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Abstract. In this article, we present a short 2-basis for Boolean algebra in terms
of the Sheffer stroke and prove that no such 2-basis can be shorter. We also prove
that the new 2-basis is unique (for its length) up to applications of commutativity.
Our proof of the 2-basis was found by using the method of proof sketches and relied
on the use of an automated reasoning program.
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1. Introduction

There is an ongoing interest in finding “simple” axiom systems for
various algebras and logics, where simplicity is characterized by the
number of axioms, by the lengths of the axioms, and by the number
of distinct variable symbols appearing in the axioms of the system [8].
These measures often conflict with each other in the sense that we may
be able to improve one, but only at the expense of the others.

We have been developing automated reasoning techniques to search
for and prove simple axiom systems for Boolean algebra and related al-
gebras and logics in terms of various sets of operators. See, for example,
[4] and [5]. In this article, we show that the pair of equations

(x | y) | (x | (y | z)) = x (26a)
x | y = y | x (Commutativity)

is a 2-axiom system (2-basis) for Boolean algebra in terms of the Sheffer
stroke ‘|’.1 We also show that no 2-basis can be shorter and that the new
2-basis is unique (for its length) up to applications of commutativity.
This basis is especially simple in that it has a total length of only 18
variable and operator symbols (including equality) and requires only
three distinct variable symbols. To the best of our knowledge, this
system is strictly shorter than any other previously known 2-basis.

∗ This work was supported in part by National Science Foundation grant no.
CDA-9503064.

1 An application x|y of the Sheffer stroke typically is interpreted as a nand
operation, but it also can be interpreted as nor.
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Our proof of the 2-basis, which was found with the automated rea-
soning program Otter [2], was the result of a successful application of
the method of proof sketches [10]. After presenting the new 2-basis and
its properties, we briefly describe the method and the search.

We note that knowledge of the 2-basis presented in this article led
directly to the proof of previously unknown shortest single axioms for
Boolean algebra in terms of the Sheffer stroke [4]. Specifically, the single
axioms were first proved by deriving equations 26a and Commutativity.

2. Background

In 1913, Sheffer [7] presented the following 3-basis for Boolean algebra
in terms of the Sheffer stroke.

(x | x) | (x | x) = x (Sheffer 1)
x | (y | (y | y)) = (x | x) (Sheffer 2)
(x | (y | z)) | (x | (y | z)) = ((y | y) | x) | ((z | z) | x) (Sheffer 3)

More recently, a number of equivalent simplifications (“abridgements”)
of Sheffer’s system have been presented. These include, for example, five
systems presented by Meredith [6]. The simplest of these five systems
is a 2-basis that has a total length of 24 and requires three distinct
variable symbols.

(x | x) | (y | x) = x (Meredith 1)
x | (y | (x | z)) = ((z | y) | y) | x (Meredith 2)

The pair of equations {26a, Commutativity} is one of several candi-
date systems proposed for study by Stephen Wolfram [12]. Wolfram’s
interest in these equations arose from his research project A New Kind
of Science [13].

3. A Short 2-Basis

In this section, we prove the correctness of the new 2-basis. In the next
section, we prove that no such basis can be shorter and that the new
2-basis is unique (for its length) up to applications of commutativity.
Otter played a crucial role in the search for and discovery of the proof
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of correctness of the 2-basis. In Section 4, we describe briefly how we
used Otter and the method of proof sketches to find this proof.

Theorem 1. The pair of equations {26a, Commutativity} forms a
2-basis for Boolean algebra in terms of the Sheffer stroke.

Proof. If suffices to show that this pair is equivalent to the original
Sheffer system. That 26a and Commutativity are theorems in Boolean
algebra follows from a straightforward evaluation, so they necessarily
are derivable from the Sheffer axioms. It remains to show then that each
of the Sheffer axioms can be derived from 26a and Commutativity.

In the following proof, derivations of the Sheffer axioms are
flagged with a * symbol. Applications of paramodulation are indi-
cated by using a vector notation for terms. Specifically, in the vector
E.a1.a2.a3.a4..., E is an equation (clause) number; a1 refers to an
argument of the equation—1 for the left side of the equation or 2 for the
right side; a2 refers to an argument of E.a1; a3 refers to an argument of
E.a1.a2; and so on. For example, the justification 4.1.2 ← 3.1 given
for clause 9 indicates paramodulation from the left side of clause 3 into
the subterm (y|(x|z)) of clause 4. The word “flip” in a justification
refers to an application of symmetry of equality.

1. (x|y)|(x|(y|z)) = x (26a)

2. x|y = y|x (Commutativity)

3. (x|y)|(x|(z|y)) = x [1.1.2.2 ← 2.1]

4. (x|y)|(y|(x|z)) = y [1.1.1 ← 2.1]

5. x|((x|y)|(z|(x|(u|y)))) = x|y [3.1.1 ← 3.1]

6. (x|y)|(y|(z|x)) = y [3.1.1 ← 2.2]

7. ((x|y)|(z|y))|x = x|y [3.1.2 ← 3.1]

8. (x|(y|z))|(x|z) = x [3.1 ← 2.2]

9. (x|(x|y))|x = x|y [4.1.2 ← 3.1]

10. (x|y)|((x|z)|y) = y [4.1.2 ← 2.2]

11. (x|(y|z))|(y|x) = x [4.1 ← 2.2]

12. ((x|y)|(x|z))|z = x|z [6.1.2 ← 4.1]

13. (x|(y|z))|(z|x) = x [6.1 ← 2.2]

14. x|((y|x)|(z|y)) = y|x [8.1.1 ← 6.1]

15. (x|(y|(z|x)))|y = y|(z|x) [6.1.2 ← 8.1]

16. ((x|(y|z))|z)|x = x|(y|z) [3.1.2 ← 8.1]

* 17. (x|x)|(x|y) = x [10.1.2 ← 9.1]

18. x|((x|y)|(z|(x|x))) = x|y [6.1.1 ← 17.1]
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19. x|(y|(x|(y|z))) = x|(y|z) [11.1.1 ← 11.1]

20. x|(y|(x|x)) = x|x [13.1.1 ← 17.1]

21. x|(y|(x|(z|y))) = x|(z|y) [13.1.1 ← 8.1]

* 22. (x|y)|(y|y) = y [4.1.2 ← 20.1]

23. (x|(y|z))|(x|(u|(y|x))) = (y|x)|(x|(y|z)) [14.1.2.1 ← 4.1]

24. x|(y|(y|x)) = x|x [15.1.1 ← 4.1 (flip)]

25. x|(y|(x|y)) = x|x [15.1.1 ← 1.1 (flip)]

26. (x|x)|y = y|(y|x) [15.1.1 ← 24.1]

27. (x|x)|((x|y)|(z|(x|z))) = z|(x|z) [10.1.1 ← 25.1]

28. x|(x|(y|y)) = y|x [26.1.1 ← 17.1 (flip)]

29. x|(y|y) = x|(x|y) [26.1 ← 2.2]

30. ((x|y)|(x|y))|(x|x) = (x|x)|x [26.2.2 ← 17.1]

31. x|(x|y) = x|(y|y) [2.1 ← 26.1]

32. x|(x|(y|y)) = x|y [28.2 ← 2.2]

33. (x|y)|y = y|(x|x) [9.1.1 ← 28.1]

34. x|(y|y) = x|(y|x) [29.2.2 ← 2.2]

35. (x|y)|x = x|(y|y) [29.2 ← 2.2 (flip)]

36. x|(y|x) = (y|y)|x [2.1 ← 34.1]

37. ((x|y)|(z|y))|(x|x)
= (x|y)|((x|y)|(z|y)) [35.1.1 ← 7.1 (flip)]

38. x|((x|y)|(z|(x|z))) = x|y [18.1.2.2 ← 34.1]

39. x|(y|(x|(z|y))) = x|(y|z) [19.1.2.2.2 ← 2.2]

40. (x|y)|(x|(x|(z|y))) = (x|y)|(x|y) [19.1.2 ← 5.1 (flip)]

41. x|(y|z) = x|(z|y) [39.1 ← 21.1]

42. (x|y)|z = z|(y|x) [41.1 ← 2.2]

43. x|(y|z) = (z|y)|x [41.2 ← 2.2]

44. (x|y)|(z|u) = (u|z)|(y|x) [42.1 ← 41.2]

45. ((x|y)|(x|y))|(x|x) = x|(x|x) [30.2 ← 43.2]

46. ((x|x)|(x|x))|((x|y)|(z|(x|z)))
= ((x|y)|(z|(x|z)))|(z|(x|z)) [36.1.2←27.1 (flip)]

47. (x|(y|(z|y)))|(x|(x|(z|z)))
= (x|(y|(z|y)))|(x|(y|(z|y))) [40.1.2.2.2 ← 25.1]

48. (x|(y|z))|(x|(u|(y|x))) = x [23.2 ← 4.1]

49. x|(y|(x|(z|(y|x)))) = x|x [16.1.1 ← 48.1 (flip)]

50. x|(y|(z|(x|y))) = x|(y|y) [19.1.2 ← 49.1 (flip)]

51. x|((y|y)|(z|(x|(x|y)))) = x|((y|y)|(y|y)) [50.1.2.2.2 ← 31.2]
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52. x|(y|((y|x)|z)) = x|(y|y) [50.1.2.2 ← 43.1]

53. (x|y)|((x|y)|(x|y)) = x|(x|x) [37.1 ← 45.1 (flip)]

54. (x|(y|y))|(((y|x)|x)|((y|x)|x))
= (y|x)|((y|x)|(y|x)) [53.1.1 ← 33.1]

55. x|((y|y)|(z|(x|(x|y)))) = x|y [51.2.2 ← 22.1]

56. ((x|x)|(x|x))|((x|y)|(z|(x|z)))
= (z|(x|z))|((x|y)|(x|y)) [46.2 ← 33.1]

57. (x|(y|y))|((x|(y|y))|((y|x)|x))
= (y|x)|((y|x)|(y|x)) [54.1.2.1 ← 33.1]

58. (x|(y|y))|((x|(y|y))|(x|(y|y)))
= (y|x)|((y|x)|(y|x)) [57.1.2.2 ← 33.1]

59. (x|y)|((x|y)|(x|y)) = y|(y|y) [58.1 ← 53.1 (flip)]

60. x|(x|x) = y|(y|y) [59.1 ← 53.1]

61. (x|(y|(z|y)))|(x|(y|(z|y)))
= (x|(y|(z|y)))|(x|z) [47.1.2 ← 32.1 (flip)]

62. (x|(y|x))|((y|z)|(y|z))
= y|((y|z)|(x|(y|x))) [56.1.1 ← 22.1 (flip)]

63. (x|(y|x))|((y|z)|(y|z)) = y|z [62.2 ← 38.1]

* 64. x|(y|(y|y)) = x|x [18.1.2 ← 60.1]

65. (x|y)|(x|(z|(z|z))) = x [1.1.2.2 ← 60.1]

66. (x|((y|z)|x))|(y|((y|z)|(y|(u|(u|u)))))
= (y|z)|(y|(u|(u|u))) [63.1.2.1 ← 65.1]

67. (x|((y|z)|x))|(y|y) = (y|z)|(y|(u|(u|u))) [66.1.2.2 ← 65.1]

68. (x|((y|z)|x))|(y|y) = y [67.2 ← 65.1]

69. (x|(x|(y|z)))|(z|z) = z [68.1.1.2 ← 43.2]

70. x|((y|(y|(z|x)))|x) = y|(y|(z|x)) [8.1.1 ← 69.1]

71. x|(y|(z|(z|(u|(y|x))))) = x|(y|y) [52.1.2.2 ← 70.1]

72. x|(y|(y|(z|(x|y)))) = x|(y|(x|x)) [19.1.2 ← 71.1 (flip)]

73. x|(y|(y|(z|(x|y)))) = x|x [72.2 ← 20.1]

74. (x|x)|(y|(y|(z|(y|(x|y)))))
= (x|x)|(x|x) [73.1.2.2.2.2 ← 36.2]

75. (x|x)|(y|(y|(z|(y|(x|y))))) = x [74.2 ← 22.1]

76. x|(((y|(x|(z|x)))|(y|(x|(z|x))))|z)
= x|(y|(x|(z|x))) [55.1.2.2 ← 75.1]

77. x|(((y|(x|(z|x)))|(y|z))|z)
= x|(y|(x|(z|x))) [76.1.2.1 ← 61.1]

78. x|(y|(x|(z|x))) = x|(y|z) [77.1.2 ← 12.1 (flip)]

79. x|(y|(x|(x|z))) = x|(y|z) [78.1.2.2.2 ← 2.2]
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80. x|(y|(x|(z|z))) = x|(y|z) [78.1.2.2 ← 34.2]

81. x|(y|(z|x)) = x|(y|(z|z)) [79.1.2.2 ← 28.1]

82. (x|(y|z))|(x|(y|z)) = (x|(y|z))|(x|(z|z)) [81.1.2 ← 21.1]

83. (x|(y|(x|(z|z))))|(x|(z|z))
= (x|(y|z))|(x|(y|z)) [82.2.1 ← 80.2 (flip)]

84. (x|(y|y))|(x|(z|(x|(y|y)))) = (x|(z|y))|(x|(z|y)) [83.1 ← 2.2]

85. (x|(y|y))|(x|(z|z)) = (x|(z|y))|(x|(z|y)) [84.1 ← 81.1]

* 86. ((x|x)|y)|((z|z)|y) = (y|(x|z))|(y|(x|z)) [85.1 ← 44.2]

Steps 17 and 22 are generalizations of Sheffer 1; 64 is Sheffer 2; and 86
is the flip of Sheffer 3.

4. Properties

Theorem 2. Any 2-basis for Boolean algebra in terms of the Sheffer
stroke has a total of at least six applications of the Sheffer stroke
operator.

Proof. We show that no pair of equations with a total of fewer than
six applications of the Sheffer stroke operator can be a 2-basis. In
particular, each pair is ruled out either because at least one of the
equations in the pair is not a Boolean identity or because there is a
model that satisfies both equations in the pair but does not satisfy
some Boolean identity.

By simple evaluation with the standard 2-element model for the
Sheffer stroke, it is straightforward to see that the only possible 2-bases
with strictly fewer than six applications of the Sheffer stroke operator
will consist of Commutativity and either

(x | x) | (x | x) = x (EQ-2.1)

or a commutative variant of

(x | x) | (x | y) = x. (EQ-2.2)

But each of these remaining candidate pairs can be ruled out with the
following 3-element model for |.

M1 :

| 0 1 2
0 2 2 2
1 2 1 1
2 2 1 0

Specifically, this model satisfies each of the candidate 2-bases, but it
does not satisfy the Boolean identity x | (x | x) = y | (y | y).

2basis_v3.tex; 20/01/2003; 22:00; p.6



A SHORTEST 2-BASIS FOR BOOLEAN ALGEBRA 7

All candidate pairs have been ruled out, so the result follows.

Since the length of an equation corresponds directly to the number
of applications of the Sheffer stroke operator, it follows as a trivial
corollary to Theorem 2 that the 2-basis {26a, Commutativity} indeed
is a shortest 2-basis. The following theorem establishes that this 2-basis
is unique up to applications of commutativity.

Theorem 3. The pair of equations {26a, Commutativity} and its com-
mutative variants are the only shortest 2-bases for Boolean algebra in
terms of the Sheffer stroke.

Proof. We show this by ruling out all of the other possibilities. Since
any axiom must be a Boolean identity, we can restrict ourselves to the
following two cases.

1. Commutativity together with one Boolean identity having four
applications of the Sheffer stroke operator

2. Two Boolean identities, each having three applications of the
Sheffer stroke operator

Case 1. By considering all well-formed formulas of the appropriate
length, and by simple evaluation with the standard 2-element model
for the Sheffer stroke, it is straightforward to see that the only iden-
tities with exactly four applications of the Sheffer stroke operator
are (same-length) instances and commutative variants of the following
three equations.

(x | x) | (y | (y | y)) = x (EQ-3.1)
(x | x) | (x | (y | z)) = x (EQ-3.2)
(x | y) | (x | (y | z)) = x (EQ-3.3)

Equation EQ-3.1 (including its instances and commutative variants)
can be ruled out with the following 3-element model.

M2 :

| 0 1 2
0 0 2 1
1 2 2 0
2 1 0 1

Specifically, M2 is a commutative model for EQ-3.1, but it does not
satisfy the Boolean identity EQ-2.2. EQ-3.2 (including its instances
and commutative variants) can be ruled out by using the model M1

from the proof of Theorem 2. EQ-3.3 is equation 26a, but we must rule
out its (same-length) proper instances:
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(x | x) | (x | (x | z)) = x (EQ-3.3a)
(x | y) | (x | (y | x)) = x (EQ-3.3b)
(x | y) | (x | (y | y)) = x (EQ-3.3c)

EQ-3.3a is ruled out because it is an instance of EQ-3.2, which already
has been ruled out by model M1. EQ-3.3b and EQ-3.3c are ruled out
by the following commutative model that does not satisfy the Boolean
identity EQ-3.3.

M3 :

| 0 1 2
0 2 2 1
1 2 2 0
2 1 0 1

Case 2. The candidates to consider are pairs of commutative variants
of equation EQ-2.2. These pairs all can be ruled out by using the model
M1 from the proof of Theorem 2.

Since all other cases have been ruled out, the pair {26a, Commu-
tativity} and its commutative variants indeed are the only shortest
2-bases for Boolean algebra in terms of the Sheffer stroke.

We note that we used the model-generation program MACE [3] to
find some of the models presented in this section.

5. The Search

Our search for a proof of Theorem 1 involved sequences of Otter
experiments and relied heavily on the use of hints [9] and on the method
of proof sketches [10]. Under the hints strategy, a generated clause is
given special consideration (as defined by the user) if it subsumes or is
subsumed by a user-supplied hint clause. The hints strategy is closely
related to the weighting strategy [1], in which clauses are assigned
weights that are used to help direct the search for a proof. In contrast
to weighting, the hints strategy focuses directly on the identification
of key clauses rather than on the general calculation of weights. Any
generated clause that subsumes or is subsumed by a user-supplied hint
clause is identified as being “interesting”. The weight of such a clause is
adjusted (either positively or negatively) according to user preferences;
the cases of subsuming a hint, being subsumed by a hint, or both are
controlled separately. Being based on subsumption, the hints strategy
adds a semantic or logical component to the evaluation of a clause.

A proof sketch for a theorem T is a sequence of clauses giving a
set of conditions sufficient to prove T . In the ideal case, a proof sketch
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consists of a sequence of lemmas, where each lemma is fairly easy to
prove. In any case, the clauses of a proof sketch identify potentially
notable milestones on the way to finding a proof. From a strategic
standpoint, it is desirable to recognize when we have achieved such
milestones and to adapt the continued search for a proof accordingly.
In particular, we wish to focus our attention on such milestone results
and pursue their consequences sooner rather than later.

The hints strategy provides a natural and effective way to take full
advantage of a proof sketch in the search for a proof. Including each
clause from the proof sketch as a hint clause and making an Otter
assignment such as

% decrease by 100 the weight of any derived
% clause that back subsumes a hint clause
assign(bsub_hint_add_wt, -100).

virtually ensure that when a clause is derived that back subsumes a
hint clause—in particular, one of the key milestone clauses of a proof
sketch—the newly generated clause will become the focus of attention
(that is, chosen as the “given” clause) as soon as possible.

The use of hints is additive in the sense that hints from multiple
proof sketches or from sketches for different parts of a proof can all be
included at the same time. For this reason, hints are particularly valu-
able for “gluing” subproofs together and completing partial proofs, even
when wildly different search strategies were used to find the individual
subproofs.

In [10], we consider how the generation and use of proof sketches,
together with the sophisticated strategies and procedures supported
by an automated reasoning program such as Otter, can be used to
find proofs to challenging theorems, including open questions. The
general approach used in the search for simple axiom systems is to
derive a known axiom system from some sufficient set of formulas—for
example, a target axiom system with extra assumptions included—
and then successively eliminate formulas from the input set, using all
previous proofs as hints. For the Boolean algebra problem, we started
with Wolfram’s full set of candidate equations [11] and systematically
eliminated them until only equations 26a and Commutativity remained.
Because the elimination of equations was not strictly monotonic—at
each step we considered the elimination of different candidates—we
have a large number of proofs of intermediate results for various sets
of equations. Rather than being a detriment to our search, this set of
results served as a rich set of proof sketches (hints) that ultimately led
us to the final result.

Although the proofs we initially found generally were proofs by
contradiction and often relied on the use of demodulation, we were

2basis_v3.tex; 20/01/2003; 22:00; p.9



10 ROBERT VEROFF

able to use the techniques described in [10] to convert these proofs into
strictly forward derivations of the desired theorems from the axioms.
We find that strictly forward, demodulation-free proofs tend to make
better proof sketches.

The intermediate proofs used in this study were not all found with
a single, uniform strategy. The elimination of an equation as an as-
sumption generally required a number of different tries with varying
demodulation and weighting strategies. Our current work includes both
the automation of the systematic derivation and use of proof sketches
as well as the general improvement of the strategies for searching for
individual proofs.
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