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Abstract. We present a syntactic proof that equation

e → (b · c) = (e → b) · (e → c)

is satisfied in a hoop A for any idempotent e ∈ A and all b, c ∈ A.
The theorem both answers a question and generalizes a result of
Ferreirim [6].

1. Introduction

A hoop is an algebra 〈A; ·,→, 1〉 of type 〈2, 2, 0〉 that satisfies the
identities:

x · (y · z) ≈ (x · y) · z (M1)

x · y ≈ y · x (M2)

x · 1 ≈ x (M3)

x → x ≈ 1 (M4)

(x → y) · x ≈ (y → x) · y (M5)

(x · y) → z ≈ x → (y → z). (M6)

We denote the variety of hoops by HO.

Hoops were first investigated by Büchi and Owens in an unpub-
lished manuscript [5] of 1975, and they have since been studied by
Ferreirim [6, 7], Blok and Ferreirim [2, 3], Aglianó and Panti [1] and
Blok and Pigozzi [4] among others. The study of hoops is motivated by
their occurrence both in universal algebra and algebraic logic. Typical
examples of hoops include both Brouwerian semilattices and the pos-
itive cones of lattice ordered Abelian groups, while hoops structurally
enriched with normal multiplicative operators naturally generalize the
normal Boolean algebras with operators of Jónsson and Tarski [8, 9].
For details, see in particular Blok and Pigozzi [4].
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For a hoop A, an idempotent is an element e ∈ A with the property
that e·e = e. It is well known and easy to see [4, Lemma 1.9(v)] that for
any hoop A and idempotent e ∈ A, the following equation is satisfied
for all b, c ∈ A:

e → (b → c) = (e → b) → (e → c). (1)

For any 〈→, ·,1〉-term t := t(~x), the k-th iterated power tk, 0 < k <
ω, is defined recursively by:

t0 := 1

tk := t · tk−1.

A hoop is said to be k-potent if it satisfies the identity:

xk ≈ xk−1.

In her Ph.D. thesis [6, Chapter 3, Lemma 1.10], Ferreirim shows that
in addition to (1), any k-potent hoop A satisfies the following equation
for any idempotent e ∈ A and all b, c ∈ A:

e → (b · c) = (e → b) · (e → c). (2)

Together, (1) and (2) assert that the map a 7→ (e → a) is an en-
domorphism for any k-potent hoop A and fixed idempotent e ∈ A.
This implies in particular that H(A) ⊆ IS(A) for any finite hoop A [6,
Chapter 3, Lemma 1.11]. (Here H(A) and IS(A) denote the class of all
homomorphic images of A and the class of all isomorphic copies of sub-
algebras of A, respectively.) This strong property plays an important
role in the proofs of several results in the theory of hoops, including
Ferreirim’s characterization of finitely based varieties of k-potent hoops
[6, Chapter 3, Theorem 1.13], and her characterization of varieties of
hoops in which every subquasivariety is itself a variety [6, Chapter 3,
Theorem 2.13].

The proof of (2) given by Ferreirim in [6, Chapter 3, Lemma 1.10]
relies on a sophisticated model-theoretic argument that exploits her
characterization of the subdirectly irreducible k-potent hoops [6, Chap-
ter 2, Theorem 3.12]. Immediately following her proof of (2) Ferreirim
remarks [6, p. 58]: ‘A syntactic proof of statement (2) (e → b) · (e →
c) = e → (b · c) in Lemma 1.10 would certainly be more elegant. We
couldn’t find one and propose it as an open problem.’
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In this note, we present a solution to Ferreirim’s problem by ex-
hibiting a syntactic proof of her equation (2). Moreover, our solution
generalizes Ferreirim’s result to all hoops, since our proof does not as-
sume k-potency. In particular, our proof holds for the subvariety L of
 Lukasiewicz hoops, namely the class of all hoops satisfying the commu-
tative identity (x → y) → y ≈ (y → x) → x; the significance of L in
the theory of HO lies in a result due to Ferreirim [6, Chapter 3, Corol-
lary 3.4] that shows  Lukasiewicz hoops are, in a precise technical sense,
the building blocks of arbitrary hoops. We note that Ferreirim’s proof
of (2) does not extend to L, since the variety of  Lukasiewicz hoops is
not k-potent for any k < ω by [6, Chapter 2, Corollary 4.17] and [4,
Corollary 5.5].

2. The Proof

In the following (machine-oriented) proof, the justification [i → j]
indicates paramodulation from i into j, that is, unifying the left-hand
side of i with a subterm of j, instantiating j with the corresponding sub-
stitution, and replacing the subterm with the corresponding instance
of the right-hand side of i.

1. x · (y · z) = (x · y) · z [M1]
2. x · y = y · x [M2]
3. x · 1 = x [M3]
4. x → x = 1 [M4]
5. (x → y) · x = (y → x) · y [M5]
6. (x · y) → z = x → (y → z) [M6]
7. e · e = e [e is an idempotent]
8. x · (y · z) = z · (x · y) [1 → 2]
9. (x · y) · z = (y · z) · x [1 → 2]

10. (x · y) · z = x · (z · y) [2 → 1]
11. 1 · x = x [2 → 3]
12. x → x = y → y [4 → 4]
13. x · (y → y) = x [4 → 3]
14. (x → y) · x = y · (y → x) [2 → 5]
15. ((x → y) · x) → z = (y → x) → (y → z) [5 → 6]
16. (x · y) → z = y → (x → z) [2 → 6]
17. e → (e → x) = e → x [7 → 6]
18. e · (e · x) = e · x [7 → 1]
19. ((x → y) · x) → y = z → z [6 → 12]
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20. (x · y) → y = x → (z → z) [12 → 6]
21. x · (y → (z → (y · z))) = x [6 → 13]
22. (x · y) · z = y · (z · x) [2 → 8]
23. x · (x → y) = y · (y → x) [2 → 14]
24. (x · (x → y)) → z = (y → x) → (y → z) [14 → 6]
25. e · ((x → e) · x) = e · (e → x) [14 → 18]
26. (x · (x → y)) → z = y → ((y → x) → z) [14 → 16]
27. x → (y → z) = y → (x → z) [6 → 16]
28. x · (y → (z → (z · y))) = x [16 → 13]
29. ((x → y) · x) → x = z → z [5 → 19]
30. x → ((x → y) → y) = z → z [16 → 19]
31. x → (y → y) = z → (x → z) [20 → 16]
32. (x → (y · x)) · ((x → (y · x)) → y) = y [21 → 23]
33. e → (x → (e → y)) = x → (e → y) [17 → 27]
34. (x → y) · ((x → y) → z) = z · (x → (z → y)) [27 → 23]
35. x · (y → ((y → z) → z)) = x [27 → 13]
36. (x → y) → (z → z) = u → u [20 → 29]
37. ((x → y) → y) · (((x → y) → y) → x) = x [23 → 35]
38. x · (y → (z → z)) = x [36 → 35]
39. x · (y → (z → y)) = x [31 → 38]
40. x · ((y · z) → z) = x [20 → 38]
41. x · ((y · z) → y) = x [16 → 38]
42. ((x → y) → y) · (x → y) = y [14 → 39]
43. x → (y → x) = 1 [11 → 39]
44. (x · y) → x = 1 [6 → 43]
45. (x · (y · z)) → (z · x) = 1 [22 → 44]
46. x · (((y · z) · u) → y) = x [9 → 40]
47. x · (x → (y · x)) = y · x [23 → 40]
48. x · (x → (x · y)) = x · y [23 → 41]
49. (x → x) → x = x [13 → 42]
50. ((x → y) → y) → ((x → y) → z) = y → z [42 → 6]
51. (x → ((x → y) → y)) → z = z [30 → 49]
52. (x · y) → ((z → y) · x) = 1 [42 → 45]
53. (x → y) → (x → z) = (y → x) → (y → z) [6 → 15]
54. x · ((y · z) → (u → y)) = x [6 → 46]
55. x · (x → (y · x)) = x · y [2 → 47]
56. x → ((x → (x · y)) → z) = (x · y) → z [48 → 6]
57. e → ((x → e) · e) = 1 [7 → 52]
58. e · (x → e) = e · 1 [57 → 55]
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59. e · (x → e) = e [3 → 58]
60. e · ((x → e) · y) = e · y [59 → 1]
61. e · (e → x) = e · x [60 → 25]
62. (e → x) → (e → y) = (e · x) → y [61 → 16]
63. (e → x) → (e → y) = x → (e → y) [16 → 62]
64. (e → x) → (e → y) = e → (x → y) [6 → 62]
65. (e → x) · ((e → x) → (e → y))

= (e → y) · (y → (e → x)) [63 → 23]
66. x · ((y → (z · u)) → (y → z)) = x [24 → 46]
67. (x → y) · ((x → y) → (x → (y · z))) = x → (y · z) [23 → 66]
68. (x → (x · y)) → (((x → (x · y)) → y) → z) = y → z [28 → 26]
69. (x → (y · x)) · ((x → (x · y)) → y) = y [2 → 32]
70. (x → ((y → z) · x)) · (y → ((x → ((y → z) · x)) → z))

= y → z [27 → 32]
71. (x → y) → ((z → x) → (z → y)) = 1 [53 → 43]
72. (((x → y) → y) → z) → (x → z) = 1 [51 → 71]
73. (((x → y) → y) → y) · 1 = x → y [72 → 37]
74. ((x → y) → y) → y = x → y [3 → 73]
75. x → ((x → (x · y)) → z) = x → (y → z) [6 → 56]
76. (x → y) · (x → ((x → y) → (y · z))) = x → (y · z) [66 → 34]
77. (x → y) · ((((x → y) → y) → y) → (((x → y) → y) → (y · z)))

= ((x → y) → y) → (y · z) [74 → 67]
78. ((x → (x · y)) → y) · (y → (y · z))

= (x → (x · y)) → (y · z) [68 → 76]
79. (e → x) · (e → (x → y)) = (e → y) · (y → (e → x)) [64 → 65]
80. (e → (x · e)) · ((x · e) → (e → x)) = e → x [28 → 79]
81. e → (x · e) = e → x [54 → 80]
82. e → (x · (e · y)) = e → (y · x) [22 → 81]
83. e → (x · (e · y)) = e → (x · y) [10 → 81]
84. e → (x · (e · y)) = e → (x · (e → y)) [61 → 83]
85. e → (x · (e → y)) = e → (y · x) [82 → 84]
86. e → ((e → x) · y) = e → (x · y) [2 → 85]
87. (e → x) → (e → (y · z)) = e → (x → ((e → y) · z)) [86 → 64]
88. e → (x → ((e → y) · z)) = e → (x → (y · z)) [64 → 87]
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89. (((x → (x · y)) → y) → y)
· (x → ((((x → (x · y)) → y) → ((x → (y · x))
· ((x → (x · y)) → y))) → (y · x)))

= x → (y · x) [69 → 70]
90. (x → y) · (y → (y · z)) = ((x → y) → y) → (y · z) [50 → 77]
91. (((x → (x · y)) → y) → y) → (y · z)

= (x → (x · y)) → (y · z) [78 → 90]
92. (((x → (x · y)) → y) → y)

· (x → ((((x → (x · y)) → y) → y) → (y · x)))
= x → (y · x) [69 → 89]

93. (((x → (x · y)) → y) → y) · (x → ((x → (x · y)) → (y · x)))
= x → (y · x) [91 → 92]

94. (((x → (x · y)) → y) → y) · (x → (y → (y · x)))
= x → (y · x) [75 → 93]

95. ((x → (x · y)) → y) → y = x → (y · x) [28 → 94]
96. ((x → (y · x)) → y) → y = x → (y · x) [2 → 95]
97. e → (((x → ((e → y) · x)) → (e → y)) → (e → y))

= x → ((e → y) · x) [33 → 96]
98. e → (x → ((e → y) · x)) = x → ((e → y) · x) [96 → 97]
99. x → ((e → y) · x) = e → (x → (y · x)) [98 → 88]

100. x → ((e → y) · x) = x → (e → (y · x)) [27 → 99]
101. x · (x → (e → (y · x))) = (e → y) · x [100 → 47]
102. (e → x) · ((e → x) → (e → (x · y)))

= (e → y) · (e → x) [85 → 101]
103. (e → x) · (e → y) = e → (y · x) [67 → 102]
104. (e → x) · (e → y) = e → (x · y) [2 → 103]

This completes the proof.

Note. This proof was obtained with the assistance of the automated
reasoning program Otter [10], using the method of proof sketches [12].
See [11] for examples of the application of automated reasoning to a
wide range of problems in equational logic.
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