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Definitions

Hilbert and quasi-Hilbert algebras are algebraic models of the
implicational fragments of certain sentential logics.
Common axioms:

x · x = 1 (A1)
x · (y · x) = 1 (A2)

x · y = 1 ∧ y · x = 1 ⇒ x = y (A3)

For quasi-Hilbert algebras, an additional axiom:

x · (y · z) = 1 ∧ x · (y · (z · u)) = 1 ⇒ x · (y · u) = 1 (QA)

For Hilbert algebras, replace (QA) with:

(x · (y · z)) · ((x · y) · (x · z)) = 1 (HA)

(and then (A1) is dependent)
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Hilbert Algebras . . .

model the implicational fragment of intuitionistic logic
form a variety (Diego 1965)
... which is not generated by any of its finite members
(Celani & Cabrer 2005)

Equational basis:

x · x = 1 1 · x = x x · (y · z) = (x · y) · (x · z)

(x · y) · ((y · x) · x) = (y · x) · ((x · y) · y)
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The Problem

Quasi-Hilbert Algebras . . .

model certain logics and Gentzen systems
form a quasi-variety (clear from axioms)

Every Hilbert algebra is a quasi-Hilbert algebra.

(Proof: if not, the latter would not be called “quasi-Hilbert”.)
:-)
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A NonHilbert, Quasi-Hilbert Algebra

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 1 1 3 4 6 6
3 1 2 1 5 5 6
4 1 1 1 1 1 1
5 1 1 3 3 1 1
6 1 2 3 4 2 1

Table: The Smallest NonHilbert, Quasi-Hilbert Algebra
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The Problem

Problem
Do Quasi-Hilbert Algebras Form A Variety?

. . . If so, find a (hopefully finite) equational basis.

This problem was
perhaps posed by Diego (1965, in Catalan!)
certainly posed by Bou et al (2004)
brought to my attention by Matthew Spinks
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What Makes This Hard

If quasi-Hilbert algebras form a variety, the difficulty is finding
equations to replace this axiom:

x · (y · z) = 1 ∧ x · (y · (z · u)) = 1 ⇒ x · (y · u) = 1 (QA)

(Replacing (A3) is quite easy.)
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An Attack on the Problem

Let EQ = {(A1), (A2)}, the equational axioms for quasi-Hilbert
algebras.

while ( the following works ) do {
Use Mace4 to generate a model in which EQ holds, but
(QA) is false.
Use Prover9 semantics to generate equations true in
quasi-Hilbert algebras, but false in the model.
Enlarge EQ by the new equations.
Reduce EQ by getting rid of dependencies.
Check if EQ now implies (QA). If so, quit.

}
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. . . And Where It Stops, Nobody Knows. . .

Of course, I didn’t find a set EQ which implies (QA). Eventually,
a 10-element model was found such that every equation
Prover9 could generate which was true in quasi-Hilbert
algebras is also true in the model.
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Axioms for a New Variety

1 · x = x (NA1)
x · (x · y) = x · y (NA2)

(((x · y) · y) · z) · (x · z) = 1 (NA3)
((x · y) · z) · (y · ((z · u) · u)) = 1 (NA4)
(((x · y) · y) · x) · ((x · y) · y) = (((x · y) · y) · x) · x (NA5)
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A Non-Quasi-Hilbert Algebra Satisfying (NA1)-(NA5)

· 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 1 1 3 7 5 1 7 10 1 10
3 1 2 1 6 5 6 1 9 9 1
4 1 2 3 1 8 1 1 8 9 10
5 1 2 3 1 1 1 1 1 1 1
6 1 2 3 7 5 1 7 8 9 10
7 1 2 3 6 5 6 1 8 9 10
8 1 2 3 4 4 6 7 1 1 1
9 1 2 3 4 5 6 7 10 1 10
10 1 2 3 4 5 6 7 9 9 1
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Is This Interesting?

This would not be an interesting variety, except. . .

Many “logical” theorems true in quasi-Hilbert algebras are true
in this variety.

Firstly, these axioms of quasi-Hilbert algebras are theorems in
the new variety:

x · x = 1 (A1)
x · (y · x) = 1 (A2)

x · y = 1 ∧ y · x = 1 ⇒ x = y (A3)
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More Theorems

x · 1 = 1 (Pre)
x · y = 1 ∧ y · z = 1 ⇒ x · z = 1 (Trans)

x · y = 1 ∧ x · (y · z) = 1 ⇒ x · z = 1 (MP1)
x · y = 1 ⇒ (y · z) · (x · z) = 1 (Isot1)
x · y = 1 ⇒ (z · x) · (z · y) = 1 (Isot2)

x · y = 1 ∧ z · u = 1 ⇒ (y · z) · (x · u) = 1 (Cong)
x · (y · z) = 1 ⇒ y · (x · z) = 1 (QCP)

x · (y · z) = 1 ⇔ (x · y) · (x · z) = 1 (QFre1)
(x · y) · ((y · x) · x) = 1 ⇒ (y · x) · ((x · y) · y) = 1 (QFre2)
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A New Attack

Use (NAj) and (HA) to generate equations true in Hilbert
algebras, but false in the 10-element model
For each new equation α, check if (NAj) +α ⇒ (HA)
If not, check if α is a theorem in quasi-Hilbert algebras. If
so, add it to EQ.
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Bleah!

But it didn’t work. . .

Every equation Prover9 generated (until I killed the jobs)
which was false in the model turned out be equivalent to (HA)
within the new variety.
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Other Equations

In the course of various experiments, other equations turned up
which are

theorems in Hilbert algebras
true in the non-quasi-Hilbert, 10-element model of (NAj)
false in a 10-element, nonHilbert, quasi-Hilbert algebra
true in a different 10-element, nonHilbert, quasi-Hilbert
algebra

Example: x · (((y · z) · (x · y)) · ((y · z) · ((z · u) · u))) = 1

Non-quasi-Hilbert models of (NAj) in which these equations are
false might be useful.
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Commutative Hilbert Algebras

Jun (1996) defined a Hilbert algebra to be commutative if

(x · y) · y = (y · x) · x

(This means the operation x ∨ y = (x · y) · y is commutative.)
Halaš (2002) showed that commutative Hilbert algebras are
exactly Abbott implication algebras.
(Petr and RP talked about such algebras last year.)

Michael K. Kinyon A Variety Containing Quasi-Hilbert Algebras



Background
Strategy and Results

Application
Quasi-Hilbert Algebras with Infimum

Commutative Hilbert Algebras and Abbott Implication Algebras
Generalization

Abbott implication algebras

Axioms for Abbott implication algebras:

x · x = 1
(x · y) · x = x

x · (y · z) = y · (x · z)

(x · y) · y = (y · x) · x

Halaš’s proof is roundabout: he shows that the operation
x ∨ y = (x · y) · y in a commutative Hilbert algebra gives a join
semilattice, and then appeals to a theorem of Abbott (1967) to
reach the desired conclusion.
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A Generalization

Within a few seconds, Prover9 can get a syntactic proof of

Theorem
An algebra (Q; ·, 1) satisfying (NA1), (NA2), (NA4) and
(x · y) · y = (y · x) · x is an Abbott implication algebra.

So, for instance, commutative quasi-Hilbert algebras are Abbott
implication algebras.
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The Natural Order

In an algebra satisfying (NAj), j = 1, . . . , 5, define a relation by

x ≤ y ⇔ x · y = 1

This is a partial order with unique maximal element 1.

(In any ordered set with maximal element 1, the operation given
by

x · y =

{
1 if x ≤ y
y otherwise

defines a Hilbert algebra structure.)
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The Hilbert Algebra Case

Figallo et al defined a Hilbert algebra with Infimum to be a
Hilbert algebra such that the associated poset is a meet
semilattice.
Characterization as a variety of algebras (Q; ·,∧, 1):

(Q; ·, 1) is a Hilbert algebra,
(Q;∧) is a semilattice,

and these equations hold:

x ∧ (x · y) = x ∧ y (WA1)
(x · (y ∧ z)) · ((x · y) ∧ (x · z)) = 0 (WA2)

(The smallest Hilbert algebra without infima is the obvious one
of size 3.)
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Definition and New Problem

Define a quasi-Hilbert algebra with Infimum to be a
quasi-Hilbert algebra such that the associated poset is a meet
semilattice.

(The 6-element non-Hilbert, quasi-Hilbert algebra has infima.
The smallest non-Hilbert, quasi-Hilbert algebra without infima
has size 7.)

Problem
Do quasi-Hilbert algebras with infimum form a variety?
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Yes!

Theorem
An algebra (Q; ·,∧, 1) is a quasi-Hilbert algebra with infimum if
and only if:

(Q; ·, 1) satisfies (NAj), j = 1, . . . , 5,
(Q;∧) is a semilattice,

and these equations hold:

x ∧ (x · y) = x ∧ y (WA1)
(x · (y ∧ z)) · ((x · y) ∧ (x · z)) = 0 (WA2)
((x · y) ∧ (x · (y · z))) · (x · z) = 0 (WA3)
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