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Abstract

We analyze mathematically a previously reported class of passive microfluidic
mixing networks. The networks produce nonhomogeneous concentrations in the out-
put channel, resulting in diverse concentration profiles. We formally prove that all
profiles obtainable with this class of networks can be described as polynomials of
degree no higher than the number of input channels less one. We derive explicit for-
mulas for the calculation of resultant output concentration profiles and conversely for
the calculation of input concentrations needed to obtain set output profiles.



1 Introduction

Microfluidic technology presents the opportunity for low-cost fabrication of sophisticated
reaction assemblies in which chemical and biochemical reactions, including open-system
reactions, can be performed with very small reactant volumes and with high volumetric
accuracy. For instance, microfluidic assemblies have found uses in the design of reac-
tion chambers for DNA computing [14, 15, 4]. Fluid flow in microfluidic channels is
entirely laminar, owing to typical channel cross-sections, flow velocities, and fluid prop-
erties. Therefore, when two miscible flows are merged into a common channel, they mix
only by diffusion. This means that mixing is generally slower than with turbulent flows
and special care must be taken to achieve complete mixing of flows (assuming this is
desired). On the other hand, the geometries of microfluidic channels and laminar flow
permit the diffusion to be described accurately by relatively simple and tractable equa-
tions. Consequently, it is possible to calculate the requisite channel length such that two
fluids entering the channel side by side unmixed leave the channel essentially completely
mixed. (See Stroock [11] for an improvement that induces chaotic flow by means of a
herringbone channel floor pattern; Hardt [5] is a recent review of such passive mixing
techniques. One can also use active folding mixing in a rotary mixing chamber [1], or
mixing by means of folding in oil droplets [12].)

But what if our goal is not to achieve a completely homogeneous mixture at the end
of the mixing channel, but rather a deliberately nonhomogeneous one? Recently, White-
sides’ group demonstrated a microfluidic network that produces a non-uniform concen-
tration profile in the output channel, measured in the cross-section transverse to the flow.
Their contribution was described in multiple publications. First, Jeon et al. [7] obtained a
gradient, i.e., a roughly linear dependence of concentration on the transverse coordinate
x across the output channel. Second, Dertinger et al. [2] obtained either a roughly linear
dependence or a roughly quadratic dependence, depending on the particulars of the mi-
crofluidic network. Third, significant applications of non-uniform concentration profiles
were described [6, 3, 8].

The microfluidic network they designed is shown schematically in Figure 1. The net-
work consists of k stages, and has p inlets and p + k outlets. Each stage splits n flows into
n + 1 flows, for n = p, . . . , p + k − 1. It is assumed that the channels are fabricated with
a degree of precision that allows all channel widths at the same level, and consequently
all flows at the same level, to be assumed equal. The splitting of inlet flows in a stage is
simple because the flow is perfectly laminar. Each inlet flow is split into exactly two out-
let flows. Each outlet flow is a combination of exactly two inlet flows except for the two
extremal outlets, each of which carries the unmixed flow from its corresponding extremal
inlet. After the splitting, complete mixing [7, 11] occurs in the long and narrow serpentine
channels.

Dertinger et al. report that they “numerically simulated” their mixing model and
“found empirically” that for a mixing network of the above design with p inlets the
calculated profile agrees with a polynomial of degree p − 1. This is supported by their
laboratory results for p = 2 (concentration varies roughly linearly across the channel, as
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Figure 1: A microfluidic mixing network (after Jeon et al. [7]) with p = 3 inlets to the first
stage, k = 6 stages, and p + k = 9 outlets from the final stage.

evidenced in fluorescence micrographs) and p = 3 (concentration varies roughly parabol-
ically across the channel).

Each outlet of the final stage carries a homogeneous flow. Thus, the transverse pro-
file of the concentration (the x-direction in Figure 1) is a staircase function, which can be
viewed as the sampling at p + k uniformly spaced points of some target function. Now,
any p samples uniquely determine a polynomial of degree p − 1, but the network as de-
scribed has k more samples, and whereas one may wish to choose all p + k samples freely,
it appears that they cannot be independently chosen. Formally, we shall term Dertinger’s
conjecture the statement that all p + k samples conform to a unique polynomial of degree
p − 1. More precisely: for a given mixing network specified by parameters p and k, the
concentrations in the p + k network outlets, expressed as a function of the x coordinate at
p + k discrete points, are all described by a polynomial of degree p − 1.

It is not intuitively clear why the network design of Figure 1 should yield polynomial
profiles. Indeed, it turns out it is surprisingly difficult to prove that this is the case. The
primary contribution of this paper is a proof of Dertinger’s conjecture. Our proof is di-
vided into three parts. First, we describe the effect of a single stage of the microfluidic
mixing network using a transfer matrix and develop a closed-form solution for the ag-
gregate transfer matrix of multiple successive stages. Second, we derive a formula for
finite differences over the columns of the aggregate transfer matrix. Third, we prove that
a particular-order finite difference of that matrix is everywhere zero. As we detail below,
these three steps suffice to prove the conjecture.

Our proof shows that a mixing network of the Whitesides’ group’s design does indeed
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always result in a sampling of a polynomial transverse profile of concentration in the
output channel (or more precisely, at the very entrance of that channel before diffusion
has smeared it). The number of input channels p determines the degree of the polynomial,
and the number of outlets of the final stage, p + k, determines the granularity of sampling.

We also explicitly develop an expression for the resultant polynomial profile, and,
conversely, show how to compute the requisite input channel concentrations for a given
desired polynomial output profile.

2 Proof

2.1 Transfer matrix product

The transfer matrix for a flow-splitting stage with n inlets and m outlets describes how
the flows are split and mixed. If the concentrations of a particular solute in the n inlets
are grouped into a column vector cin of n values and concentrations in the m outlets are
grouped into a column vector cout of m values, then we have cout = Tm,ncin, where Tm,n is
the transfer matrix.

Each row of a transfer matrix gives the composition of a single outlet flow in terms of
the inlet flows. Conversely, each column of a transfer matrix describes how a single inlet
flow is distributed across the outlet flows.

Restating Dertinger’s analysis [2] in matrix form, the transfer matrix for a single stage
with p inlets and p + 1 outlets is a (p + 1)× p band matrix:

Mp+1,p =



























1 0 · · ·
1
p

p−1
p 0 · · ·

0 2
p

p−2
p 0 · · ·

...
. . . . . . . . . . . .

...

· · · 0
p−2

p
2
p 0

· · · 0
p−1

p
1
p

· · · 0 1



























That is, the elements of Mp+1,p are given by:

m
p+1,p
i,j =

1

p
·







i − 1 if j = i − 1
p − i + 1 if j = i
0 otherwise

(1)

The transfer matrix for k stages, where the first stage has p inlets and the final stage
has p + k outlets, is given by the product of k single-stage matrices:

Tp+k,p = Mp+k,p+k−1 · · ·Mp+1,p
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It is a (p + k) × p band matrix. The elements of Tp+k,p are given by:

t
p+k,p
i,j =

(p−1
j−1)(

k
i−j)

(p+k−1
i−1 )

Example: For the network of Figure 1, we have:

M4,3 =









1 0 0
1
3

2
3 0

0 2
3

1
3

0 0 1









M5,4 =













1 0 0 0
1
4

3
4 0 0

0 2
4

2
4 0

0 0 3
4

1
4

0 0 0 1













M6,5 =

















1 0 0 0 0
1
5

4
5 0 0 0

0 2
5

3
5 0 0

0 0 3
5

2
5 0

0 0 0 4
5

1
5

0 0 0 0 1

















M7,6 =





















1 0 0 0 0 0
1
6

5
6 0 0 0 0

0 2
6

4
6 0 0 0

0 0 3
6

3
6 0 0

0 0 0 4
6

2
6 0

0 0 0 0 5
6

1
6

0 0 0 0 0 1





















M8,7 =

























1 0 0 0 0 0 0
1
7

6
7 0 0 0 0 0

0 2
7

5
7 0 0 0 0

0 0 3
7

4
7 0 0 0

0 0 0 4
7

3
7 0 0

0 0 0 0 5
7

2
7 0

0 0 0 0 0 6
7

1
7

0 0 0 0 0 0 1

























M9,8 =





























1 0 0 0 0 0 0 0
1
8

7
8 0 0 0 0 0 0

0 2
8

6
8 0 0 0 0 0

0 0 3
8

5
8 0 0 0 0

0 0 0 4
8

4
8 0 0 0

0 0 0 0 5
8

3
8 0 0

0 0 0 0 0 6
8

2
8 0

0 0 0 0 0 0 7
8

1
8

0 0 0 0 0 0 0 1





























T9,3 = M9,8M8,7M7,6M6,5M5,4M4,3 =
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4
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Theorem 1. The elements of Tp+k,p are given by:

t
p+k,p
i,j =

(p−1
j−1)(

k
i−j)

(p+k−1
i−1 )

The reasoning that led us to this form is sketched below in Section 2.1.1.

Proof. We proceed by induction on k.

The base case, when k = 1, is trivially true because Tp+1,p = Mp+1,p. Thus for the base
case, we have:

t
p+1,p
i,j = m

p+1,p
i,j

After substituting Equation 1 for the right hand side, we obtain:

t
p+1,p
i,j =

1

p
·







i − 1 if j = i − 1
p − i + 1 if j = i
0 otherwise

=
(p−1

j−1)(
1

i−j)

( p
i−1)

Now assume by the inductive hypothesis that the theorem is correct and let 1 ≤ h ≤ p + k.

t
p+k+1,p
i,j = t

p+k+1,p+k
i,h t

p+k,p
h,j from the matrix multiplication

= m
p+k+1,p+k
i,h t

p+k,p
h,j

Since the only non-zero elements of m
p+k+1,p+k
i,h are mi,i−1 and mi,i:

t
p+k+1,p
i,j =

i − 1

p + k
t

p+k,p
i−1,j +

p + k − i + 1

p + k
t

p+k,p
i,j

=
i − 1

p + k
·
(p−1

j−1)(
k

i−1−j)

(p+k−1
i−2 )

+
p + k − i + 1

p + k
·
(p−1

j−1)(
k

i−j)

(p+k−1
i−1 )

=
(p−1

j−1)(
k+1
i−j )

(p+k
i−1)
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2.1.1 Intuition

Here we show how we arrived at the formula t
p+k,p
i,j =

(p−1
j−1)(

k
i−j)

(p+k−1
i−1 )

as a hypothesis for the

closed form of transfer matrix product.∗

If we write out the transfer matrix products in a very specific form, we can see a pattern
emerge. In the following, parentheses are used to emphasize the pattern.

T9,8 =
1

8



























1(8) 0 0 0 0 0 0 0
1(1) 1(7) 0 0 0 0 0 0

0 1(2) 1(6) 0 0 0 0 0
0 0 1(3) 1(5) 0 0 0 0
0 0 0 1(4) 1(4) 0 0 0
0 0 0 0 1(5) 1(3) 0 0
0 0 0 0 0 1(6) 1(2) 0
0 0 0 0 0 0 1(7) 1(1)
0 0 0 0 0 0 0 1(8)



























T9,7 =
1

8 · 7



























1(8 · 7) 0 0 0 0 0 0
2(1)(7) 1(7 · 6) 0 0 0 0 0
1(2 · 1) 2(2)(6) 1(6 · 5) 0 0 0 0

0 1(3 · 2) 2(3)(5) 1(5 · 4) 0 0 0
0 0 1(4 · 3) 2(4)(4) 1(4 · 3) 0 0
0 0 0 1(5 · 4) 2(5)(3) 1(3 · 2) 0
0 0 0 0 1(6 · 5) 2(6)(2) 1(2 · 1)
0 0 0 0 0 1(7 · 6) 2(7)(1)
0 0 0 0 0 0 1(8 · 7)



























T9,6 =
1

8 · 7 · 6



























1(8 · 7 · 6) 0 0 0 0 0
3(1)(7 · 6) 1(7 · 6 · 5) 0 0 0 0
3(2 · 1)(6) 3(2)(6 · 5) 1(6 · 5 · 4) 0 0 0
1(3 · 2 · 1) 3(3 · 2)(5) 3(3)(5 · 4) 1(5 · 4 · 3) 0 0

0 1(4 · 3 · 2) 3(4 · 3)(4) 3(4)(4 · 3) 1(4 · 3 · 2) 0
0 0 1(5 · 4 · 3) 3(5 · 4)(3) 3(5)(3 · 2) 1(3 · 2 · 1)
0 0 0 1(6 · 5 · 4) 3(6 · 5)(2) 3(6)(2 · 1)
0 0 0 0 1(7 · 6 · 5) 3(7 · 6)(1)
0 0 0 0 0 1(8 · 7 · 6)



























T9,5 =
1

8 · 7 · 6 · 5



























1(8 · 7 · 6 · 5) 0 0 0 0
4(1)(7 · 6 · 5) 1(7 · 6 · 5 · 4) 0 0 0
6(2 · 1)(6 · 5) 4(2)(6 · 5 · 4) 1(6 · 5 · 4 · 3) 0 0
4(3 · 2 · 1)(5) 6(3 · 2)(5 · 4) 4(3)(5 · 4 · 3) 1(5 · 4 · 3 · 2) 0
1(4 · 3 · 2 · 1) 4(4 · 3 · 2)(4) 6(4 · 3)(4 · 3) 4(4)(4 · 3 · 2) 1(4 · 3 · 2 · 1))

0 1(5 · 4 · 3 · 2) 4(5 · 4 · 3)(3) 6(5 · 4)(3 · 2) 4(5)(3 · 2 · 1)
0 0 1(6 · 5 · 4 · 3) 4(6 · 5 · 4)(2) 6(6 · 5)(2 · 1)
0 0 0 1(7 · 6 · 5 · 4) 4(7 · 6 · 5)(1)
0 0 0 0 1(8 · 7 · 6 · 5)



























T9,4 =
1

8 · 7 · 6 · 5 · 4



























1(8 · 7 · 6 · 5 · 4) 0 0 0
5(1)(7 · 6 · 5 · 4) 1(7 · 6 · 5 · 4 · 3) 0 0

10(2 · 1)(6 · 5 · 4) 5(2)(6 · 5 · 4 · 3) 1(6 · 5 · 4 · 3 · 2) 0
10(3 · 2 · 1)(5 · 4) 10(3 · 2)(5 · 4 · 3) 5(3)(5 · 4 · 3 · 2) 1(5 · 4 · 3 · 2 · 1)
5(4 · 3 · 2 · 1)(4) 10(4 · 3 · 2)(4 · 3) 10(4 · 3)(4 · 3 · 2) 5(4)(4 · 3 · 2 · 1)
1(5 · 4 · 3 · 2 · 1) 5(5 · 4 · 3 · 2)(3) 10(5 · 4 · 3)(3 · 2) 10(5 · 4)(3 · 2 · 1)

0 1(6 · 5 · 4 · 3 · 2) 5(6 · 5 · 4 · 3)(2) 10(6 · 5 · 4)(2 · 1)
0 0 1(7 · 6 · 5 · 4 · 3) 5(7 · 6 · 5 · 4)(1)
0 0 0 1(8 · 7 · 6 · 5 · 4)



























∗We thank the anonymous reviewers for suggesting we should include this explanation.
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T9,3 =
1

8 · 7 · 6 · 5 · 4 · 3



























1(8 · 7 · 6 · 5 · 4 · 3) 0 0
6(1)(7 · 6 · 5 · 4 · 3) 1(7 · 6 · 5 · 4 · 3 · 2) 0

15(2 · 1)(6 · 5 · 4 · 3) 6(2)(6 · 5 · 4 · 3 · 2) 1(6 · 5 · 4 · 3 · 2 · 1)
20(3 · 2 · 1)(5 · 4 · 3) 15(3 · 2)(5 · 4 · 3 · 2) 6(3)(5 · 4 · 3 · 2 · 1)
15(4 · 3 · 2 · 1)(4 · 3) 20(4 · 3 · 2)(4 · 3 · 2) 15(4 · 3)(4 · 3 · 2 · 1)
6(5 · 4 · 3 · 2 · 1)(3) 15(5 · 4 · 3 · 2)(3 · 2) 20(5 · 4 · 3)(3 · 2 · 1)
1(6 · 5 · 4 · 3 · 2 · 1) 6(6 · 5 · 4 · 3 · 2)(2) 15(6 · 5 · 4 · 3)(2 · 1)

0 1(7 · 6 · 5 · 4 · 3 · 2) 6(7 · 6 · 5 · 4 · 3)(1)
0 0 1(8 · 7 · 6 · 5 · 4 · 3)



























From these examples, we can guess that t
p+k,p
i,j can be written as a product of four

terms. The first term,
(p−1)!

(p+k−1)!
, is the coefficient of the matrix. The second term is ( k

i−j).

The intuition for why the second term is a binomial can be found in Pascal’s triangle.

Consider the set of matrices whose elements are equal to ( k
i−j). Each column is a cyclic

permutation of the previous column. Thus, adding two adjacent columns produces a new
column whose elements are:

(

k

i − j

)

+

(

k

i − (j + 1)

)

=

(

k + 1

i − j

)

because this action follows the same sequence as Pascal’s triangle. Since there are exactly
two non-zero elements in each column of Mp+1,p and they are adjacent, the products of
Tp+k,p+1Mp+1,p produce elements which can be expressed as the sum of the number of
non-zero terms in the pair of corresponding horizonally adjacent elements in Tp+k,p+1.
Since this sequence also follows the pattern in Pascal’s triangle, it can be described by a

binomial. The remaining terms can be described by: (i−1)!
(j−1)!

and
(p+k−i)!
(p−j)!

. Thus we have:

t
p+k,p
i,j =

(

(p − 1)!

(p + k − 1)!

) (

k

i − j

) (

(i − 1)!

(j − 1)!

) (

(p + k − i)!

(p − j)!

)

This formula can be rearranged as:

t
p+k,p
i,j =

(

(p − 1)!

(j − 1)!(p − 1 − (j − 1))!

) (

k

i − j

) (

(i − 1)!(p + k − 1 − (i − 1))!

(p + k − 1)!

)

=
(p−1

j−1)(
k

i−j)

(p+k−1
i−1 )

2.2 Finite difference matrix

Each column of the transfer matrix for k stages, Tp+k,p, describes the distribution of one
of the p inlet flows across the p + k outlet flows. We claim that the elements of each
column are samples of a polynomial and prove this by constructing a table of repeated
finite differences—the p-th order repeated finite differences of a (p − 1)-degree polyno-
mial vanish. Finite differences are usually defined for vectors; we extend the notation to
matrices, taking the finite differences column-wise.
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We denote the r-th repeated finite difference operator by ∆r. Of interest is the p-th
repeated finite difference of the transfer matrix for a k-stage mixing network, Tp+k,p, that

is, ∆pTp+k,p. The elements d
p+k,p
i,j of this k × p matrix are given by:

d
p+k,p
i,j =

p

∑
s=0

(−1)s
(p

s)(
p−1
j−1)(

k
s+i−j)

(p+k−1
s+i−1 )

(2)

We first introduce some notation.

Definition Let fi denote a sequence of values. We denote the finite forward difference
by ∆ fi = fi+1 − fi. We recursively define the m-th finite forward difference by ∆m fi =
∆m−1 fi+1 − ∆m−1 fi.

We employ the well known formula for the m-th finite forward difference:

∆m fi =
m

∑
s=0

(−1)s

(

m

s

)

fi+s (3)

In our case, m = p since we are interested in the p-th finite forward difference. Our
sequence of values is defined by the entries of a single column of Tp+k,p, so we have:

fi = t
p+k,p
i,j =

(p−1
j−1)(

k
i−j)

(p+k−1
i−1 )

(4)

Consequently, we obtain:

fi+s =
(p−1

j−1)(
k

s+i−j)

(p+k−1
s+i−1 )

(5)

Putting all of this together with (3) gives the desired result (2).
The menacing right-hand side of (2) sums to zero, which we now prove using hypergeo-
metric summation techniques [10, 9].
We first introduce the necessary concepts and notation [10].

Definition A hypergeometric series ∑s≥0 ts is one in which t0 = 1 and

ts+1

ts
=

(s + a1)(s + a2)...(s + am)

(s + b1)(s + b2)...(s + bn)(s + 1)
c (6)

where a’s and b’s are known as upper and lower parameters, respectively, and c is a
constant. Furthermore, we succinctly represent ∑s≥0 ts as

mFn =

[

a1 a2 ... am

b1 b2 ... bn

; c

]

. (7)
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Given a hypergeometric series ∑s≥0 ts, its mFn representation can often be derived with
the following algorithm [10]:

1. Shift the summation index s so that the sum begins at s = 0 and the first term is
non-zero. Extract the term corresponding to s = 0 as a common factor so that the
first term of the sum is now 1.

2. Obtain and simplify the ratio ts+1/ts so that is of the form illustrated in Equation 6.

3. Use the upper and lower parameters and the constant c to formulate mFn.

Having obtained a representation of ∑s≥0 ts, one can reference a list of hypergeomet-

ric identities known, colloquially, as a “hypergeometric database”†. By employing one
or more known identities, it is often possible to transform mFn into a more useful repre-
sentation. To apply this technique to our problem, we split the proof into two parts. The
first assumes that j ≤ i and the second assumes that i < j; in both cases we show that

d
p+k,p
i,j = 0.

Lemma 1. Let 2 ≤ p, 1 ≤ k, 1 ≤ i ≤ k, and 1 ≤ j ≤ p. Assume that j ≤ i. Then:

d
p+k,p
i,j =

p

∑
s=0

(−1)s
(p

s)(
p−1
j−1)(

k
s+i−j)

(p+k−1
s+i−1 )

= 0

Proof. Consider two consecutive terms of the sum, ts and ts+1. Then:

ts+1

ts
=

(s + i)(s − p)(s + i − j − k)

(s + i − p − k)(s + i − j + 1)(s + 1)
.

Therefore, d
p+k,p
i,j is a hypergeometric series. Since j ≤ i, the first term is non-zero. By the

algorithm summarized above, we extract the first term as a common factor to get:

d
p+k,p
i,j =

(p−1
j−1)(

k
i−j)

(p+k−1
i−1 )

[

i −p i − j − k

i − p − k i − j + 1
; 1

]

(8)

Saalschütz’s identity [9, 10] is commonly contained within a hypergeometric database. It
states that when c is a negative integer and d + e = a + b + c + 1, then:

3F2

[

a b c

d e
; 1

]

=
(d − a)|c|(d − b)|c|
d|c|(d − a − b)|c|

(9)

†There is really no single standard hypergeometric database. Rather, it is simply a collection of useful
identities that one may obtain from many different sources. The included identities may change from source
to source.
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where (a)n denotes the rising factorial‡. Note that c = i − j − k ≤ −1 and so |c| =
j + k − i ≥ 1. Therefore, this identity allows us to transform Equation 8 into:

( p
j−1)(

k
i−j)

(p+k−1
i−1 )

(−p − k)j+k−i(i − k)j+k−i

(i − p − k)j+k−i(−k)j+k−i
(10)

We can rewrite (10):

( p
j−1)(

k
i−j)

(p+k−1
i−1 )

(−p − k)(−p − k + 1)...(−p + j − i − 1) · (i − k)(i − k + 1)...(j − 1)

(i − p − k)(i − p − k + 1)...(−p + j − 1) · (−k)(−k + 1)...(j − i − 1)
(11)

The multiplicative terms of (−p − k)j+k−i, (i − p − k)j+k−i, and (−k)j+k−i start negative
and stay negative. However, exactly one of the multiplicative terms in the numerator,
(i − k)j+k−i = (i − k)(i − k + 1) · · · (i − k + j + k − i − 1), equals zero since the terms start
negative and end with a non-negative term. Therefore, (11) equals zero.

Lemma 2. Let 2 ≤ p, 1 ≤ k, 1 ≤ i ≤ k, and 1 ≤ j ≤ p. Assume that i < j. Then:

d
p+k,p
i,j =

p

∑
s=0

(−1)s
(p

s)(
p−1
j−1)(

k
s+i−j)

(p+k−1
s+i−1 )

= 0

Proof. This closely follows the proof for Lemma 1. However, now that i < j, the terms of

d
p+k,p
i,j will be zero until s = j − i. Therefore, in order to use the algorithm summarized

earlier, we must rewrite our sum. Certainly, we can start our sum with s = j − i, however,
this violates the constraint that our summation must start at index zero. We can rewrite
the sum and abide by the constraints of the algorithm to get:

d
p+k,p
i,j =

p+i−j

∑
s′=0

(−1)(s′+j−i)
( p

s′+j−i
)(p−1

j−1)(
k
s′)

(p+k−1
s′+j−1

)
(12)

As we should expect, this is still hypergeometric since:

ts′+1

ts′
=

(s′ + j)(s′ − k)(s′ + j − i − p)

(s′ − p − k + j)(s′ + j + 1 − i)(s′ + 1)
(13)

By the same method as before, we can express Equation 12 as:

( p
j−i)(

p−1
j−1)

(p+k−1
j−1 )

[

j −k j − i − p

−p − k + j j + 1 − i
; 1

]

(14)

‡Also known as the Pochhammer symbol. This is defined for non-negative n as: (a)n = (a)(a + 1)(a +
2)...(a + n − 1) if n ≥ 1, otherwise (a)0 = 1.
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Since c = j − i − p ≤ −1 and, therefore, |c| = p + i − j ≥ 1, we can again use Saalschütz’s
identity which gives us:

( p
j−i)(

p−1
j−1)

(p+k−1
j−1 )

(−p − k)p+i−j(j − p)p+i−j

(j − p − k)p+i−j(−p)p+i−j
(15)

Finally, note that (j − p)p+i−j = (j − p)(j − p + 1)...(i − 1) is the only rising factorial term
that contains a multiplicative term of zero; therefore, (15) equals zero.

Theorem 2. Let 2 ≤ p, 1 ≤ k, 1 ≤ i ≤ k, and 1 ≤ j ≤ p. Then:

d
p+k,p
i,j =

p

∑
s=0

(−1)s
(p

s)(
p−1
j−1)(

k
s+i−j)

(p+k−1
s+i−1 )

= 0

Proof. This follows directly from Lemma 1 and Lemma 2.

In the example shown previously, ∆0T9,3 = T9,3 and we have:

∆1T9,3 =

























−1
4

1
4 0

−3
14

5
28

1
28

−5
28

3
28

1
14

−1
7

1
28

3
28

−3
28

−1
28

1
7

−1
14

−3
28

5
28

−1
28

−5
28

3
14

0 −1
4

1
4

























∆2T9,3 =





















1
28

−1
14

1
28

1
28

−1
14

1
28

1
28

−1
14

1
28

1
28

−1
14

1
28

1
28

−1
14

1
28

1
28

−1
14

1
28

1
28

−1
14

1
28





















∆3T9,3 =















0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0















2.3 Conclusion of proof

A fundamental algebraic result is that if the p-th finite differences of a sequence are zero,
the sequence represents the (equispaced) values of a polynomial of degree p − 1 [13].
Applying this reasoning to the transfer matrix Tp+k,p column-wise, we conclude that each
of the p inlet flows generates a polynomial of degree p − 1 across the p + k outlet flows.
Finally, the concentration profile in the output channel is the sum of the concentrations
generated by all the inlet flows, and is therefore also a polynomial of degree p − 1.
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3 Concentration Profile

As a practical matter, it is important to know not just that the resulting profile is a poly-
nomial, but also what that polynomial is. Given the linearity of the system, the resulting
profile, as a function of the transverse coordinate x, is

r(x) =
p

∑
j=1

cin
j h

p+k,p
j (x),

where each h
p+k,p
j (x) is the “impulse response” to a unit concentration in input channel

j. The impulse response h
p+k,p
j (x), a polynomial of degree p − 1, can be reconstructed by

well-known techniques [13] from the column j of the transfer matrix Tp+k,p and its finite
differences, computed above:

h
p+k,p
j (x) =

p−1

∑
m=0

λm

m−1

∏
q=0

(x − αq)

where
αq = α0 + qw for 0 ≤ q ≤ p − 1

and

λm =
1

m!wm
∆mt

p+k,p
1,j

Here the αq are the points at which the polynomial is tabulated, and w is the distance
between each two. From the geometry of the problem, if the output channel width is W,
it is formed from p + k final mixing network outlets, so w = W

p+k . We can take evaluation

points to be in the middle of each mixing network outlet, so α0 = w
2 . Thus, for any given

mixing network structure, and for given channel widths and input concentrations, the
formula above explicitly gives the resultant concentration profile in the channel.

The impulse response polynomials for the running example are:

h9,3
1 (x) = 1 −

9

4
(x −

1

18
) +

81

56
(x −

1

18
)(x −

3

18
)

=
255

224
−

18

7
x +

81

56
x2

h9,3
2 (x) =

9

4
(x −

1

18
) −

81

28
(x −

1

18
)(x −

3

18
)

= −
17

112
+

81

28
x −

81

28
x2
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h9,3
3 (x) =

81

56
(x −

1

18
)(x −

3

18
)

=
3

224
−

9

28
x +

81

56
x2

Substituting x = 1
18 , 3

18 , ..., 17
18 into h9,3

j (x) produces the entries of the column j of T9,3.

A plot of the three impulse response polynomials is provided in Figure 2.
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Figure 2: The impulse response polynomials h9,3
1 (x), h9,3

2 (x), and h9,3
3 (x) and their stair-

case realizations.

4 The Inverse Problem

One interesting question is whether all polynomials of a given degree can be obtained
using the described network. Another important consideration is how to determine input
concentrations that will yield a desired concentration profile. More precisely, given a
target concentration profile as the (p + k) × 1 vector cout, we need a way of obtaining the
p × 1 vector cin.

Denote the top p × p submatrix of Tp+k,p by Sp,p. Recall that the entries of Tp+k,p are

given by the formula for t
p+k,p
i,j and, therefore, by construction, Sp,p is a lower triangular

matrix. Consequently, the columns of Sp,p constitute a basis spanning R
p. Any polyno-

mial of degree p − 1 can then be obtained by specifying an input vector that employs an
appropriate linear combination of these columns. The entries of the p × 1 output vector
will define the coefficients of the polynomial. Therefore, it is possible, in principle, to
obtain any polynomial of degree p − 1 as the output concentration profile.

Now assume that a specific concentration profile cout is desired. The entries of cout

define a sampling of p + k points from a polynomial of degree p − 1. However, p points
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are sufficient to define a unique polynomial of degree p − 1. Therefore, we may assume

that the desired concentration profile is specified by a p × 1 vector cout
p . The inverse S−1

p,p

is guaranteed to exist and is also lower triangular because Sp,p is lower triangular. The

required input concentrations are then obtained as cin = S−1
p,p cout

p .
In practice, however, concentrations are physical quantities restricted to a certain range—

they cannot be negative and they cannot be above saturation. Without loss of generality,
with a suitable choice of units, this range may be assumed to be [0, 1]. Therefore, one can
only obtain output concentration profiles that lie within the image of the unit hypercube
under the linear transform described by Sp,p, i.e., cout

p ∈ Sp,p([0, 1]p).

5 Discussion

All transverse concentration profiles obtained using microfluidic networks as in the White-
sides’ group’s design are described by polynomials of degree one less than the number of
input channels. For instance, with three input channels one can obtain profiles shaped as

parabolas and straight lines. The value p specifies the degree of the polynomials h
p+k,p
j (x),

and thus governs the flexibility of achievable shapes. The value k controls the granular-
ity of the fit of the cout, i.e., the staircase actual profile, to the ideal polynomial shape

h
p+k,p
j (x).

The assumption of complete mixing in each stage of the network is crucial to this
analysis; without it, discrete methods must give in to solving diffusion equations for the
network as a whole, which is not likely to give useful analytical results. Fortunately, com-
plete diffusive or chaotic mixing in each stage has been experimentally demonstrated. [7,
11]

It is interesting to consider what profiles might be obtained using more general mixing
networks. For instance, mixing network stages need not use consecutive integral num-
bers of channels. Or, the channels might be of uneven width within a stage. Or, with
current multi-layer fabrication techniques, the network topology might be more compli-
cated than the planar network of Figure 1. The question of optimality, i.e., of obtaining a
desired concentration profile using the simplest network, therefore remains open. While
polynomial profiles may already be quite useful in applications [6], periodic profiles are
of particular interest, and a better (more parsimonious) way of achieving them than the
parallel repetition of networks [2] is desirable, and also remains as a topic for future work.

6 Acknowledgments

We are grateful to C. Moore, L. Williams, V. Kalapala, and J. Farfel (University of New
Mexico) and M. N. Stojanovic (Columbia University) for helpful advice and encourage-
ment. This material is based upon work supported by the National Science Foundation
(grants CCR-0219587, CCR-0085792, EIA-0218262, EIA-0238027, and EIA-0324845), San-

14



dia National Laboratories, Microsoft Research, and Hewlett-Packard (gift 88425.1). Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the sponsors.

References

[1] CHOU, H.-P., UNGER, M. A., AND QUAKE, S. R. A microfabricated rotary pump. Biomedical Microde-
vices 3, 4 (2001), 323–330.

[2] DERTINGER, S. K. W., CHIU, D. T., JEON, N. L., AND WHITESIDES, G. M. Generation of gradients
having complex shapes using microfluidic networks. Analytical Chemistry 73 (2001), 1240–1246.

[3] DERTINGER, S. K. W., JIANG, X., LI, Z., MURTHY, V. N., AND WHITESIDES, G. M. Gradients of
substrate-bound laminin orient axonal specification of neurons. Proceedings of the National Academy of
Sciences of the USA (PNAS) 99, 20 (2002), 12542–12547.

[4] FARFEL, J., AND STEFANOVIC, D. Towards practical biomolecular computers using microfluidic de-
oxyribozyme logic gate networks. In DNA Computing: 11th International Meeting on DNA-Based Com-
puters (2005).

[5] HARDT, S., DRESE, K. S., HESSEL, V., AND SCHÖNFELD, F. Pasive micromixers for applications in
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