# ADAM 2011 Banff International Research Station June 24–26



## Dedicated to the memory of Bill McCune

#### Working Our Way Up a Theory Hierarchy

Robert Veroff Department of Computer Science University of New Mexico

ADAM 2011 Banff International Research Station June 24–26

## *Theory Hierarchies* (Example: Lattice Theory)



Scenarios for proving a theorem t

- How far up the hierarchy can we push the result?
- Can we use the hierarchy to help prove t in a specific theory?

## Theory Hierarchies



## The AIM Problem

- Concerns Abelian inner mappings in loop theory
- Proposed as an automated deduction challenge problem by Michael Kinyon at ADAM 2009
- Collaboration with Petr Vojtěchovský, J. D. Phillips and Aleš Drápal
- Problem description
  - File aim\_descr.txt.
  - Several candidate extensions; some combinations of special interest
  - Working our way up the hierarchy

#### Using the Hierarchy

Let  $T_A$  denote the theorems deducible from axioms A.

If  $A^- \subset A \subset A^+$ , then  $\mathcal{T}_{A^-} \subseteq \mathcal{T}_A \subseteq \mathcal{T}_{A^+}$ 

independent extra assumptions  $\Rightarrow$  proper extensions of the theory Example: lattice hierarchy

 $\mathcal{LT} \subset \mathcal{OL} \subset \mathcal{WOML} \subset \mathcal{OML} \subset \mathcal{MOL} \subset \mathcal{BA}$ 

Can knowledge about  $\mathcal{T}_{A^-}$  and  $\mathcal{T}_{A^+}$  help us prove theorems in  $\mathcal{T}_A$ ?

Two ideas for picking clauses (guiding the search)

- semantic guidance (consider models in  $T_{A^-}$ )
- proof sketches (consider proofs in  $T_{A^+}$ )

#### Semantic Guidance

- Consider clause sets  $C^- \subset C$  and a formula t such that t is a theorem in  $\mathcal{T}_C$  but is *not* a theorem in  $\mathcal{T}_{C^-}$ .
- Let I be an interpretation (model) for  $C^-$  that falsifies t.
- Key observation: A proof of t from C will necessarily include steps that evaluate to **False** under I.
- Idea: Have a selection bias for clauses that evaluate to False under *I*.
- The challenge is to find effective weakenings of the target theory and good candidate interpretations *I*.

Semantic guidance is supported by Mace4/Prover9.

#### Proof Sketches

Consider a derivation as a sequence of clauses,

 $c_1, c_2, ..., c_i, ..., c_j, ..., c_n$ 

where

- $c_i$  is an extra assumption wrt the target theory  $(c_i \in C^+ C)$
- derived clause  $c_j$  has  $c_i$  in its derivation history

 $c_j$  either is in the target theory or it is not.

- if yes, it suffices to find a new derivation of  $c_j$
- if no, it suffices to "bridge the gaps" wrt the consequences of  $c_j$

In either case, we may have reduced a large problem to a "smaller" (but still potentially difficult) problem.

## The Proof Sketches Method

- Idea: Collect proofs of the target theorem in extended theories (i.e., with extra assumptions) and have a selection bias for clauses that subsume clauses in these proofs.
- The emphasis is on the *sufficiency* of the collected "proof sketches".
- Moving up the hierarchy by systematically generating new proof sketches with fewer extra assumptions, including all previous proof sketches for guidance.
- The challenge is to find effective extensions of the target theory (extra assumptions).

In some sense, the objective is to transform a proof finding problem into a proof completion problem.

Prover9 supports proof sketches via hints.

Status of the AIM project

- Summary of results
- Comments about proof lengths

Final comment (for the ADAM 2009 participants) ... p9loop has played a significant role in the AIM project, and I've gotten much better at "unwinding" the proofs.