
Some Applications of Prover9:
Status Report

Robert Veroff
Department of Computer Science

University of New Mexico

ADAM 2012
Northern Michigan University

June 12–14

1



Application Areas

• Loop Theory (with Michael Kinyon, J. D. Phillips and Petr Vojtěchovský)

• Algebraic Geometry (with R. Padmanabhan)

• Algebraic Logic (with Matthew Spinks)

2



Loop Theory (AIM Problem)

• Concerns Abelian inner mappings

• Problem description

– See file aim descr.txt.
– Several candidate extensions; some combinations of special interest
– Working our way up the hierarchy

3



AIM Problem Hierarchy

{AIM}

{AIM,a1} {AIM,a2} {AIM,a3}

{AIM,a1,a2} {AIM,a1,a3} {AIM,a2,a3}

{AIM,a1,a2,a3}

4



Approach

Key observations:

• Proofs share many steps

proof sketches – selection bias for proof steps of related theorems

• Sensitive to the lexical ordering of terms

p9loop – iterate over multiple orderings, collecting hint matchers as
lemmas for later iterations

5



Status

• Several of the cases of interest have been proved.

• The proofs tend to be very long by current AD standards.

– evidence of the effectiveness of the methods
– not black box solutions

6



Algebraic Geometry

Inference rule gL:

(∀−→x ,−→y (
(∃zf (−→x , z) = f (−→y , z))
→

(∀zf (−→x , z) = f (−→y , z))
))

Example gL rule:

(∀x0, x1, y0, y1(
(∃z(z ∗ x0) ∗ x1 = (z ∗ y0) ∗ y1))
→

(∀z(z ∗ x0) ∗ x1 = (z ∗ y0) ∗ y1))
))

Corresponding clause:

(z * x0) * x1 != (z * y0) * y1
| (w * x0) * x1 = (w * y0) * y1.

7



Inference Rule gL

gL clause:

(z * x0) * x1 != (z * y0) * y1
| (w * x0) * x1 = (w * y0) * y1.

Example application of the rule:

(a * b) * c = (a * d) * e

resolves with the gL clause to produce

(w * b) * c = (w * d) * e

8



Automated Deduction Issues

Need a gL clause for every argument position!

• Nesting limit

tradeoffs with Otter’s built-in version

• Restrict application of gL clauses

set(para_units_only)

For convenience, have a gL clause generator (Python script).

9



Algebraic Logic

Typical question: Let S and T be two algebras, deduction systems or logics.
Under what extensions do S and T become definitionally equivalent?

The theorem proving tasks include proving various properties (in both
directions).

S ∪ eS ⇒ properties of T
T ∪ eT ⇒ properties of S

The input sets are complex, often involving a large number of axioms, two
sets of operations, for example, {∧, ∨, ¬, ∼,→} and {∧, ∨, ∗,⇒}, and
definitions relating the operations of the two systems in question.

Standard methods (e.g., proof sketches) have not been all that effective by
themselves. Progress has depended heavily on suggestions for intermediate
results from Matthew.

10


