma 11 specializes to the following:

Expm

∥∥Π⊗2
m b

∥∥2
=

1
4

1 +
∑

I⊆{λ,µ}:I 6=∅

EI(b)

 (5.1)

Varm

∥∥Π⊗2
m b

∥∥2
=

1
16

∑
I1,I2⊆{λ,µ}:I1,I2 6=∅

EI1,I2(b)− EI1(b)EI2(b)∗ . (5.2)

As before, Sλ and Sµ are chosen with the distribution P (ρ). Since this is exponentially close to the Plancherel
distribution [12], we can use Lemma 12 to calculate the expectations over λ and µ of EI(b) and EI1,I2(b) with
negligible error. We will then show that EI(b) and EI1,I2(b) are superpolynomially small with the stated
probability, for all but a small fraction of basis vectors b, namely those that project into low-dimensional
representations. As in Theorem 8, we will then use Markov’s inequality to control the number of these basis
vectors and use Chebyshev’s inequality to control the rest, and thus bound the total distance ‖Pm − U‖1.

However, the analysis, at least when |I1| = |I2| = 2, is more delicate than for the one-register case. As
before, we exclude a set of low-dimensional representations Λ, but now we restrict Λ to Young diagrams with
width or height extremely close to n. Specifically, let c > 0 be a constant to be determined below, and let
Λ = Λc be the set of Young diagrams ν such that

max(ν1, ν′1) ≥ n− c
√
n/ lnn .

Analogously to (3.8), Theorem 7 provides the following bound on the characters χν for ν /∈ Λ,∣∣∣∣χν(M)
dν

∣∣∣∣ ≤ (1− c√
n lnn

)bn

< e−α
√

n/ ln n (5.3)

where α = bc > 0. The size and dimension of Λ is bounded by the following lemma.

Lemma 16. |Λ| = eo(
√

n) and dν < ec
√

n for any ν ∈ Λ. Therefore,
∑

ν∈Λ(dν)2 < e2c
√

n+o(
√

n).

Proof. The proof of Lemma 9 applies, except now |Λ| < 2xp(x) where x = c
√
n/ lnn.

Then the next lemma shows that with high probability in λ and µ, EI(b) is superpolynomially small for
all b ∈ B. (Indeed, it is exponentially small for all but a few b, but we give this statement for simplicity.)

Lemma 17. Let Sµ and Sλ be distributed according to the Plancherel distribution in Ŝn. Let I ⊆ {λ, µ},
I 6= ∅. There is a constant γ > 0 such that for sufficiently large n, with probability 1 − e−γ

√
n,
∣∣EI(b)

∣∣ ≤
e−α

√
n/ ln n for all b ∈ B.

Proof. The case when |I| = 1 is identical to the one-register case, since then EI(b) = χλ(M)/dλ. Lemma 6
implies λ /∈ Λ with probability 1− e−δ

√
n, and (5.3) completes the proof of this case.

For the case |I| = 2, it suffices to ensure that Sλ ⊗ Sµ contains no low-dimensional representations. Let
ν ∈ Λ; then by Lemma 12 and Lemma 16, the expected multiplicity of Sν in Sλ ⊗ Sµ is

Expλ,µ〈χν , χλχµ〉Sn = Expλ,µ d
λdµ 〈χν , χλχµ〉Sn

dλdµ
≤ e−2ĉ

√
ndν ≤ e(c−2ĉ)

√
n

where ĉ is the constant appearing in Theorem 5. Thus if c < ĉ, Lemma 16 and Markov’s inequality imply
that the probability any Sν with ν ∈ Λ appears in Sλ ⊗Sµ is at most e−ĉ

√
n. If none do, then (5.3) and the

fact that
∣∣EI

∣∣ ≤ maxν /∈Λ |χν(M)/dν | complete the proof with γ = ĉ.

For the variance estimates, for each Sλ, Sµ ∈ Ŝn and I1, I2 ⊂ {λ, µ}, recall Definition 2 and let

V [I1, I2] = V (I14I2, I1 ∩ I2) ,
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where I14I2 is the symmetric difference. (We abuse notation here, allowing, e.g., the set I14I2 to stand for
the tuple of representations Sλ with λ ∈ I14I2.) For the variance calculation, as in the single-register case,
let L[I1, I2] ⊂ V (I1, I2) be the subspace consisting of copies of representations Sν with ν ∈ Λ, and let ΠL[I1,I2]

be the projection operator onto this subspace. We will abbreviate L = L[I1, I2] and V = V [I1, I2] when the
parameters are clear from context. Then the following lemma bounds the dimension of this subspace.

Lemma 18. Let Sλ and Sµ be distributed according to the Plancherel distribution in Ŝn and let I1, I2 ⊆
{λ, µ}, I1, I2 6= ∅. There is a constant β > 0 such that for sufficiently large n, with probability at least
1− e−β

√
n, dimL[I1, I2] ≤ e−β

√
n|B|.

Proof. If |I1| = |I2| = 1 and I1 6= I2, then the proof of the previous lemma shows that L is in fact empty
with probability 1 − e−Ω(

√
n). When I1 = I2 and |I1| = 1, however, this is not true; for instance, for any

λ, Sλ ⊗ (Sλ)∗ contains exactly one copy of the trivial representation. However, since dimV = (dλ)2 and
|B| = dλdµ, Corollary 14 gives

Expλ,µ

dimL

|B|
=
∑
ν∈Λ

dν Expλ,µ

dλ

dµ

〈χν , (χλ)2〉Sn

dimV

≤ e(δ−ĉ)
√

n p(n)
n!

∑
ν∈Λ

(dν)2 ≤ e(2c+2δ−ĉ)
√

n+o(
√

n)

n!
= n−Ω(n)

where we assume that the event of Lemma 6 occurs and δ is the constant defined there.
When |I1| = 2 and |I2| = 1, e.g. I1 = {λ, µ} and I2 = {λ}, then dimV = (dλ)2dµ and Lemma 12 yields

Expλ,µ

dimL

|B|
=
∑
ν∈Λ

dν Expλ,µ d
λ 〈χν , (χλ)2〉Sn

dimV

≤ e−ĉ
√

n

√
n!

∑
ν∈Λ

(dν)2 ≤ e(2c−ĉ)
√

n+o(
√

n)

√
n!

= n−Ω(n) .

The case when |I2| = 2 and |I1| = 1 is identical.
Finally, the case when |I1| = |I2| = 2 is the most delicate. Now dimV = (dλ)2(dµ)2, and Corollary 14

gives

Expλ,µ

dimL

|B|
=
∑
ν∈Λ

dν Expλ,µ d
λdµ 〈χν , (χλ)2〉Sn

dimV

≤ (1 + o(1))e−2ĉ
√

n
∑
ν∈Λ

(dν)2 ≤ e(2c−2ĉ)
√

n+o(
√

n) < e−ĉ
√

n .

if we set c < ĉ/2.
Thus with probability at least 1− e−δ

√
n we have Exp[dimL/|B|] = e−ĉ

√
n. By Markov’s inequality, the

probability that dimL > e−(ĉ/2)
√

n|B| is at most e−(ĉ/2)
√

n. Thus setting β < min(δ, ĉ/2) completes the
proof.

Now, let E0 denote the following event:

1. max
(
|χλ(M)/dλ|, |χµ(M)/dµ|

)
≤ e−Ω(n),

2.
∣∣EI(b)

∣∣ = e−α
√

n/ ln n for all b ∈ B and all I ⊂ {λ, µ}, and

3. dimL[I1, I2] ≤ e−β
√

n|B| for each I1, I2 ⊂ {λ, µ} with I1 6= ∅ and I2 6= ∅.
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As a consequence of (3.8) and Lemmas 10, 17 and 18, E0 occurs with probability 1−e−Ω(
√

n). In what follows
we condition on E0. This will allow us to control the three principal parameters that determine the total
variation distance between Pm and the uniform distribution: rk Π⊗2

m , Expm[Π⊗2
m (b)], and Varm[Π⊗2

m (b)].
Considering rk Π⊗2

m , note that the rank of Π⊗2
m restricted to a representation Sλ ⊗ Sµ is the product of

the ranks of Πm restricted to Sλ and Sµ; then (3.7), and item 1 of E0 give

rk Π⊗2
m =

dµdλ

4

(
1 +

χµ(M)
dµ

)(
1 +

χλ(M)
dλ

)
=
|B|
4

(
1 + e−Ω(n)

)
. (5.4)

As for the expectation Expm[Π⊗2
m (b)], in light of (5.1) and item 2 of E0, we conclude that for each b ∈ B,∣∣∣∣Expm

∥∥Π⊗2
m b

∥∥2 − 1
4

∣∣∣∣ ≤ 3e−α
√

n/ ln n . (5.5)

Finally, we focus on the variance. Define BL ⊂ B to be the set of basis vectors b such that for some
nontrivial I1, I2 ⊂ {λ, µ},

∥∥ΠL[I1,I2]b
∥∥2 ≥ e−(β/2)

√
n. Then since item 3 of E0 holds for each of the 32 = 9

pairs of nonempty subsets I1, I2, we have

|BL| ≤ e(β/2)
√

n
∑
I1,I2

dimL[I1, I2] ≤ 9e−(β/2)
√

n|B| .

Observe that for any b ∈ B \BL, Equations (5.2), (5.3), and item 2 of E0 give

Varm

∥∥Π⊗2
m b

∥∥2 ≤ 9
16

(
e−α

√
n/ ln n + e−2α

√
n/ ln n + e−(β/2)

√
n
)
< e−α

√
n/ ln n . (5.6)

Then Chebyshev’s inequality gives

Pr
[ ∣∣∣∥∥Π⊗2

m b
∥∥2 − Expm

∥∥Π⊗2
m b

∥∥2
∣∣∣ ≥ e−(α/3)

√
n/ ln n

]
≤ e−(α/3)

√
n/ ln n . (5.7)

Analogous to Theorem 8, let Bbad ⊂ B \ BL denote the subset of basis vectors for which the event of (5.7)
is violated. (As in the one-register case, while BL depends only on the choice of λ and µ, Bbad depends also
on m.) Let E1 denote the event

|Bbad| < e−(α/6)
√

n/ ln n|B| .

Then (5.7) and Markov’s inequality imply that E1 occurs with probability 1− e−(α/6)
√

n/ ln n.
So, finally, recall that Pm(b) =

∥∥Π⊗2
m (b)

∥∥2
/rk Π⊗2

m and let P (b) denote the distribution P (b) =
Expm[Pm(b)]. We separate

∥∥Pm − P
∥∥

1
into contributions from basis vectors outside and inside BL ∪Bbad:∥∥Pm − P

∥∥
1

=
∑

b/∈BL∪Bbad

∣∣Pm(b)− P (b)
∣∣+ ∑

b∈BL∪Bbad

∣∣Pm(b)− P (b)
∣∣ . (5.8)

The first sum is taken only over vectors b for which∣∣∣∥∥Π⊗2
m (b)

∥∥2 − Expm

∥∥Π⊗2
m (b)

∥∥2
∣∣∣ < e−(α/3)

√
n/ ln n .

Then conditioning on E0 and E1, the rank estimate of (5.4) implies that

∑
b/∈BL∪Bbad

∣∣Pm(b)− P (b)
∣∣ ≤ e−(α/3)

√
n/ ln n

rk Π⊗2
m

· |B| = 4e−(α/3)
√

n/ ln n

1 + e−Ω(n)
< 8e−(α/3)

√
n/ ln n . (5.9)

On the other hand, conditioning on E0 and E1 we have

|BL ∪Bbad| ≤
(
9e−(β/2)

√
n + e−(α/6)

√
n/ ln n

)
|B| < 2e−(α/6)

√
n/ ln n|B| ,
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and then (5.4) and (5.5) imply that the total expected probability of the basis vectors in BL ∪Bbad is

∑
b∈BL∪Bbad

P (b) =
∑

b∈BL∪Bbad

Expm

∥∥Π⊗2
m (b)

∥∥2

rk Π⊗2
m

≤ |BL ∪Bbad|
rk Π⊗2

m

·
(

1
4

+ 3e−α
√

n/ ln n

)
≤ 2e−(α/6)

√
n/ ln n(1 + o(1)) < 3e−(α/6)

√
n/ ln n . (5.10)

Then we must have ∑
b/∈BL∪Bbad

P (b) > 1− 3e−(α/6)
√

n/ ln n

and hence, by (5.9),∑
b/∈BL∪Bbad

Pm(b) > 1− 3e−(α/6)
√

n/ ln n − 8e−(α/3)
√

n/ ln n > 1− 4e−(α/6)
√

n/ ln n

and so ∑
b∈BL∪Bbad

Pm(b) < 4e−(α/6)
√

n/ ln n .

Combining this with (5.10) bounds the second sum in (5.8),∑
b∈BL∪Bbad

∣∣Pm(b)− P (b)
∣∣ < 7e−(α/6)

√
n/ ln n . (5.11)

Then combining (5.8), (5.9) and (5.11),∥∥Pm − P
∥∥

1
< 8e−(α/6)

√
n/ ln n

with probability at least Pr[E0 ∧ E1] ≥ 1− e−Ω(
√

n) − e−(α/6)
√

n/ ln n > 1− 2e−(α/6)
√

n/ ln n.
Finally, it remains to be proved that P is, with high probability, close to the uniform distribution U on

B. But this follows from (5.4) and (5.5); conditioning on E0, we have

∥∥P − U
∥∥

1
≤
∑
b∈B

∣∣∣∣∣Expm

∥∥Π⊗2
m b

∥∥2

rk Π⊗2
m

− 1
|B|

∣∣∣∣∣ < 12e−α
√

n/ ln n(1 + e−Ω(n)) .

We complete the proof by setting δ < α/6 and invoking the triangle inequality.

6 Conclusion

The reader will notice that our current machinery cannot extend to three or more registers when applied to
the symmetric group, as the representations of Sn have typical dimension equal to (n!)1/2−o(1). However,
we have been very pessimistic in our analysis; in particular, we have assumed that vectors of the form b⊗b
project into low-dimensional representations, Sν with ν ∈ Λ, as much as possible. Perhaps a more detailed
understanding of how these vectors lie inside the decomposition of V (ρ, σ) into irreducibles would allow one
to prove that this hidden subgroup problem requires entangled measurements over Ω(log |G|) = Ω(n log n)
coset states. Therefore, we make the following conjecture.

Conjecture 1. Let B = {b} with weights {ab} be a complete frame for Sλ1 ⊗ · · · ⊗ Sλk . Given the hidden
subgroup H = {1,m} where m is chosen uniformly at random from M , and a coset state |c1H〉⊗ · · ·⊗ |ckH〉
on k registers, let Pm(b) be the probability that we observe the vector b conditioned on having observed the
representation names {Sλi}, and let U be the natural distribution on B. Then for all c > 0, with probability
1− o(n−c) in m and {Sλi}, we have

‖Pm − U‖1 = o(n−c)

unless k = Ω(n log n).
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