DPLL($\Gamma + \mathcal{T}$): a new style of reasoning

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy

June, 2013
A new style of reasoning: $\text{DPLL}(\Gamma + \mathcal{T})$

Speculative inferences for decision procedures
Problem statement

- Determine *validity* (*unsatisfiability*) or *invalidity* (*satisfiability*) of first-order formulæ
- Modulo *background theories* (some arithmetic is a must)
- With *quantifiers* for expressivity: QFF do not suffice
- Emphasis on *automation*: prover called by other tools
Some key state-of-the-art reasoning methods

- Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
- T_i-solvers: *Satisfiability procedures* for the T_i’s
- DPLL(T)-based SMT-solver: *Decision procedure* for T with combination by *equality sharing* of the T_i-sat procedures
- First-order engine Γ to handle \mathcal{R} (additional theory): *Resolution*+*Rewriting*+*Superposition*: *Superposition-based*
How to combine their strengths?

- **DPLL**: SAT-problems; large non-Horn clauses
- **Theory solvers**: e.g., ground equality, linear arithmetic
- **DPLL(\(T\))**-based SMT-solver: efficient, scalable, integrated theory reasoning
- **Superposition-based inference system \(\Gamma\)**:
 - FOL+= clauses with *universally quantified variables*
 (*automated* instantiation)
 - Sat-procedure for several theories of data structures
 (e.g., lists, arrays, records)
Shape of problem

- Background theory \mathcal{T}
 - $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_i$, e.g., linear arithmetic
- Set of formulæ: $\mathcal{R} \cup \mathcal{P}$
 - \mathcal{R}: set of non-ground clauses without \mathcal{T}-symbols
 - \mathcal{P}: large ground formula (set of ground clauses) typically with \mathcal{T}-symbols
Combination of theories

- If \(\Gamma \) terminates on \(R_i \)-sat problems, it terminates on \(R \)-sat problems for \(R = \bigcup_{i=1}^{n} R_i \), if \(R_i \)’s disjoint and variable-inactive

- Variable-inactivity: no maximal literal \(t \simeq x \) where \(x \notin \text{Var}(t) \) (no superposition from variables)

- Only inferences across theories: superpositions from shared constants

- Variable inactivity implies stable infiniteness:
 \(\Gamma \) reveals lack of stable infiniteness by generating cardinality constraint (e.g., \(y \simeq x \lor y \simeq z \)) not variable-inactive
Propositional logic, ground problems in built-in theories

- Build candidate model M
- Decision procedure:
 - model found: return sat;
 - failure: return $unsat$

- Backtracking
DPLL(\mathcal{T})

State of derivation: \(M \parallel F \)

- \(\mathcal{T}\text{-Propagate} \): add to \(M \) an \(L \) that is \(\mathcal{T}\)-consequence of \(M \)
- \(\mathcal{T}\text{-Conflict} \): detect that \(L_1, \ldots, L_n \) in \(M \) are \(\mathcal{T}\)-inconsistent

If \(T_i \)-solver builds \(T_i \)-model (model-based theory combination):

- \(\text{PropagateEq} \): add to \(M \) a ground \(s \simeq t \) true in \(T_i \)-model
DPLL(Γ+Γ): integrate Γ in DPLL(Γ)

- **Idea:** literals in M can be premises of Γ-inferences
- Stored as *hypotheses* in inferred clause
- *Hypothetical clause:* $(L_1 \land \ldots \land L_n) \triangleright (L'_1 \lor \ldots \lor L'_m)$
 interpreted as $\neg L_1 \lor \ldots \lor \neg L_n \lor L'_1 \lor \ldots \lor L'_m$
- Inferred clauses inherit hypotheses from premises
State of derivation: $M \parallel F$

- **Expansion**: take as premises *non-ground* clauses from F and R-literals (unit clauses) from M and add result to F
- **Backjump**: remove hypothetical clauses depending on undone assignments
- **Contraction**: as above + *scope level* to prevent situation where clause is deleted, but clauses that make it redundant are gone because of backjumping
DPLL(Γ+T): expansion inferences

- **Deduce**: Γ-rule γ, e.g., superposition, using *non-ground* clauses $\{H_1 \triangleright C_1, \ldots, H_m \triangleright C_m\}$ in F and ground R-literals $\{L_{m+1}, \ldots, L_n\}$ in M

 $$M \parallel F \implies M \parallel F, H \triangleright C$$

 where $H = H_1 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\}$

 and γ infers C from $\{C_1, \ldots, C_m, L_{m+1}, \ldots, L_n\}$

- Only R-literals: Γ-inferences ignore T-literals

- Take ground unit R-clauses from M as PropagateEq puts them there
DPLL(Γ^+T): contraction inferences

- Single premise $H \triangleright C$: apply to C (e.g., tautology deletion)
- Multiple premises (e.g., subsumption, simplification): prevent situation where clause is deleted, but clauses that make it redundant are gone because of backjumping
- **Scope level:**
 - $level(L)$ in $M L M'$: number of decided literals in $M L$
 - $level(H) = \max\{level(L) \mid L \in H\}$ and 0 for \emptyset
DPLL(Γ+T): contraction inferences

- Say we have $H \triangleright C$, $H_2 \triangleright C_2$, \ldots, $H_m \triangleright C_m$, and L_{m+1}, \ldots, L_n
- $C_2, \ldots, C_m, L_{m+1}, \ldots, L_n$ simplify C to C' or subsume it
- Let $H' = H_2 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\}$
- Simplification: replace $H \triangleright C$ by $(H \cup H') \triangleright C'$
- Both simplification and subsumption:
 - if $level(H) \geq level(H')$: delete
 - if $level(H) < level(H')$: disable (re-enable when backjumping $level(H')$)
DPLL(Γ+T) as a transition system

- Search mode: State of derivation $M \models F$
 - M sequence of assigned ground literals: partial model
 - F set of hypothetical clauses
- Conflict resolution mode: State of derivation $M \models F \models C$
 - C ground conflict clause

Initial state: M empty, F is $\{\emptyset \triangleright C \mid C \in \mathcal{R} \cup P\}$
Completeness of $\text{DPLL}(\Gamma+\mathcal{T})$

- **Refutational completeness** of the inference system:
 - from that of Γ, $\text{DPLL}(\mathcal{T})$ and equality sharing
 - made combinable by variable-inactivity
- **Fairness** of the search plan:
 - depth-first search fair only for ground SMT problems;
 - add *iterative deepening* on *inference depth*
DPLL(Γ+T): Summary

Use each engine for what is best at:

- DPLL(T) works on ground clauses
- Γ not involved with ground inferences and built-in theory
- Γ works on non-ground clauses and ground unit clauses taken from \(M \): inferences guided by current partial model
- Γ works on \(R \)-sat problem
Speculative inferences for decision procedures
How to get decision procedures?

- SW development: false conjectures due to mistakes in implementation or specification
- Need theorem prover that terminates on satisfiable inputs
- Not possible in general:
 - FOL is only semi-decidable
 - First-order formulæ of linear arithmetic with uninterpreted functions: not even semi-decidable

However we need less than a general solution.
Problematic axioms do occur in relevant inputs

Example:

1. $\neg (x \sqsupseteq y) \lor f(x) \sqsupseteq f(y)$ (Monotonicity)
2. $a \sqsupseteq b$ generates by resolution
3. $\{f^i(a) \sqsupseteq f^i(b)\}_{i \geq 0}$

E.g. $f(a) \sqsupseteq f(b)$ or $f^2(a) \sqsupseteq f^2(b)$ often suffice to show satisfiability
Idea: Allow speculative inferences

1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$
Idea: Allow speculative inferences

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \(f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \(a \sqsubseteq c \) and get \(\Box \): backtrack!
Idea: Allow speculative inferences

1. $\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg(a \sqsubseteq c)$

1. Add $f(x) \simeq x$
2. Rewrite $a \sqsubseteq f(c)$ into $a \sqsubseteq c$ and get \Box: backtrack!
3. Add $f(f(x)) \simeq x$
4. $a \sqsubseteq b$ yields only $f(a) \sqsubseteq f(b)$
5. $a \sqsubseteq f(c)$ yields only $f(a) \sqsubseteq c$
6. Terminate and detect satisfiability
Speculative inferences in \(\text{DPLL}(\Gamma+\mathcal{T}) \)

- Speculative inference: add *arbitrary* clause \(C \)
- To induce termination on sat input
- What if it makes problem unsat?!
- Detect conflict and backjump:
 - Keep track by adding \([C] \implies C\)
 - \([C]\): new propositional variable (a “name” for \(C \))
 - Speculative inferences are *reversible*
Speculative inferences in DPLL(Γ+Γ)

State of derivation: \(M \parallel F \)

Inference rule:

- \textit{SpeculativeIntro}: add \(\lceil C \rceil \triangleright C \) to \(F \) and \(\lceil C \rceil \) to \(M \)

- Rule \textit{SpeculativeIntro} also bounded by iterative deepening
Example as done by system

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x\)
2. Rewrite \(a \sqsubseteq f(c) \) into \([f(x) \simeq x] \triangleright a \sqsubseteq c\)
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x\)
2. Rewrite \(a \sqsubseteq f(c) \) into \([f(x) \simeq x] \triangleright a \sqsubseteq c\)
3. Generate \([f(x) \simeq x] \triangleright \Box\); Backtrack, learn \(\neg [f(x) \simeq x] \)
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)

 1. Add \(\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x \)
 2. Rewrite \(a \sqsubseteq f(c) \) into \(\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c \)
 3. Generate \(\lceil f(x) \simeq x \rceil \triangleright \square \); Backtrack, learn \(\neg \lceil f(x) \simeq x \rceil \)
 4. Add \(\lceil f(f(x)) \simeq x \rceil \triangleright f(f(x)) \simeq x \)
 5. \(a \sqsubseteq b \) yields only \(f(a) \sqsubseteq f(b) \)
 6. \(a \sqsubseteq f(c) \) yields only \(f(a) \sqsubseteq f(f(c)) \)
 rewritten to \(\lceil f(f(x)) = x \rceil \triangleright f(a) \sqsubseteq c \)
 7. Terminate and detect satisfiability
To decide satisfiability modulo \mathcal{T} of $\mathcal{R} \cup P$:

- Find sequence of “speculative axioms” U
- Show that there exists k s.t. k-bounded $\text{DPLL}(\Gamma + \mathcal{T})$ is guaranteed to terminate
 - with Unsat if $\mathcal{R} \cup P$ is \mathcal{T}-unsat
 - in a state which is not stuck at k if $\mathcal{R} \cup P$ is \mathcal{T}-sat
Decision procedures

- \mathcal{R} has single monadic function symbol f
- *Essentially finite*: if $\mathcal{R} \cup P$ is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
Decision procedures

- \mathcal{R} has single monadic function symbol f
- *Essentially finite*: if $\mathcal{R} \cup P$ is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- SpeculativeIntro adds “pseudo-axioms” $f^j(x) \simeq f^k(x)$, $j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
Decision procedures

- \mathcal{R} has single monadic function symbol f
- *Essentially finite*: if $\mathcal{R} \cup P$ is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- *SpeculativeIntro* adds “pseudo-axioms” $f^j(x) \simeq f^k(x)$, $j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
- Clause length limited by properties of Γ and \mathcal{R}
- Only finitely many clauses generated: termination without getting stuck
Situations where clause length is limited

Γ: Superposition, Resolution + negative selection, Simplification

Negative selection: only positive literals in positive clauses are active

- R is Horn
- R is ground-preserving: variables in positive literals appear also in negative literals; the only positive clauses are ground
Axiomatizations of type systems

Reflexivity \(x \sqsubseteq x \) (1)

Transitivity \(\neg (x \sqsubseteq y) \lor \neg (y \sqsubseteq z) \lor x \sqsubseteq z \) (2)

Anti-Symmetry \(\neg (x \sqsubseteq y) \lor \neg (y \sqsubseteq x) \lor x \simeq y \) (3)

Monotonicity \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \) (4)

Tree-Property \(\neg (z \sqsubseteq x) \lor \neg (z \sqsubseteq y) \lor x \sqsubseteq y \lor y \sqsubseteq x \) (5)

Multiple inheritance: \(\text{MI} = \{(1), (2), (3), (4)\} \)

Single inheritance: \(\text{SI} = \text{MI} \cup \{(5)\} \)
DPLL(Γ+T) with SpeculativeIntro adding $f^j(x) \simeq f^k(x)$ for $j > k$ decides the satisfiability modulo T of problems

- $\text{MI} \cup P$
- $\text{SI} \cup P$
- $\text{MI} \cup \text{TR} \cup P$ and $\text{SI} \cup \text{TR} \cup P$

where $\text{TR} = \{\neg (g(x) \simeq \text{null}), h(g(x)) \simeq x\}$