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Abstract We define a notion of context that represents invariant, stable-over-time be-

havior in an environment and we propose an algorithm for detecting context changes in

a stream of data. A context change is captured through model failure when a probabilis-

tic model, representing current behavior, is no longer able to fit the newly encountered

data. We specify stochastic models using a logic-based probabilistic modeling language

and use its learning mechanisms to identify context changes. We also discuss how

our algorithm can be incorporated into a failure-driven context-switching probabilistic

modeling framework and demonstrate several examples of its application.

Keywords Probabilistic reasoning · Context · Failure-driven online learning

1 Introduction to Context-Based Diagnostics

In real-time diagnosis, where observations are given as a data stream, reasoning often

has to be performed under strict time constraints with limited amounts of data available

at each time step. This diagnostic problem can be simplified by a contextualization

approach where the data stream is partitioned into stable regions (contexts) and a

separate model is built for each context. The complexity of a model representing stable

behavior under a context is often considerably reduced since most of the contextually

irrelevant information is left out during modeling. Reduced models often require less

training data. In this paper we define the notion of context capturing stable data

patterns and propose an algorithm for detecting when these contextual patterns change.

A context change is identified by model failure when the current model no longer fits
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the incoming data. Our representation is based on a first-order logic-based probabilistic

modeling language that combines the power of first-order logic with the ability to

handle uncertainty and noise.

Probabilistic modeling systems that dynamically represent changing data are im-

portant for carrying out complex diagnostic reasoning tasks. With the increasing use

of remote sensing technology continuously and in parallel collecting large sets of data,

it becomes more necessary to develop a methodology for processing noisy data in a

timely manner. Since modern sensing systems are often supported by very large sensor

networks, the standard approach of collecting and processing all data at a central lo-

cation is rarely efficient and it becomes necessary to shift aspects of the computation

to the sensors where the data are collected. This introduces additional constraints on

the running time and memory of the modeling system.

The most suitable systems in these cases, we believe, are those that are able to

evolve to handle rapidly changing pieces of information. There is a limitation, however,

that makes current probabilistic modeling unable to support this evolution: many ap-

proaches are static, namely, they assume that modeling is done only once and that the

entire dataset is available ahead of time. In this paper we define context and introduce

failure-driven context-switching probabilistic modeling that incorporates ideas from

developmental learning, including assimilation and accommodation (Piaget, 1983), to

model streams of data from dynamic environments.

In Section 2 we overview related research. In Section 3 we describe generalized

loopy logic (GLL), a first-order logic-based reasoning language we employ to specify

contextual models and to perform inferencing over them. In Section 4 we give a defi-

nition of context and describe the context-sensitive modeling problem underlying this

research. In Section 5 we propose an iterative algorithm for online detection of context

transitions. In Section 6 we show how our context detection algorithm can be incorpo-

rated as a component of a larger context-sensitive modeling system and provide several

examples. Finally, in Section 7 we give ideas for future research and conclude.

2 Related Research

In this section we discuss the three areas of related research that support our effort:

logic-based probabilistic reasoning, the notion of context, and failure-driven context

switching.

2.1 Logic-Based Probabilistic Reasoning

Logic-based representations for stochastic modeling have been proposed by a number of

researchers. Poole (1993) was one of the first to develop an approximate inference algo-

rithm for a Turing complete probabilistic logic language where uncertainty is expressed

through sets of mutually exclusive predicates annotated with probabilities. Haddawy

(1994) created a first-order probabilistic logic that he used to specify a static class

of (propositional) Bayesian networks (BNs) as a knowledge base. Haddawy proposed

a provably correct Bayesian network generation algorithm that was later adapted to

focus the knowledge base on the relevant information (Ngo and Haddawy, 1997; Ngo

et al., 1997).



3

Friedman et al. (1999) and, later, Getoor et al. (2001) proposed probabilistic rela-

tional models (PRMs) that differ from other approaches (Ngo and Haddawy, 1997; Ker-

sting and DeRaedt, 2000; Richardson and Domingos, 2006) by specifying a probability

model using classes of objects rather than simple attributes. For example, an explicitly

identified relational structure of PRMs (similar to relational DBs) supports probabilis-

tic dependencies between attributes of related objects. PRMs (Friedman et al., 1999;

Getoor et al., 2001) use maximum likelihood parameter estimation for parameter learn-

ing, while structure learning is done through a heuristic search of the best scores in a

hypothesis space.

Bayesian logic programs (BLPs) is another knowledge-based model construction ap-

poach proposed by Kersting and DeRaedt (2000). This framework generates Bayesian

networks specific for given queries using a set of first-order Prolog-like rules with un-

certainty parameters. Richardson and Domingos (2006) propose Markov logic networks

(MLNs), a probabilistic approach based on general first-order logic. This approach con-

verts logic sentences into a conjunctive normal form (CNF) which is then mapped onto

Markov random fields for inference.

In this paper, we choose a significantly different direction than the approach of

Richardson and Domingos (2006) using both domain-dependent and query-dependent

model construction. Even though mapping from the CNF sentences of MLNs to Markov

fields is straightforward, the practical advantages over Horn-clause-based representa-

tions are not obvious: we argue that Horn clauses provide expressive power by preserv-

ing the generality and in the same time supporting embedding various heuristics. We

use a stochastic language, called Generalized Loopy Logic (GLL), described in detail

in the next section, that combines Horn clauses with BNs similarly to BLPs (Kersting

and DeRaedt, 2000). Other stochastic logic-based methods can be seen as examples

of knowledge-intensive modeling, however these are static, assuming all the data are

given at the start of problem solving, and thus cannot be applied efficiently to dynamic

problems that often have strict time and memory constraints.

2.2 The Specification of Context

One of the first attempts to explicitly use contextual information in probabilistic model-

ing was done in (Haddawy, 1994; Ngo and Haddawy, 1997). Their logic-based stochastic

modeling approach utilizes explicit contextual information as a way to reduce the size

of a model. Sanscartier and Neufeld (2007) propose another approach that uses con-

text to refine a probabilistic model. They use context-specific independence to make a

causal Bayesian network smaller and more accurate.

Exploiting the notion of context defined through conditional independencies to im-

prove the performance of a model was investigated earlier by Turney (1996). In the

area of supervised machine learning, Turney studies how features from a multidimen-

sional feature space can be partitioned into different categories using context. Silver

and Poirier (2007) applied context to adapt multiple task learning neural networks for

learning. Silver and Poirier replaced multiple outputs of a neural network with a single

one while adding a set of inputs that identify an example context.

There are a number of attempts to formalize the notion of context in order to carry

out proofs of correctness for operations of context-aware systems where the goal is

to make the software aware of the environment and adaptable to changing situations.

Akman and Surav (1996) point out that a causal link between two events is only
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relevant given a certain background and, thus, only in certain contexts. Akman and

Surav (1996) discuss two directions for research on context formalization, one based on

a logic approach proposed by McCarthy (1993), and the other based on situation theory

proposed by Barwise (1986). McCarthy and Buvac (1998) further examined formalizing

contexts as first class objects. The authors argue that using contexts as formal objects

allows for generalization of axiomatizations in limited contexts to overcome the original

limitations. Barlatier and Dapoigny (2007) propose the use of a logical framework based

on intuitionism and type theory supported by ontological knowledge representation in

order to define context. They argue that there is a strong connection between situations

and contexts that define relevant information depending on the user’s task.

Although our research is motivated by (Haddawy, 1994; Ngo and Haddawy, 1997),

their contextual mechanism is too simple and discrete: it cannot reflect all the com-

plexity of internal structures of data. In this paper, we provide a formal specification

of context as truth assignments to a specific set of variables that we know about.

The choice of variables is similar to the approach of Pearl (2000) and Halpern and

Pearl (2001) that uses exogenous variables (that are not in the model) to identify a

background for the possible causes of an event.

2.3 Detection of Failure and Context Switching

The concept of social context states that in order to interpret a text, the social envi-

ronment must be taken into account as it influences the author of the discourse. As

opposed to objectivistic social context, van Dijk (2006) argues that the relevant fea-

tures of communicative situations influence understanding only through participants’

subjective views of the situations. These views are represented and constantly updated

in mental models of the speakers, so-called context models.

In psychology, a mental model is an interpretation of how something works in a sur-

rounding environment that plays an important role in cognition and decision-making.

Luquet, who first proposed this idea in 1927, argues that internal models are con-

structed by problem solving children (Jolley, 2004). Luquet’s view strongly influenced

Piaget, who proposed a developmental theory of learning (Piaget, 1983). When an

unfamiliar situation is presented to a child, she tries to fit it into her current under-

standing of the world. When this fails, the normal child is able to form new cognitive

structures to address the situation. The theory recognizes two forms of learning: as-

similation and accommodation (Piaget, 1983). Piaget suggests that new information

from the environment creates a state of disequilibrium in the mind of an individual.

There are two typical responses. First, the new thoughts are incorporated into an ex-

isting mental schema and there is a return to the state of equilibrium (assimilation).

However, if the new thoughts are inconsistent with the existing schema, the schema

must be changed (accommodation).

Gopnik et al. (2004) argue that knowing about causal structure permits humans to

make wide-ranging predictions about future events. Gopnik et al. (2004) suggest that

causal maps, which can be deduced from correlation patterns among events, can be

used to represent causal knowledge and causal learning. It is unlikely that children store

large amounts of data in memory and then apply a learning procedure to the data.

More likely, they argue, children use small samples of data to form hypotheses. They

then forget the data and revise their hypotheses as suggested by new data. Moreover,

often causal regularities learned from one context constrain causal regularities that
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are learned in other contexts, supporting learning by analogy. Gopnik et al. (2004)

suggest that a model based on Bayesian networks that uses the principles of dynamic

programming can support research on learning in children.

Granott et al. (2002) give another psychological perspective on human learning. The

key notion of their work is bridging, which is, as in dynamical systems, an attractor that

draws development of a system toward more advanced and more stable levels. Bridging

mechanisms are carried out by partially defined shells directing the development of new

knowledge by providing a perspective for processing new experiences. Granott et al.

(2002) argue that bridging is a transition mechanism that people use while learning.

The failure-driven approach presented in this paper is motivated by many of these

concepts from developmental learning. In the next section we introduce generalized

loopy logic, our logic-based stochastic modeling language. In Section 4 we define the

notion of context and describe context-sensitive modeling.

3 Generalized Loopy Logic

Generalized Loopy Logic (GLL) is a logic-based probabilistic reasoning language. GLL

is based on earlier work by Poole (1993), Haddawy (1994), Getoor et al. (2001), and

Kersting and DeRaedt (2000). GLL is an extension of the basic language developed

by Pless et al. (2006). GLL is a logic-based, first-order, Turing-complete stochastic

modeling language that improves expressive and reasoning power by combining deter-

ministic and probabilistic approaches. Note that the expressive power of traditional

Bayesian networks is constrained to finite domains as in the propositional logic. GLL

handles this representational shortcoming through variables that can capture general

classes of events and relationships. As a first-order language (Pless et al., 2006) it

combines Horn-clause logic with Bayesian networks in order to represent potentially

infinite classes of stochastic relationships including Markov processes. Knowledge is

represented as a set of rules describing the conditional dependences among random

variables with stochastic distributions attached to facts and rules.

Specifically, a sentence in GLL is of the form

head|body1, . . ., bodyk = [p1, . . ., pl],

where bodyi, 1 ≤ i ≤ k are the variables of the system on which a variable head is

conditionally dependent. Note that the size of the conditional probability table (l) is

equal to arity(head) ×
Qk

i=1 arity(bodyi), where arity(x) is the number of states of a

variable x. The probabilities are indexed over the states of head and bodyi, 1 ≤ i ≤ k.

For instance, if x is a predicate defined over {low, avg, hi} and y is a boolean predicate,

then the sentence

x|y = [[0.5, 0.1, 0.4],[0.3, 0.6, 0.1]]

defines Pr(x|y).

In GLL, terms can be full predicates with structure and contain Prolog style vari-

ables. For instance, the sentence b(N) = [0.5,0.5] says that b is universally equally

probable to take on either of two values. The domain of terms is specified using set

notation: b <- {hi, low} indicates that b is either hi or low.

The following GLL program defines a hidden Markov model (HMM) with four

observable time steps:
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state <- {true, false}

emit <- {hi, low}

state(N+1)|state(N)=[[0.9,0.1],[0.01,0.99]]

emit(N)|state(N)=Emit

emit(0) = hi

emit(1) = hi

emit(2) = low

emit(3) = low

In this example, there are two states, true and false. The system can start with either

one and at each time step either stay in the same state or transition to the other state.

Note that if the system is in the state true, then there is a 90% chance that the system

will stay in that state at the next time step; however, if the system is in the state

false, there is only a 1% chance the system will stay in that state. In both states

the system can output either hi or low. Note that the probability of these events is

a learnable distribution (Emit). Note also how the recursive rule of GLL captures the

Markov process between states of the HMM.

The learnable distribution Emit indicates that the conditional probability governing

the system’s output is to be fitted. The data for learning is obtained from GLL rules

and facts (observations). The last four sentences in the program presented earlier are

the GLL facts. Note that in each fact the variable N is bound. Generalized Loopy Logic

uses the message-passing inference algorithm known as loopy belief propagation (Pearl,

1988), hence the name “Loopy”. As opposed to its predecessor (Pless et al., 2006), GLL

can also use other iterative inferencing schemes including generalized belief propagation

and Markov chain Monte-Carlo.

To perform inference GLL converts (unrolls) its first-order program to a Markov

randon field (Luger, 2009). Mapping into a Markov field handles the product distribu-

tions arising from goals that unify with multiple heads: if more than one rule unifies

with the rule head, then the variable node is connected to more than one cluster node,

which results in a product distribution. One feature of GLL is its support of dynamic

contexts where models can be specified by using recursion and by controlling the depth

of the unfolding of recursive rules when mapping into a Markov random field. Figure 1

demonstrates how the GLL program specifying an HMM presented earlier is converted

into a bipartite Markov field. Here each ground instance of a GLL term corresponds

to a variable node in the Markov field (ellipse), and each GLL rule with a probability

distribution attached to it corresponds to a cluster node (rectangle).

During loopy belief propagation, nodes of a Markov field exchange messages that

are initially set randomly. On update, a message from a cluster node C to a variable

node V (a message E1 in figure 1) is the product of the conditional probability table

(called a local potential) at C and all the messages to C except the message from

V . In the other direction, the message from a variable node V to a cluster node C

(a message E2 in figure 1) is the normalized product of all the messages to V except

the message from C. This process, iterating until convergence, has been found to be

effective for stochastic inference (Murphy et al., 1999) and when applied to an acyclic

graph is proved to converge to an optimal solution (Pearl, 1988).

A major feature of GLL is its natural support for parameter learning by the as-

signment of learnable distributions to rules of a GLL program. These parameters are

estimated using a variant of the Expectation Maximization (EM) algorithm (Demp-

ster et al., 1977) implemented through the message passing of loopy belief propagation

algorithm. EM estimates learning parameters iteratively, alternating between an ex-
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Fig. 1 A Markov random field produced by unrolling the GLL program defining a hidden
Markov model.

pectation (E) step and a maximization (M) step. In the E step, the distribution for

the hidden variables is based on their known value and the current estimate of the

parameters is found. In the M step, these parameters are re-estimated. Assuming the

distribution estimated in the E step is correct, each EM iteration increases the proba-

bility of reaching maximum likelihood (Dempster et al., 1977).

More specifically, GLL utilizes the EM algorithm by adding a special kind of node,

a learnable node, to a Markov random field (the triangular node in figure 1). Each

instance of the cluster node that is to be fitted is connected to the learnable node.

By inferencing over the cluster and variable nodes of a Markov field (using loopy

belief propagation) GLL computes the messages for the learnable nodes (a message

M in figure 1). Applying the propagation algorithm until convergence is equivalent to

the E step of the EM algorithm, since it produces an approximation of the expected

values. The averaging over all the cluster nodes connected to the learnable node yields a

maximum likelihood estimate of the parameters in a learnable node, which is equivalent

to the M step of EM. Therefore, inferencing over the variable and cluster nodes followed

by updating the learnable nodes and iterating this process is equivalent to the full EM

algorithm.

4 Formal Specifications for Context-Sensitive Modeling

We next introduce the general problem of learning with context-sensitive probabilistic

models by first introducing a formal notation. Italic uppercase letters (X, Y ,Z) de-

note variables, and italic lowercase letters (x, y, z) represent their instantiated values.

Similarly, the bold uppercase letters (X, Y, Z) represent sets of variables, and bold

lowercase letters (x, y, z) denote their instantiations.

The probability distribution of a set of variables X is denoted with Pr(X) whose

elements are Pr(x). For example, using this notation we can write
P

x
Pr(x) = 1.

Similarly, Pr(X | Y) denotes the conditional probability of X given Y, which is a table

of probability distributions indexed by the instantiations of Y: every Pr(X | y) is a

probability distribution over X, each element of which is depicted by Pr(x | y).
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Selected features of knowledge and beliefs about a domain are encoded in a model,

which is a partial view of total information about the domain. We use probabilistic

graphical models (Pearl, 1988) as suitable representations for a model.

Definition 1 Given a (universal) set of variables V, a model M imposed on U ⊆ V is

a graphical model defined on U. Similar to Halpern and Pearl (2001), the variables in

U are called endogenous variables, given M, and denoted as En(M). All the variables

that are not in M are called exogenous variables and denoted as Ex(M). Formally,

we have Ex(M) = V − En(M). Recall that M has a structural component, a graph

GM, and a parametric component, a set of probability distributions ΘM.

Definition 2 A conjunction of truth assignments to some exogenous variables of a

model M is called a context C of M: C ≡ V1 ∧ . . .∧ Vn, where {V1, . . . , Vn} ⊆ Ex(M).

Note that to make the definitions simpler, we assumed that all variables of our models

are boolean; this can be relaxed by using general variable assertions instead of truth

assignments.

The idea of a context is to capture the stable invariant behavior of the specified set

of exogenous variables of a model: assuming the model fits a data set well, its context

logically holds under the available data.

We next define a function estimation problem in an environment of changing situ-

ations. This can be seen as a multidimensional optimization problem: find an optimal

collection of probabilistic models that represent a system in particular situations (con-

texts) accurately and efficiently. In general, the collection of contexts may not be known

a priori, therefore we have to find an optimal set of contexts improving function esti-

mation. Two properties of the set of contexts are accounted for during optimization:

(a) context stability and (b) a rate of change of contexts. Consequently, we search for

a set of contexts by minimizing the error representing how well each context from the

set agrees with associated data and how many context changes are present. The search

space is a collection of all possible sets of contexts.

Let D represent a set of observed data. Naturally we assume that the data set

is ordered: D = {d1,d2, . . . ,dm}, where each di is a vector of observations recorded

at the ith time step (i ≤ m) for all observable variables of the system. Given recent

observations di for some 1 ≤ i < m, we refer to the successive data vector using the

following notation: s(di) = di+1.

Consider a set of contexts H = {C1, ..., Ck} from the search space. Each context

from H represents invariant behavior in a possibly non-continuous subset of data.

Therefore, H corresponds to some decomposition of a data stream. There are many

possible decompositions of D into k mutually exclusive subsets, which we denote as

ρ(D). Consider an element ρi ∈ ρ(D) that decomposes D into D1, . . . ,Dk, where each

Dj corresponds to observations of the stable behavior described by a context Cj . Note

that each Di consists of data vectors that may not form a continuous time range of

observations. We define two error scores associated with data decomposition ρi:

error′j(ρi) = Prx∈Dj
[Cj(x) = false],

error′′j (ρi) = Prx∈Dj
[Cj(s(x)) = false | Cj(x) = true],

where Cj(x) is an instantiation of context Cj on a data vector x.1 Informally, score

error′j(ρi) indicates the error rate we expect when applying Cj to instances drawn

1 Prx∈Dj
indicates that the probability is taken over the instance distribution Dj .
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from the probability distribution Dj . It captures how much context Cj disagrees with

data set Dj from data decomposition ρi. Given a successful application of Cj to an

instance, score error′′j (ρi) indicates the expected error rate when applying Cj to the

next instance. Note that when error′j(ρi) is minimal, error′′j (ρi) denotes the amount

of instability in the system’s behavior described by context Cj and sampled with data

Dj . By summing these two scores across ρi we obtain an error score for the data

decomposition given the context partition:

error(ρi) =
k

X

j=1

[error′j(ρi) + error
′′
j (ρi)].

Minimizing error(ρi) across all data decompositions yields a score ErrorD(H) for

a context set H given a data stream D:

ErrorD(H) = min
ρi∈ρ(D)

[error(ρi)].

Note that the problem of estimating the error score of H is essentially the problem of

clustering the data according to some stable contiguous patterns.

By minimizing ErrorD(H) over all possible sets of contexts we find an optimal

collection of contexts that represents the stable invariant behavior (with the smallest

number of context changes) of the observed system: minH[ErrorD(H)].

Recall that each element of H (a context C) corresponds to some model M: there is

a connection between M and C. We look at context C as a condition that constrains the

set of all possible models (structurally and parametrically). In other words, C constrains

ΘM, the parameters of M, and GM, the structure of M.

We next search for a context partition that most accurately represents the data.

Ideally, these models should be as small as possible to reduce the cost of inference over

them. Therefore, while minimizing ErrorD(H), we want to maximize the probability

for each C ∈ H:

max
C∈P

[Pr(Gc | D)] ∝ max
C∈P

[Pr(Gc)Pr(D | Gc)].

The prior probability distribution Pr(Gc) reflects our belief before seeing any data that

the structure Gc imposed by the context C is correct. Simultaneously, we minimize the

structural complexity of a model to ensure that the structure of models is parsimonious:

min
C∈P

[size(Gc) + max
V ∈Gc

[degree(V )]].

Here size(Gc) stands for a number of edges in Gc, and degree(V ) denotes the number

of other vertices connected to V by edges (minimizing the fan-in/fan-out problem).

If there is no dependency between contexts and models (if contexts do not constrain

corresponding models), then the entire optimization problem described above can be

reduced to a traditional structure search and parameter estimation for a single model.

In the next section we analyze the model failure phenomenon and introduce algo-

rithms for context transitions.
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5 The Detection of Context Transitions

Since contexts correspond to invariant behavior of a system over periods of time, mod-

eling context yeilds a very focused representation of a specific operational mode of the

system. It is important to note that context change is closely related to model failure,

i.e., to a new situation when a model no longer fits recent data. A model corresponding

to an active context is less robust to context changes than the full model of the sys-

tem. During a context transition event, when the observed data undergoes a significant

qualititative or quantitative change, the current model fails. Thus, we consider model

failure to be an indication of a context transition event.

In this section we demonstrate that the failure-driven approach is suitable for

switching between contextual models. If the data change is not severe, a modifica-

tion of the parameters of the current model can account for the new data. Otherwise

we must remove the present model as it is no longer relevant, store it, and then assume

that we are operating in a new context. Thus, contextualization and failure detection

are used to perform context-sensitive probabilistic modeling.

5.1 Failure-driven Model Revision

Our approach to the probabilistic modeling of changing contexts is based on ideas

from developmental human learning, see section 2.3 for more details. We argue that

probabilistic inference systems will benefit greatly by emulating these mechanisms.

Our failure-driven context-switching approach addresses two related and common

problems in machine learning: the problems of over-fitting and over-generalization.

When single models are learned on a data set that is not diverse, models tend to

become too specific and are said to over-fit and unable to generalize and account for

slightly varying datasets. The converse problem of over-generalization is when a very

general model is learned from well distributed and possibly sparse data in the learning

stage and, therefore, performs badly on all types of data in the operational stage. When

used in probabilistic systems, the mechanisms of assimilation and accommodation along

with the notion of context and context change, helps minimize these problems.

Context switching mechanisms that swap the models during context-sensitive mod-

eling employ these two forms of learning within a failure-driven approach. When new

data are available, we check whether the current model fits the dataset well. If it does,

the data are incorporated into the model by updating its probability distribution. Oth-

erwise, if the model fails to fit the data, we save the current model and choose a new

version that accounts for the new data. Here learning by assimilation happens when

the model is consistent with new data and it is fine-tuned by assimilating the dataset.

Learning by accommodation is when the model is inconsistent with new data, and, in

order to account for the dataset, we have to reorganize our model.

5.2 An Example of Model-Failure and Context-Revision

Identification of model failure is crucial in context sensitive modeling. Assuming a

continuous stream of data, the notion of failure represents the situation when new data

are inconsistent with the current model. Essentially, model failure can be identified by

estimating the likelihood of the data given the current model. When this likelihood
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Fig. 2 (a) The diagram representing a simplified pump system. (b) The time series of the
pressure generated by the pump (OutPr) and its smoothed and digitized versions.

is below a certain threshold, then the model fails. Even though the models of the

probabilistic system described in this paper are specified by the first-order stochastic

language – Generalized Loopy Logic (Pless et al., 2006), the notion of failure can

be extended to any probabilistic graphical model specifying a full joint probability

distribution (see section 4 definition 1).

To illustrate our failure detection method we consider temporal data obtained from

multiple sensors installed on the mechanical pump system schematically depicted in

figure 2(a). A water pump draws liquid from a reservoir through a pipe (pipe1) and

ejects the liquid into another pipe (pipe4). The pump is driven by an electrical motor.

The liquid, containing contaminants is cleared by a filter and then deposited back into

the reservoir. The flow control modulates the liquid flow.

In order to diagnose the system, we install a number of sensors that detect current

pressure, flow, the emission state of the liquid at different locations, as well as indicating

parameters such as the rotation rate of the pump and vibration near the motor. One

important task is to detect when the filter gets clogged leading to possible cavitation in

the system. In order to perform such diagnostic tasks, the knowledge about the system

is transformed into a stochastic model using the GLL tool.

The sensory data consists of a time series of three parameters: pressure coming

into the pump (InPr), pressure generated by the pump (OutPr), and voltage at the

motor driving the pump (Volt). In order to estimate the behavior of the pump system

depending on how clogged the filter is, we control the valve regulating the amount of

fluid coming into the pump (as opposed to literally contaminating the system). During

the experiment the pump system starts normal operation with the valve fully open.

As the time passes a certain point (around the 53d time step), we partially close the

valve to limit the flow of the fluid coming into the pump. A series of 100 data steps is

recorded during the experiment. Each signal is then smoothed using a sliding window

and digitized. Figure 2(b) illustrates the time series of one of the paprameters (OutPr)

of the pump system.

We selected 35 time steps to train a stochastic model, each time slice of which

contains 2 hidden variables (resistance at the pump, Resist, and torque of the motor,

Torque) and 3 observable variables (InPr, OutPr, Volt). To select an appropriate size

of training data we performed a leave-one-out cross-validation for each model trained

on the first K time steps of the training data (here K takes values between 5 and 45

since we know that the first 45 time steps came from the same stationary distribu-
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Fig. 3 A leave-one-out cross-validation analysis across models trained on data sets with grad-
ually increasing size. (a) Dependance between a model prediction error and the size of the
training data. The error is averaged across the range of predicted parameters as well as across
iterations of the cross-validation. Notice that the error decreases as the window gets larger
than 15, and the error is minimal at around 35. (b) The number of iterations a model takes on
average to converge versus the size of training data. Notice the amount of iterations stabilized
to a minimum when the size of the training data is greater than 35.

tion). Figure 3(a) shows that the average prediction error decreases as the size of the

training dataset increases and becomes minimal at around 35. Recall that GLL uses

the EM learning algorithm (Dempster et al., 1977) implemented using loopy belief

propagation (Pearl, 1988) to learn model parameters. Figure 3(b) demonstrates the

dependency of the iterations of the learning algorithm on the training dataset. The

fact that learning the model from the training dataset with 35 time steps requires a

considerably smaller number of iterations is another indicator of the appropriate size

of the training dataset.

5.3 Detecting model failure

The problem of identifying model failure is a special case of a statistical problem of

detecting the distribution change from a stream of observations (Pollak, 1985). There

are a number of approaches to this problem (Dayanik et al., 2007; Song et al., 2007;

Steyvers and Brown, 2006). In this paper we provide a method that naturally fits

into the iterative framework of our context-sensitive probabilistic modeling. Table 1

outlines our failure detection algorithm. The idea of the algorithm is to monitor a

1. model M ← train model(training data)
2. window params ← find window(training data, model M)
3. threshold ← find threshold(training data, model M, window params)
4. current data ← slide window(window params)
5. for each (trigger params of model M)

5.1. current param ← trigger param
5.2. new param ← learn param(model M, current data)
5.3. difference ← frobenius norm(current param, new param)
5.4. if (difference > threshold) then failure ← true

6. if (not failure) then go to 4

Table 1 An algorithmic description of failure detection.
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selected subset of model parameters (triggers) and signal about model failure when

the parameters of the previously trained model are considerably different than these

learned with new data. Note that the function learn param (in step 5.2) estimates a

single parameter given new data and the model, with the rest of the parameters learned

from the training data. This is different from the function train model (in step 1) that

estimates all model parameters given data.

In Table 1 failure detection, initialized in steps 1 through 3, is an ongoing iterative

process: it checks for failure in the specified data window and, if no break-down is

detected, slides the data window further along the data stream (steps 4 and 5). Note

that not only is the detection algorithm in Table 1 controlled by the size of the data

window and the size of the window shift, but it is also regulated by the threshold

indicating model failure.

In general the problem of finding the appropriate window and threshold parame-

ters can be seen as a two-dimensional error minimization problem. Consider error1 =

Pr[FD(M, Θ, Dnofail) = true], a Type I error representing the rate with which our

failure detector FD signals about the failure of model M given window/threshold pa-

rameters Θ on the data (Dnofail) from the same stationary distribution (thus no failure

is expected). error2 = Pr[FD(M, Θ, Dfail) = false] is a Type II error that shows how

frequently FD misses model failure. Ultimately, we would like to find parameters Θ

that would minimize error1 and error2.

Minimizing error1 is relatively easy: we partition the training dataset into two sub-

sets, use the first subset to train the model, and employ the second subset to determine

window parameters such that the failure detector finds no failure on the second subset.

Note that the minimization of error1 returns a subset of possible window/threshold pa-

rameters. Given the third subset of the training data on which the detector is expected

to signal failure, we can perform a similar minimization routine to further constrain

the parameter set.

Figure 4(a) shows the performance of the failure detector for a model (trained

on data from the pump system) parameter corresponding to resistance of the pump

(Resist). The detection algorithm slides a window of 17 data points through the data

stream starting from the 35th time step (since we used the first 35 data points of the

stream to train the model). The data stream has a real break-down at around time step

54, when a valve of the pump system is closed causing less flow coming into the pump

and increasing pump resistance. Figure 4(a) shows that choosing an overlap between

consecutive windows affects the choice of the threshold: selecting 0.3 as a threshold

in case of overlap 12 accurately captures the break-down, however the same threshold

does not work for overlap 10.

Figure 4(b) shows how the failure detector performance changes depending on the

sliding window size, assuming the consequtive windows overlap by 12 points. It can be

seen that the smaller the window, the more prone to data noise the failure detection

becomes. On the other hand, larger windows produce smoother, more stretched out

results.

We see from figures 4(a) and 4(b) that larger windows produce a failure detection

lag, when model failure is identified long after the break-down has occured. Addition-

ally, larger windows demand more computational power. On the other hand, smaller

windows result in a higher likelihood of a false positive error.
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Fig. 4 Performance of the failure detector for a single model parameter (Resist) across (a)
different window overlaps given a window of size 17, and (b) different window sizes given a
window overlap of 12 data points. The X axis corresponds to time, the Y axis corresponds to
the size of (a) the window overlap and (b) the sliding window, and the Z axis is the difference
between the expected and the predicted values of the model parameter (Resist in this case)
measured by the Frobenius norm (see footnote 2).

5.4 Constraining window/threshold parameters using variance

In general, without an appropriate data set, minimizing Type II error (error2) is a

challenging problem. The problem becomes even more difficult if the difference between

distributions, transition between which creates model failure, is small. A possible way of

selecting the window/threshold parameters without a training set for failure detection

is to employ data variance.

Intuitively, we would like to know the size of a representative subset of the training

data, a data window, variance of which is close to the true variance of the training

data. A steep change in variance of such a data window would be a good indicator that

the data came from a new distribution. Consider a window with size K and draw N

subsets of data by randomly sliding the window along the training dataset. Computing

an average variance over N data subsets for a large enough N produces an estimate of

our confidence that a window of K elements drawn from the training dataset captures

the underlying dependencies observed in the entire training dataset. Figure 5(a) shows

the average variance of data windows with increasing size randomly selected from the

training dataset. Figure 5(b) demonstrates that at some moment error bars of the

variance monotonically decrease as the window size increases: the more data we take,

the less changes in the data variation we get. Thus, we can set the window size to 12

or larger (25 is the optimal). Automatically, this can be done by selecting the window

as soon as the error bars drop below a certain level, as the window size increases.

Once the window size is set, the failure threshold can be found by computing an

average difference (Frobenius norm2) between the current value of a model parameter

and its estimate computed from the window of the training data. Essentially, we can

execute the failure detection algorithm using the window of training data and employ

the computed difference as a failure threshold.

2 A Frobenius norm of a matrix A = (aij)kl is defined as ‖A‖F =
Pk

i=1

Pl
j=1
|aij |

2.
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Fig. 5 Average variance (a) and the corresponding error bars (b) of subsets of the training data
of the pump model plotted for various subset size (between 2 and 25). Two plots are shown for
random variables Volt (voltage at the motor of the pump system) and OutPr (pressure coming
out of the pump). We would like to select a window big enough for the changes in variance to
be below the level depicted in (b) by the horizontal lines for each variable.

5.5 Application of failure detection

Figure 6 illustrates the performance of the failure detector on the sensory data for the

pump model (plotted for three model parameters: motor voltage (Volt), pump resis-

tance (Resist), and motor torque (Torque). Note that in this example each parameter

has its own failure threshold, which brings more flexibility into the detection process,

since some parameters change less gradually (such as Volt), while other deviate con-

siderably (like Torque). The thresholds were automatically identified using the method

described above.

Recall that the real model break-down happens around time step 54, when the valve

of the pump system is partially closed. By monitoring the parameter Resist the failure

can be identified at step 59 after 4 window shifts, where as by monitoring parameters

Volt and Torque the failure is idetified much later, at about step 69.
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Fig. 6 Model failure detection for the pump model. Each horizonatal line corresponds to
a failure threshold: once a corresponding distribution change goes above this threshold, the
failure detector signals a model break-down. The grid corresponds to window shifts.
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(a) (b)

Fig. 7 (a) The flow chart of the failure-driven architecture. (b) A diagram of the relationship
between domain knowledge, an ensemble of contextual models, and graphical models in a
context-sensitive probabilistic modeling system.

When the model is large, failure detection in general can be very expensive. We

specify a small subset of trigger parameters, whose changes are seen as most important

by the domain experts and indicative of model failure. Instead of checking for failure

in the entire model, only this small set of trigger parameters is monitored. Full-fledged

failure detection is engaged once a change in a trigger parameter is discovered. Since

different parameters give different detecting performance, it might be useful to employ

a combination of these. Two-layerd failure detection can be used, for example, where

a parameter that is sensitive to data noise but useful in detecting early failure (Resist

in figure 6) can trigger an alert mode, in which case a more stable parameter (such as

Voltage) is analyzed to confirm the detected model break-down.

In the next section we show how our method for the detection of context changes

supports a framework for context-sensitive probabilistic modeling.

6 Applications to Dynamical Long-term Modeling

Probabilistic modeling systems that dynamically represent frequently changing data

are important for monitoring complex tasks. Dynamical systems employing distributed

sensing technology also introduce additional constraints on the running time and mem-

ory of the modeling system. The most suitable systems in these cases, we believe, are

those that are able to evolve to handle rapidly changing pieces of information.

The failure-driven architecture of our context-sensitive probabilistic modeling sys-

tem is described by the flow chart diagram in figure 7(a). Context switching mech-

anisms, which are among the main components of the system, employ two forms of

learning within the architecture – assimilation and accommodation. When new data

are available, the system checks whether the current model fits the dataset well. If it

does, the data are incorporated into the model by updating its probability distribu-

tions. Otherwise, if the model still fails to fit the data, the system saves the current

model and searches for a new version of the model that will account for the new data.

The operation of the system, see figure 7(a), when the condition “Model fit?” holds,

corresponds to learning by assimilation: the model is consistent with the new data and

it is fine-tuned by assimilating the dataset. Conversely, when this condition does not
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hold, the system employs learning by accommodation: the model is inconsistent with

new data, and in order to account for the dataset, we have to reorganize the model.

Thus a key component of our context-sensitive modeling system is an ensemble of

contextual models, figure 7(b). Interconnected contextual models managed by domain

knowledge, the top layer, correspond to vertices and edges of the structure of the

ensemble. Graphical models, the vertices of the ensemble’s structure, constitute the

lowest layer. The system incrementally populates the ensemble of models by applying

our failure-driven methodology. The implementation architecture may be understood

as a production system. Each set of assertions to exogenous variables corresponds to a

condition in a production system. When an assertion is satisfied, the set of activated

probabilistic relationships consitutes a new model representing that context.

6.1 Testing: switching contexts in a pump system

The method for context change detection is implemented in Scheme. The prototype is

applied to the data obtained from the mechanical pump system shown in figure 2. In

particular, two types of tests were performed: Test A, a test on detecting a transition

from a normal behavior to a context when the filter is clogged, and Test B, a test on

choosing an appropriate model in the ensemble of models once the context change is

detected.

In Test A an active model was trained on the data from the mechanical pump

system operating normally. The normal behavior of the pump system continued until

the 48th time step when the flow valve (see figure 2) was partially closed to imitate

a clogged filter. The system was subsequently halted after a tatal of 100 data steps.

During this time the active model was continuously checked for failure. The results for

the three model parameters, voltage at the motor, resistance at the pump, and torque

at the motor, are plotted in figure 8(a).

Failure was detected using a window of 17 time steps that was sliding 5 steps at

a time. As seen in figure 8(a), the modeling system successfully identified the context

change. Note however that the context change was captured after the actual break-

down had occured, at steps 55-60 as opposed to the 48th step, due to the choice of

conservative window parameters from the set of possible parameters trained earlier.

An attempt to capture the context change sooner by employing a smaller window (size

15) with a smaller overlap (10) was not successful (data are not shown): our failure

detection method prematurely, around the 25th time step, signals a context change

due to the high noise level in the data stream. A possibly more robust extension to the

context switching mechanism might be to consider several windows of different sizes:

small windows can be used to alert the system of a possible context change, while large

windows can then confirm this change.

In Test B we trained 6 distinct models, corresponding to various operational con-

texts of the pump system. The contexts consist of normal operational behavior, behav-

ior under a highly clogged filter, under a slightly clogged filter, behavior when a pump

is misaligned, when a shaft between a motor and the pump is misaligned, and when

one of the gears has a chipped tooth.

We then considered the data stream of the pump system operating normally until

the 70th time step when the flow valve was almost closed (simulating a highly clogged

filter) and reopened again after the 120th time step. The failure detection method

was invoked for each of the six trained models. Figure 8(b) illustrates the results of
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Fig. 8 (a) Failure detection on three model parameters (Volt, Resist, Torque) in the data
stream when the pump system initially operates normally, but then breaks down at the 48th
time step (when the flow valve is partially closed). The prediction is performed using a sliding
window of 17 points with 12 point overlaps. A vertical line Off shows an actual system break
down, while horizontal lines correspond to failure thresholds for the corresponding (same style)
model parameters. Using Resist the context change is detected at the 55th step, using Torque

the change is detected at the 60th step, and using Volt the change is detected at the 65th step.
(b) An illustration of an experiment when the pump system starts operating normally and the
valve is partially closed (at the Off time step), which is then opened back (at the On time
step). The figure shows the difference between the true Voltage parameter and the parameter
estimated on the sliding window for various models: a model (Norm) trained on data from
regular conditions, a model (Clog) corresponding to a partially closed flow valve, and a model
(Tooth) capturing the situation when a gear tooth is chipped.

failure detection for a model parameter corresponding to voltage at the motor (Volt) for

three models Norm, Clog, and Tooth, corresponding to contexts of normal operational

behavior, behavior when a flow valve is partially closed, and behavior when a gear tooth

is chipped. Note that the model Norm shows the smallest difference between predicted

and true model parameters before time Off (when the flow valve is turned), which then

peeks after the turn, and drops down after time On (when the valve is reopened). On

the other hand, the model Clog presents almost the opposite behavior: it shows a very

large parameter difference before the turn of the valve, which steeply reduces once

the valve is partially closed, and increases back after the valve is reopened. Note that

other models do not show such distinct behavior, e.g., the model Tooth in figure 8(b)

exhibits a constant large (above the corresponding threshold) difference between true

and predicted parameters.

Since the model Norm has the smallest error at the beginning of the data stream,

the context-sensitive modeling system employing our context change detection method

selects this model as initially active. Once the first context change (Off) is identified,

the system then switches the active model to Clog, since it has the smallest error among

the six models. Consequently, the modeling system returns the active model back to

Norm after the second context change is detected.

7 Conclusions and Future Directions

In this paper we specify the notion of context and propose a framework that uses

model failure to represent a complex real-time diagnostic problem as a set of sim-

pler context-specific knowledge-focused reasoning tasks. The framework uses a failure-
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driven approach of switching between minimal models corresponding to contexts, which

is motivated by research in developmental psychology (Piaget, 1983).

There are a number of important advantages of using the context-based failure-

driven modeling approach to real-time diagnostic reasoning. First, there is no need to

reconstruct a complete distribution of all possible data, thus less data is needed for

training the diagnostic model. Usually, during probabilistic reasoning, system dynamics

are assumed to be stationary and invariant over the entire training data set. While

reasoning about a system whose dynamics change according to states of the external

environment and where little a priori knowledge is given, every possible aspect of the

world must be explicitly represented for the training data and learning algorithm to

capture all hidden relationships.

One implication of minimal model context switching is that when a traditional

knowledge base changes, the learned general model is discarded as no longer true and

a new one must be constructed from scratch. Using our approach, by splitting the

domain into contexts we are able to construct smaller models with reduced complexity

capturing only relevant, currently present-in-the-data relationships. Such small models

assume stationary behavior and require only a minimum amount of training data. This

fact also helps to reduce the overfitting problem.

A second advantage of our approach is that non-stationary behavior is handled

by using context transitions and the swapping of models. The different operational

contexts of a system are captured by different small models representing local (referring

to a context) stationary behavior in the data. Combining these models together by

swapping a currently active model with another contextual model provides a way to

handle global non-stationary behavior in the data.

Finally, for the domain expert, there can be more meaningful diagnoses due to

domain focusing. Since the contextual models are knowledge-focused (representing only

relevant information), the analysis of these models and their contextual differences can

be much more meaningful to a domain expert.

There are a number of directions for future research. Even though it is linked to a

probabilistic model, only deterministic context changes are currently allowed. A major

extension would be to allow stochastic context transitions that will potentially increase

reasoning power of our framework. Other directions of future research include extending

the method for detecting model failure, e.g., by using several sliding windows of various

sizes: a smaller window can be used to detect early failure, whereas a larger window

can then confirm that the failure is not triggered by noise.

Interested readers can find the GLL software supporting failure-driven context-

modeling at http://www.cs.unm.edu/∼sanik/Support/gll.tgz.
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