ON A HOMOMORPHISM PROPERTY OF HOOPS
ROBERT VEROFF AND MATTHEW SPINKS

ABSTRACT. We present a syntactic proof that equation
e—(b-c) = (e—=b)(e—c)

is satisfied in a hoop A for any idempotent e € A and all b,c € A.
The theorem both answers a question and generalizes a result of
Ferreirim [6].

1. INTRODUCTION

A hoop is an algebra (A;-,— 1) of type (2,2,0) that satisfies the
identities:

- (y-2)=(r-y) 2 (M1)
ToyNYy-w (M2)
r-l=xz (M3
r—r~1 (M4)

(x—y)a=y—x)y (M5)

(-y) —mzma—(y—2) (M6)

We denote the variety of hoops by HO.

Hoops were first investigated by Biichi and Owens in an unpub-
lished manuscript [5] of 1975, and they have since been studied by
Ferreirim [6, 7], Blok and Ferreirim [2, 3|, Aglian6 and Panti [1] and
Blok and Pigozzi [4] among others. The study of hoops is motivated by
their occurrence both in universal algebra and algebraic logic. Typical
examples of hoops include both Brouwerian semilattices and the pos-
itive cones of lattice ordered Abelian groups, while hoops structurally
enriched with normal multiplicative operators naturally generalize the
normal Boolean algebras with operators of Jénsson and Tarski [8, 9].

For details, see in particular Blok and Pigozzi [4].
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For a hoop A, an idempotent is an element e € A with the property
that e-e = e. It is well known and easy to see [4, Lemma 1.9(v)] that for
any hoop A and idempotent e € A, the following equation is satisfied
for all b,c € A:

e—(b—c)=(e—b) — (e —c). (1)

For any (—,-,1)-term t := t(Z), the k-th iterated power t* 0 < k <
w, is defined recursively by:

0.=1
tho=¢ . ¢

A hoop is said to be k-potent if it satisfies the identity:

In her Ph.D. thesis [6, Chapter 3, Lemma 1.10], Ferreirim shows that
in addition to (1), any k-potent hoop A satisfies the following equation
for any idempotent e € A and all b, c € A:

e—(b-c)=(e—0b)-(e—c). (2)

Together, (1) and (2) assert that the map a — (e — a) is an en-
domorphism for any k-potent hoop A and fixed idempotent e € A.
This implies in particular that H(A) C IS(A) for any finite hoop A [6,
Chapter 3, Lemma 1.11]. (Here H(A) and IS(A) denote the class of all
homomorphic images of A and the class of all isomorphic copies of sub-
algebras of A, respectively.) This strong property plays an important
role in the proofs of several results in the theory of hoops, including
Ferreirim’s characterization of finitely based varieties of k-potent hoops
(6, Chapter 3, Theorem 1.13], and her characterization of varieties of
hoops in which every subquasivariety is itself a variety [6, Chapter 3,
Theorem 2.13].

The proof of (2) given by Ferreirim in [6, Chapter 3, Lemma 1.10]
relies on a sophisticated model-theoretic argument that exploits her
characterization of the subdirectly irreducible k-potent hoops [6, Chap-
ter 2, Theorem 3.12]. Immediately following her proof of (2) Ferreirim
remarks [6, p. 58]: ‘A syntactic proof of statement (2) (e — b) - (e —
¢) =e — (b-c) in Lemma 1.10 would certainly be more elegant. We
couldn’t find one and propose it as an open problem.’
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In this note, we present a solution to Ferreirim’s problem by ex-
hibiting a syntactic proof of her equation (2). Moreover, our solution
generalizes Ferreirim’s result to all hoops, since our proof does not as-
sume k-potency. In particular, our proof holds for the subvariety L of
Lukasiewicz hoops, namely the class of all hoops satisfying the commu-
tative identity (r — y) — y ~ (y — x) — x; the significance of L in
the theory of HO lies in a result due to Ferreirim [6, Chapter 3, Corol-
lary 3.4] that shows Lukasiewicz hoops are, in a precise technical sense,
the building blocks of arbitrary hoops. We note that Ferreirim’s proof
of (2) does not extend to L, since the variety of Lukasiewicz hoops is
not k-potent for any k < w by [6, Chapter 2, Corollary 4.17] and [4,
Corollary 5.5].

2. THE PROOF

In the following (machine-oriented) proof, the justification [i — j]
indicates paramodulation from ¢ into 7, that is, unifying the left-hand
side of ¢ with a subterm of j, instantiating 7 with the corresponding sub-
stitution, and replacing the subterm with the corresponding instance
of the right-hand side of 1.

La-(y-2) = (x-y)-2 [M1]
2.y = y-x [M2]
.xz-1 == [M3]
4. x—zx =1 [M4]
S.(r—y)x=(y—z)y [M5]
6. (x-y) =2z =2—(y—2) [M6]
T.ee = e e is an idempotent]
8.x-(y-2) = z-(2-y) [1—2]
9. (x-y)-z = (y-2)a [1— 2]
10. (x-y)-z2 = z-(2-y 2 — 1]
11.1-2 = x 2 — 3]
1220 —>2 = y—y 4 — 4]
183.2-(y—vy) ==z [4 — 3]
W (z—y)-2z =y (y— 2 2 — 5]
5. ((x—y)a)—z = (y—2)=(y—2) 5 — 6]
16. (x-y) =2z = y— (r— 2) 2 — 6]
7. e—(e—x) = e—u [7 — 6]
18.e-(e-x) = ¢e-x 7 — 1]
19. ((z —y)-2)—y = z2—2 6 — 12]
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(- y) =y = v—(2—2)
- (y— (22— 2)) =z
(x-y)-=
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- (y—(z—(20y) ==
(x—y)x)—z = 2—2
r—((r—y —y = 2—z

T—(y—y) = z2—(x—2)

(= (y-2)-(z—=(y-2)—y =y
e—(x—(e—y) = z—(e—y)

(z—y) (z—y)—2) = 2-(x— (2 —y))
z(y—((y—2)—2) =u

(x—y) —(z—2) = u—u

( (((z—y) =y —a2) =2

r—(y—wx) =
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e-(zr—e) = e 3 — 58]
e-((x—e)y) =ey 59 — 1]
e-(e—x) =e-x [60 — 25]
(e—z)—(e—y) = (e2)—y 61 — 16]
(e—z)—=(e—y) = z—(e—>y) (16 — 62]
(e—zxz)—(e—y) = e—(xr—y) (6 — 62]
(e =) ((e =) = (e > y))

= (e—y) (y—(e—2) 63 — 23]
- ((y—(z-u) > (y—2) == 24 — 46]
(z—y) (z—y) = (@—>(y-2) =x—(y 2) [23— 66
(= (z-y) = (z = (z-y) = y) = 2) = y— 2 [28 — 20]
(r—=-2) (z—(z-y) -y =y 2 — 32]
(#—((y—2)-2) (y— (- ((y—2)-2)—>2)

= Yy—=z 27 — 32]
(z—y)—=((z—2)=(2—y) =1 53 — 43]
((z—=y)—y) —z)=(x—2) =1 51 — 71]
(r—=y) —y) =y -1 =a—y (72 — 37]
(—=y)—y) =y = z—y 3 — 73]
= ((z—(z-y)—2) =2x-(@y—2) [6 — 56]
(r—y) (z—=(z—y) —(y-2) = z—(y-2) [66— 34
=y ((z—y) —y) =y = x>y —y) — (y-2))

= ((z—y)—y) —(y-2) (74 — 67]
(= (z-y) =y (y—(y-2)

= (x—=(z-y)—(y-2) (68 — 76]
(e—z)(e—(z—y) = (e—y) (y— (e —x)) [64— 65
(e—(z-€))-((x-e) > (e—1) = e—uw 28 — 79]
e—(r-e) =e—u [54 — 80]
e—(z-(e-y) =e—(y ) 22 — 81]
e—(x-(ey) = e—(r-y) [10 — 81]
e—=(x-(ey) = e—(rv:-(e—y) [61 — 83]
e~ (rv-(e—y) = e—(y o) 82 — 84]
e—(e—z)y) =e—(z-y) 2 — 85
(e—z)—=(e—(y-2) = e—=(x—(le—y)2) [86 — 64]
e—(—=(e—y)2) =e—(z—(y2) (64 — 87]
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((z—=(x-y) —y)—y)

(2= ((((x = (z-y) = y) = (z — (y-2))

(= (z-y) —y)) — (v-2)))

=z— (y-x) (69 — 70]
(z—=y)- (Y= 2) = (r—y)—y —(y 2z) [50—77
(= (v-y) —y) —y) — (y-2)

= (x—(r-y) —(y-2) [78 — 90]
((z—= (v y) —y) —y)

(r—=(((x—=(z-y) =y) —y) — (y-)))

= x—(y-o) (69 — 89
((z—=(z-y) —y) —y) (- ((z—(r-y) — (y )

= z— (y x) 91 — 92]
((z = (r-y) —y)—y) (= (y— (y-2))

= z— (y-x) (75 — 93]
(r—=(v-y) —»y) —y = x— (y-2) 28 — 94]
(r—=(y-2) =y —y = 2—(y ) 2 — 95]

¢c— (((z = ((e—=y)-2) = (e =y) = (e —=y))

(e ) ) 33 — 96)
e ((emy)a) = 2 (e—y)a) (96— 07
r—(e—y)z) =e—(z—(y ) (98 — 88]
r—(e—y)-z) = x—(e—(y 2) 27 — 99]
- (r—(e—=(y-2)) = (e—=y)z [100 — 47]
(e—2z)-((e—1x) = (e = (z-y)))

= (e—vy) (e —2) [85 — 101]
(e—ax)-(e—y) =e—(y ) (67 — 102]
=) (e—=y) = c— (z-y) 2 - 103

This completes the proof.

Note. This proof was obtained with the assistance of the automated
reasoning program Otter [10], using the method of proof sketches [12].
See [11] for examples of the application of automated reasoning to a
wide range of problems in equational logic.
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