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Abstract

In many real-world domains, undirected graphical models such as Markov ran-
dom fields provide a more natural representation of the dependency structure than
directed graphical models. For example, Bayesian networks cannot explicitly cap-
ture cyclic dependencies which occur commonly in real-world networks such as in
biology. Unfortunately, structure learning of undirected graphs using likelihood-
based scores remains difficult because of the intractability of computing the par-
tition function. We describe a new Markov random field structure learning algo-
rithm which is motivated by canonical parameterization of Abbeel et al. We im-
prove on their parameterization by learning per-variable canonical factors, which
makes our algorithm suitable for domains with hundreds of nodes. Our algorithm
is similar to learning dependency networks, but the learned structure is guaranteed
to be consistent, and, therefore represents a consistent joint probability distribu-
tion. We compare our algorithm against several algorithms for learning undirected
and directed models on simulated and real datasets from the biology domain. Our
algorithm frequently outperforms existing algorithms, producing higher-quality
structures, suggesting that enforcing consistency during structure learning is ben-
eficial for learning undirected graphs.

1 Introduction

Probabilistic graphical models (PGMs) representing real-world networks capture important struc-
tural and functional aspects of the network by describing a joint probability distribution of all node
measurements. The structure encodes conditional independence assumptions allowing the joint
probability distribution to be tractably computed. When the structure is unknown, likelihood-based
structure learning algorithms are employed to infer the structure from observed data.

Likelihood-based structure learning of directed acyclic graphs (DAGs), such as Bayesian networks,
is widely used because the likelihood score can be tractably computed for all candidate DAGs.
Unfortunately, the acyclic constraint of the network structure makes it difficult to represent cyclic
dependencies, which occur commonly in real-world domains such as biology. While undirected
graphical models, such as Markov random fields (MRFs), provide a more natural representation of
the dependency structure, likelihood-based structure learning of these models is much harder. This
is because likelihood computation for MRFs requires estimation of the partition function which is
known to be NP hard [1].

To overcome this issue, researchers have opted several alternatives: learn graphical Gaussian mod-
els where the likelihood can be computed tractably [11]; restrict to lower order, often pairwise
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functions, [12, 10]; use pseudo-likelihood as structure score instead of likelihood [3]; learn depen-
dency networks [6, 15]; or more recently, learn Markov blanket canonical parameters [1]. Pairwise
models are scalable, but, approximate higher-order dependencies by pairwise functions, which is
limiting for domains where higher-order dependencies occur commonly. While dependency net-
works are scalable, each variable neighborhood is estimated independently, resulting in inconsistent
structures when the data sample size is small. This is problematic for real-world data which of-
ten lack sufficient samples to guarantee a consistent joint probability distributions for the learned
structure. Finally, Markov blanket canonical parameterization requires exhaustive enumeration of
variable subsets up to size k, which is not scalable for networks with hundreds of nodes.

We have developed a new algorithm for learning undirected graphical models, that produces consis-
tent structures and is scalable to be applicable for real-world domains. Our algorithm, Markov blan-
ket search (MBS) is inspired by Abbeel et al.’s Markov blanket canonical parameterization, which
establishes an equivalence between global canonical parameters and local Markov blanket canonical
parameters (MBCP) [1]. We extend Abbeel et al.’s result to establish further equivalence between
MBCPs and per-variable canonical parameters. Because per-variable canonical parameters require
learning Markov blankets per-variable, rather than all subsets up to size k, we saveO(nl−1) compu-
tations during structure learning, where n is the number of variables. The equivalence of per-variable
canonical parameters and global canonical parameters has been observed before [8, 13]. However,
we are the first to use per-variable canonical parameters in the context of MRF structure learning
to learn consistent MRF structures. Enforcing structural consistency during search, guarantees the
structure to be a MRF, and also the existence of a joint distribution for the individual conditional
distributions. Thus we need not perform additional post-processing to make guarantee consistent
structures [15].

We compare our algorithm against two existing algorithms for learning undirected models: Accu-
rate reconstruction of cellular networks (ARACNE) [12], and a Lasso regression based dependency
network algorithm (GGLAS) [11]. ARACNE learns only pairwise dependencies, whereas GGLAS
learns both pairwise and higher-order dependencies. On simulated data generated from networks of
known topology, MBS is able to capture the structure better than ARACNE. Although GGLAS and
MBS are often tied in performance, GGLAS’s assumption that variable ordering is irrelevant, is true
only for the Gaussian distribution. MBS uses a more general framework of minimizing conditional
entropy, which can be used with other probability distribution families.

We also compare MBS to several algorithms for learning DAG structures. MBS not only out-
performs the algorithms performing DAG searches, but provides a better pruning of the structure
search space than L1 regularization-based Markov blanket and the sparse candidate algorithms
[15, 5]. This suggests that learning consistent structures during structure search is better than
post-processing learned structures to enforce consistency. We finally apply ARACNE, MBS and
the sparse candidate-based Bayesian network structure search algorithm to four microarray data
sets. Subgraphs generated from MBS-inferred networks represent more functionally coherent gene
groups than subgraphs from the other algorithms.

To summarize, MBS has the following advantages: (a) it explicitly scores higher-order dependen-
cies, capturing both higher-order and pairwise dependencies, (b) it learns undirected graphs allowing
the representation of cyclic dependencies, (c) it learns consistent structures which ensures the ex-
istence of a consistent joint distribution for the learned structure, and (d) it does not require the
estimation of likelihood, which allows it to scale to real-world domains with hundreds of nodes.

2 Markov random fields

A Markov random field (MRF) is an undirected, probabilistic graphical model that represents statis-
tical dependencies among a set of random variables (RVs), X = {X1, · · · , Xn}. A MRF consists
of a graph G and a set of potential functions ψ = {ψ1, · · · , ψm}, one for each clique in G. The
graph structure describes the statistical dependencies, and the potentials describe the functional re-
lationships between the RVs. The RVs encode the observed measurements for each node, Xi ∈ R.
The joint probability distribution of the MRF is defined to be: P (X = x) = 1

Z

∏m
i=1 ψi(Fi = fi),

where x is a joint assignment to X, Fi ⊆ X is the variable set in the ith clique, associated with ψi;
fi ⊆ x is a joint assignment to Fi. Z is the partition function and is defined as an integral over all
possible joint assignments of X.
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Structure learning of MRFs using likelihood is difficult in general because of the computation of Z
[1]. This is because estimating Z requires a sum of exponentially many joint configurations of the
RVs, making it intractable for real-world domains. To overcome this problem, researchers have pro-
posed approaches that do not involve likelihood [3, 6], and, more recently, have used Markov blanket
canonical parameterization (MBCP) [1]. We use an approach similar to MBCP, which requires the
estimation of optimal Markov blankets for RV subsets, Y ⊆ X, |Y| ≤ l, where l is a pre-specified,
maximum subset size. However, we estimate Markov blankets of only individual RVs, instead of all
subsets.

2.1 Hammersly-Clifford theorem and canonical potentials

The Hammersly-Clifford theorem states that there is a one-to-one relationship between MRFs and
Gibbs distributions. The canonical potentials (also called N -potentials [13]) are used to prove the
Hammersly-Clifford theorem in conjunction with the Mobius inversion theorem [9]. The canonical
potential for a subset D ⊆ X is defined using a default joint instantiation, x = {x1, · · · , x|X|} to X
as:

ψ∗D(D = d) = exp

0@ X
U⊆D

(−1)|D\U|logP (X = σ(U,X,d))

1A , (1)

where σ(A,B,a) is an assignment function to variables Xk ∈ B such that σ(A,B,a)[k] = ak, if
Xk ∈ A and σ(A,B,a)[k] = xk if Xk /∈ A. σ returns an assignment for all variables in B.

The Mobius inversion states that for any real functions f and g over subsets A,B and C

f(A) =
∑
B⊆A

g(B), is true if and only if, g(B) =
∑
C⊆B

(−1)|B\C|f(C)

The joint probability distribution associated with a MRF using the canonical potentials is defined to
be: P (X = x) = P (x)

∏
D∈C ψ

∗
D, where C is the set of maximal cliques in the graph [13]. This is

true by the application of the Mobius inversion where f(X) = logP (X), and g(X) = ψ∗, followed
by ψ∗D = 0 for all D /∈ C.

2.2 Markov blanket canonical parameterization (MBCP)

The computation of the canonical potentials is not feasible for real-world domains as they require the
estimation of the full joint distribution [1]. Markov Blanket canonical parameterization, developed
by Abbeel et al., allows the computation of global canonical potentials over X, using local condi-
tional functions called Markov blanket canonical parameters (MBCPs). We show that the MBCPs
can be further reduced to smaller per-variable canonical parameters, which are computed using an
RV and its Markov blanket.

The MBCP, ψ̃ for a set D ⊆ X is estimated using D and its Markov blanket (MB). The MB,
Mi of a variable Xi, is the set of immediate neighbors of Xi in G and renders Xi conditionally
independent of other variables, i.e., P (Xi|X \ {Xi}) = P (Xi|Mi). The MB, MD of a set D,
is
(⋃

j Mj

)
\ D for all Xj ∈ D. The MBCP, ψ̃ for D is also defined using the default joint

instantiation, x = {x1, · · · , x|X|} as:

eψD(D = d) = exp

0@ X
U⊆D

(−1)|D\U|logP (D = σ(U,D,d)|MD = σ(U,MD,d))

1A , (2)

For MRFs of unknown structure, MBCPs are identified by searching exhaustively among all subsets
Fi ⊂ X, up to size l and finding MBs for each Fi. MBs are chosen to minimize the conditional en-
tropy, H(Fi|MFi

). Unfortunately, exhaustive enumeration of variable subsets becomes impractical
for moderately sized networks [1].

2.3 Per-variable MB canonical factors

We now show that the MBCPs can be replaced by smaller, local functions: per-variable MB canon-
ical factors, which does not require enumeration of all subsets up to size l. To illustrate how these
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are derived from MBCPs, let D from Eq 2 be D = {Xi, Xj} and d = {xi, xj}. Let E =
Mi∪Mj∪{Xj}. We first apply the chain rule to every term, logP (D = σ(U,D,d)|(Mi∪Mj) =
σ(U,Mi ∪Mj ,d)) in Eq 2, by first conditioning Xi on E, followed by Xj on E \ {Xj}. This
allows ψ̃ to be rewritten as:

eψD(D = d) = exp

0@ X
U⊆D

(−1)|D\U|logP (Xi = σ(U, {Xi},d))|E = σ(U,E,d))

1A , (3)

These canonical parameters are equal to those in Eq 2 because the logP (Xj = σ(U, {Xj},d)|(E \
{Xj}) = σ(U,E \ {Xj},d)) terms cancel. We assert further independence in Eq 3 because Xi is
independent of all variables other than Mi. This allows us to write the original MBCF for {Xi, Xj}
as the per-variable canonical factor:

ψ+
D(D = d) = exp

0@ X
U⊆D

(−1)|D\U|logP (Xi = σ(U, {Xi},d)|Mi = σ(U,Mi,d))

1A , (4)

This implies that, instead of searching over all size l subsets of X, we can estimate canonical factors
by searching for MBs of individual RVs. Assuming that the variable MBs are estimated correctly,
Eq 4 will produce the same canonical factors as Eq 2. Our structure learning algorithm therefore re-
quires the estimation of MBs of each RV. We only need to ensure structural consistency (Section 2.4).
Searching only for n MBs, as opposed to nl MBs in MBCP, saves us O(nl−1) computations.

The fact that ψ+ is a sum of conditional distributions, allows us to apply the Mobius inversion to
estimate the conditional distribution, P (Xi|Mi), from ψ+, by setting f to logP (Xi|Mi) and g to
ψ+:

logP (Xi|Mi) =
∑

Y⊆{Xi}∪Mi

ψ+.

In traditional MRFs described by the Gibbs distribution, estimating these conditional distributions
would require inference, which is known to be hard for general graph structures. Estimating ψ+

using the conditional distributions not only guarantees a consistent joint distribution for the MRF
structure, but also specifies the exact conditional distribution that can be inferred from the joint
using the laws of probability. In [13], a similar statement is made about generating the conditional
distributions from the original N -potentials. However, this requires the computation of a local
normalization factor which is not required for the per-variable canonical parameters. Although
conditional probability distribution of a variable given its Markov blanket is estimated in dependency
networks, this conditional distribution is not guaranteed to be consistent with a joint distribution.

The per-variable canonical parameters and the Markov blanket canonical parameters, do not deny
the hardness of computing the likelihood in MRFs [1]. This is because computing P (X = x̄) is
equivalent to computing 1

Z , where Z is the partition function.

2.4 Markov blanket search algorithm

We search for the best MB of individual RVs using conditional entropy, H(Xi|Mi) for each Xi,
[4]. The best MB for all RVs can be identified by minimizing the following score:

S(G) =

|X|X
i=1

H(Xi|Mi) + λlog(|Mi|) (5)

λlog(|Mi|) penalizes large MBs and 0 ≤ λ ≤ 1 is a regularization coefficient. The first term of
Eq 5 is directly proportional to the data likelihood in Bayes nets and the pseudo-likelihood in MRFs.

Directly minimizing this score by finding the best MB per variable independently may result in
inconsistent MBs. In particular, we cannot guarantee that if Xj ∈ Mi, then Xi ∈ Mj . This
problem also arises in MBCP estimation, since MBs of variable sets are identified independently1.
This inconsistency can be handled as a post-processing of the learned MBs [15]. However, we found
this post-processing approach to produce lower quality MBs (Section 3.2).

1MBCP requires an additional subset consistency check: if X ⊂ Y, then MX ⊂ (MY ∪ (Y \X))
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We propose a different approach such that we find consistent MBs during the search process. To find
consistent MBs, we search MBs, Mi, for Xi not only using the decrease in H(Xi|Mi), but also the
net change in conditional entropy of all Xj ∈Mi, if their MBs were also constrained to include Xi.
This is done by computing the net score gain per candidate MB for Xi.

Our approach is similar to [7] where consistent structures are learned using an edge-based score.
However, their search strategy starts from a fully connected network and removes edges, whereas
we add and replace edges starting with a completely disconnected network. For real-world domains,
growing larger neighborhoods from smaller neighborhoods is more tractable than shrinking large
neighborhoods, because we may not have enough data for reliably learning large neighborhoods.

We perform a greedy search, where we make one variable extensions to the current MB. Let Mk
i

denote a candidate MB of Xi of size k, and M̂i

k−1
denote the best MB for Xi obtained so far. Then

the score gain is:

Si = H(Xi|cMi

k−1
)−H(Xi|cMi

k−1
∪ {Xj}) +H(Xj |dMj

k−1
)−H(Xj |dMj

k−1
∪ {Xi}). (6)

The MBS structure learning algorithm uses the above score gains to identify the best MB for each
variable. Each iteration of the search uses a combination of add and swap operations to learn the
best structure. In the add stage of the kth iteration, we make one variable extensions to the current

Markov blanket M̂i

k−1
of each variable Xi restricting it to at most k RVs per MB.

In the swap stage, we revisit all variables Z in the Markov blanket M̂i

k
of each Xi, and consider

other RVs Y /∈ ({X} ∪ M̂i

k
), which if swapped in instead of Z, gives a score improvement. If so,

we replace Z by Y in M̂i, and store Z in the tabu list of Xi. This prevents Z from being included
into Mi in subsequent iterations. In the swap stage we allow a candidate neighbor to be present in
more than kmax Markov blankets. However, no variable can be in more than khard = 20 Markov
blankets. Thus the nodes in our inferred networks can have a degree of at most d = 20, which is
reasonable for the domain of our interest and allows us to model hub nodes in the network.

In this paper, we assume all variables to have a Gaussian distribution. However, our general ap-
proach is applicable to both continuous and discrete variables, requiring only to be able to estimate
conditional entropy. Using Gaussian distributions has the added advantage that the conditional and
joint entropy can be computed in closed form.

3 Results

We compared the MBS algorithm against two other learning algorithms for undirected graphs and
five DAG learning algorithms on both simulated data and real biological data.

3.1 Comparison on simulated datasets

We compared our Markov blanket search algorithm (MBS) to two undirected algorithms: An Al-
gorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context
(ARACNE) [12], and a Lasso regression-based Graphical Gaussian model (GGLAS) [11]. We also
compared MBS against several directed models provided in the DAGLearn software2: full DAG
search (FULLDAG), LARs based order search (ORDLAS), DAG search using Sparse candidate
for pruning (SPCAND), and DAG search using L1 regularization based Markov blanket estimation
(L1MB) [15]. Because L1MB does not learn consistent Markov blankets, a post-processing step is
required to make the structures consistent. The AND post-processing removes Xi from Xj’s MB if
Xj is not in Xi’s MB. The OR post-processing includes Xi in Xj’s MB if Xj is in Xi’s MB. We
refer to L1MB with AND and OR post-processing as MBAND and MBOR respectively. We also
included an implementation of order Markov chain Monte Carlo (ORDMC) for Bayes net search.3

The simulated datasets were generated by a gene regulatory network simulator using differen-
tial equations for describing gene and protein expression dynamics [14]. The simulator models

2http://www.cs.ubc.ca/˜murphyk/Software/DAGlearn/
3http://www.bioss.ac.uk/staff/.adriano/comparison/comparison.html

5



Table 1: Algorithm comparison on two datasets. Rows give different structure scores; columns are
different structure learning algorithms; each entry is an E or V score. Bold∗ and italics indicate
that MBS performs significantly better or worse than the algorithm compared. SPN: shortest path
neighborhood, 1 and 2N: r = 1 and r = 2 neighborhood, 3C: cycles of size 3, 4C: cycles of size 4.

MBS ARACNE ORDER SPCAND MBOR GGLAS

G
50 E

SPN 0.550 0.418∗ 0.533 0.516∗ 0.417∗ 0.463∗

1N 0.661 0.440∗ 0.587∗ 0.560∗ 0.432∗ 0 .836
2N 0.589 0.444∗ 0.532∗ 0.510∗ 0.438∗ 0.562∗

3C 0.800 0.400 0.792 0.784 0.250∗ 0.866
4C 0.645 0.440∗ 0.630 0.580∗ 0.367∗ 0.721

V

SPN 0.308 0 .345 0.264∗ 0.262∗ 0 .292 0 .379
1N 0.352 0 .426 0.285∗ 0.276∗ 0 .416 0.231
2N 0.335 0 .361 0.273∗ 0.261∗ 0 .353 0.340
3C 0.328 0.251∗ 0.284∗ 0.287∗ 0.233∗ 0.271
4C 0.324 0.246∗ 0.281∗ 0.275∗ 0.230∗ 0.260

E
C

O
L

I1 E
SPN 0.747 0.753 0.703 0.759 0.729∗ 0.729∗

1N 0.751 0.776 0.690 0 .778 0.705∗ 0.700∗

2N 0.726 0.752 0.679 0 .749 0.724 0.719

V
SPN 0.514 0 .567 0.303∗ 0.354∗ 0.520 0.522
1N 0.608 0 .667 0.326∗ 0.396∗ 0 .627 0 .639
2N 0.591 0 .622 0.308∗ 0.376∗ 0.585 0.594

Table 2: Number of times MBS loses/beats statistically significantly another algorithm. Rows are
for different datasets.

DATA ARACNE ORDMC FULLDAG ORDLAS SPCAND MBAND MBOR GGLAS
G50 3/6 0/4 0/5 2/5 3/9 2/3 3/7 2/2
G75 0/3 0/6 0/5 0/5 0/5 0/5 0/10 3/4

ECOLI1 3/0 1/2 0/3 0/3 2/3 1/1 2/2 2/2
ECOL2 0/0 0/1 0/6 0/6 0/6 0/6 0/6 –

combinatorial control among regulator proteins to generate expression data resembling those from
real-world networks. We used four simulated datasets: G50, G75, ECOLI1 and ECOLI2 with
n = 100, 150, 188 and 188 nodes respectively. ECOLI1 and 2 were generated from the regula-
tory network of the bacteria, E. coli. G50 and G75 were generated de novo by the simulator. Each
sample is a steady-state expression measurement after perturbing the transcription rate constants
of the the genes. In G50, G75 and ECOLI1 all nodes are perturbed, whereas in ECOLI2 only the
regulator proteins are perturbed.

As the true network topologies for these data are known, we compared the algorithms using the
match between the inferred and true networks. Because we are most interested in analyzing higher-
order dependencies, we compared subgraphs rather than edges. Briefly, we extracted subgraphs
of different types (e.g. cycles, neighborhood) from the true network and used an F-score measure
to match the vertex neighborhood and edge set per subgraph. We refer to the scores for vertex
neighborhood as V-scores and for the edge set as E-scores. We use shortest path neighborhoods
(SPN), r-radius neighborhoods (r ∈ {1, 2}, denoted by 1N and 2N) consisting of a vertex and its
neighbors ≤ r steps away, and cycles of size r (r ∈ {3, 4}, denoted by 3C and 4C). ECOLI1 and
2 did not have any cycles. We moralize the inferred DAGs prior to comparison. We compare the
algorithms using E and V-scores averaged over four different runs per algorithm.

We show a subset of all the comparisons comprising two of the four datasets, G50 and ECOLI1
(Table 1). Our complete results are summarized in Table 2. For all datasets other than ECOL1,
MBS significantly beats all algorithms at least as often as it is beaten (Student’s t-test, p-value
≤ 0.05). On ECOLI1, ARACNE outperforms not only MBS, but all other higher order algorithms,
suggesting that this dataset likely does not contain many higher-order dependencies. There is no
significant performance difference between MBS and ARACNE on ECOLI2 (results not shown),
which is generated from the same network as ECOLI1. GGLAS did not complete on ECOLI2.

We also find that the performance margin between MBS and the DAG learning models is greater than
undirected learning algorithms, even though we convert the directed graph structures to moralized
undirected graphs. Overall, we find that MBS performs at least as well as other algorithms.
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3.2 Structural consistency for pruning DAGs space

To assess the value of enforcing consistency during learning, rather than as a post-processing step,
we used the MBS-learned Markov blankets as inputs to DAG search algorithms as a constraint
on variable families. We compared the DAG structures constrained using MBS Markov blankets
against those constrained by Sparse candidate (SC) and L1 MB regularization (L1MB). The L1MB
approach uses either an OR or AND of the Markov blankets to make inconsistent Markov blankets
consistent.

We used the maximum size of L1MB AND and OR Markov blankets for selecting the neighborhood
size, k, for MBS and SC. We first compared L1MB with OR post-processing (MBOR) using k = 11
for both G50 and G75 (Table 3). We found the structures constrained by MBS-learned Markov
blankets to have higher E and V scores than the structures constrained by L1MB or SC, and to
significantly outperform SC or L1MB-constrained DAGs more often than being outperformed. We
had similar results for L1MB AND (k = 4, 6 for G50 and G75, respectively). This suggests that
finding consistent structures during structure learning produces higher-quality Markov blankets than
enforcing consistency as a post-processing step.

3.3 Comparison on real biological data

We compared MBS against ARACNE and SPCAND on real-world biological data. GGLAS did
not complete within 48 hrs on this data, so is omitted. Each dataset measures the gene expression
response of two different populations of yeast cells, Quiescent (Q) and Non-quiescent (NQ), to
genetic perturbations [2]. Each dataset had a biological replicate, resulting in four datasets: Q1, Q2,
NQ1 and NQ2. We pre-processed these data to include genes with < 80% missing data and with
high variation resulting in n = 1808 genes.

As the true network for these data is not known, we used Gene ontology (GO) to identify subgraphs
that were enriched in a biological process. For each inferred network we generated neighborhood
subgraphs of radius r = 1. For each subgraph and GO term pair, we used the hyper-geometric
distribution to compute a p-value enrichment. We used two criteria to compare the three algo-
rithms. Enrichment sensitivity measured the ratio of the number subgraphs enriched in a GO term4

to the total number of subgraphs. Enrichment locality measured the correlation between a GO term
p-value and the number of subgraphs enriched in that term. A positive correlation suggests that
terms with higher p-values (less enriched) are associated with many subgraphs, whereas terms with
lower p-values (more enriched) are associated with fewer subgraphs. We used different significance
thresholds to vary the stringency of enrichment (p-value ∈ {10−3, 10−4, 10−5, 10−6}). Ideally, a
good algorithm should identify good enrichment for the majority of the inferred subgraphs (high
sensitivity), and also be able to associate highly enriched terms with a few subgraphs (high locality).

For each p-value threshold, we compared MBS against ARACNE and SPCAND using the enrich-
ment sensitivity and locality of the four datasets. We found that at p-value < 10−3 and < 10−4,
ARACNE and SPCAND had significantly higher sensitivity, but significantly lower locality than
MBS (Wilcoxon rank sum test, p < 0.05). However, there was no statistically significant difference
for higher stringency of enrichment.

These results suggest that there is a trade off between different algorithms for biological data. MBS
is able to identify subgraphs that are local and ontologically coherent at the cost of having fewer
subgraphs that are enriched in a term. On the other hand ARACNE and SPCAND identify more
subgraphs with enrichment, but they may overly fragment coherent gene groups. Finally, there is no
significant difference between algorithms at higher stringency, suggesting that the algorithms agree
on the process terms in which we have greater confidence.

4 Conclusion

We have described a new algorithm for inferring undirected graphical models that yields structurally
consistent graphs, guaranteeing a consistent joint probability distribution for the random variables.
We compared our algorithm against several algorithms for learning undirected and directed models.

4We actually considered the min(no. of subgraphs, no. of enriched terms) to prevent double counting.
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Table 3: Comparison of MBS pruning against Sparse candidate and L1 MB regularization. Rows
and columns are same as Table 1.

G50 G75
SPCAND MBOR MBS SPCAND MBOR MBS

E

SPN 0.48 0.458∗ 0.504 0.349 0.404 0.435
1N 0.516 0.523 0.561 0.467∗ 0.523∗ 0.567
2N 0.466 0.485∗ 0.538 0.424 0.474∗ 0.486
3C 0.465 0.414 0.556 0.498 0.481∗ 0.612
4C 0.508 0.463∗ 0.532 0.458 0.447∗ 0.595

V

SPN 0.27∗ 0.27∗ 0.348 0.269 0 .299 0.257
1N 0.295∗ 0.328∗ 0.413 0 .288 0 .331 0.256
2N 0.274∗ 0.296∗ 0.367 0.27 0.287 0.247
3C 0.274 0.316 0.318 0.247 0.241 0.241
4C 0.256 0.276 0.327 0.274 0.22∗ 0.279

We show that learning structurally consistent graph structures during structure inference more ac-
curately captures the graph structure. Our approach also produces higher-quality Markov blankets,
that when used to prune DAG search space, yields better structures. On real data, MBS is able to
identify functionally coherent local gene groups that indicate tightly co-regulated genes.
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