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Abstract. The skew Boolean propositional calculus (SBPC) is a generalization
of the classical propositional calculus that arises naturally in the study of certain
well-known deductive systems. In this article, we consider a candidate presentation
of SBPC and prove it constitutes a Hilbert-style axiomatization. The problem
reduces to establishing that the logic presented by the candidate axiomatization
is algebraizable in the sense of Blok and Pigozzi. In turn, this is equivalent to
verifying four particular formulas are derivable from the candidate presentation.
Automated deduction methods played a central role in proving these four theorems.
In particular, our approach relied heavily on the method of proof sketches.

1. Introduction

With increasing frequency, mathematicians are approaching members
of the automated deduction community for help solving problems in
their own research areas. These mathematicians generally don’t care
what systems we use—Otter[15], Prover9[17] or Waldmeister[10], for
example—and they don’t care what additional procedures we employ.
They just want their problems solved. In this article, we describe our
solution to a problem—a set of four theorems to prove—that we found
to be especially challenging. Finding these four proofs involved the
use of some fairly tedious side procedures, but automated deduction
methods played the central and most critical role.

The four theorems are in a system called Skew Boolean Proposi-
tional Calculus (SBPC), which is a “noncommutative” analog of (the
negation-free fragment of) classical propositional calculus. The theo-
rems together establish the algebraizability of SBPC, a result that is
fundamental to the study of “pointed discriminator logics” presented in
[3]. The four theorems are difficult, presumably too difficult to establish
by hand, and it’s not at all obvious if it’s possible to establish them by
other semantic means (such as using Kripke semantics). At the least,
establishing them by semantic means would require the development
of suitable semantic methods (completeness theorems and the like).
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The remainder of this article consists of a problem statement and a
description of our approach to finding the proofs. A single proof that
combines the four results into one is presented in the appendix.

2. Problem Statement

It is well known that CPC, the classical propositional calculus, is
determined by the collection of 2-element truth tables:

∩ 0 1
0 0 0
1 0 1

∪ 0 1
0 0 1
1 1 1

⊃ 0 1
0 1 1
1 0 1

∼
0 1
1 0

with 1 being the designated value. Formally, CPC is the deductive
system determined by the logical matrix 〈2, {1}〉, where 2 denotes the
2-element Boolean algebra.

The connectives ∩,∪ and ⊃ admit a number of generalizations to the
n-valued case in the literature. Several of these, first described in [2],
are as follows. For each 1 ≤ n ∈ ω, let Mn := {0, 1, . . . , n}. Consider
the operations ∧, ∨, ⇒ and → defined for all a, b ∈Mn by:

a ∧ b :=
{
b if a = 1
a otherwise, a ∨ b :=

{
1 if a = 1
b otherwise,

a⇒ b :=
{

1 if a = b
b otherwise, a→ b :=

{
1 if a 6= 1
b otherwise.

The operations ∧, ∨, ⇒ and → are called conjunction, disjunction
and strong and weak implication, respectively. The implication a ⇒ b
is strong in the sense that the relation ≤ defined for all a, b ∈ Mn by
a ≤ b if and only if a ⇒ b = 1 is a partial ordering on A. In contrast,
a→ b is weak in the sense that the relation � defined for all a, b ∈Mn

by a � b if and only if a→ b = 1 is only a quasiordering (reflexive and
transitive relation) on A.

For each 1 ≤ n ∈ ω, let Mn denote the algebra 〈Mn;∧,∨,⇒,→, 1〉
and Mn the logical matrix 〈Mn, {1}〉. Observe that, when n = 1,
a∧ b = a∩ b, a∨ b = a∪ b, and a⇒ b = a⊃ b = a→ b for all a, b ∈M1.
Hence, in the two-valued case, the logic determined by the matrix M1

is CPC∧,∨,⊃, the negation-free fragment of the classical propositional
calculus (equivalently, the axiomatic extension of Hilbert’s positive
logic [18] by the Peirce law). In contrast, when n ≥ 2, each matrix
Mn determines an n+ 1-valued logic. For example, the 3-valued logic
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determined by M2 has truth tables

∧ 0 1 2
0 0 0 0
1 0 1 2
2 2 2 2

∨ 0 1 2
0 0 1 2
1 1 1 1
2 0 1 2

⇒ 0 1 2
0 1 1 2
1 0 1 2
2 0 1 1

→ 0 1 2
0 1 1 1
1 0 1 2
2 1 1 1

and from inspection of these tables, it is easy to see that (0 → 2) →
(0 ⇒ 2) = 2 6= 1, whence M2 is not CPC∧,∨,⊃. It follows that no Mn,
with n ≥ 2, is CPC∧,∨,⊃ either, since in each case M2 is a submatrix
of Mn.

For each 1 ≤ n < ω, the logic determined by Mn is called the n+1-
valued skew Boolean propositional calculus. The logic determined by
the countable-valued matrix Mω, in symbols SBPC, is called simply
the skew Boolean propositional calculus.

It turns out that SBPC arises naturally in the study of non-classical
deductive systems. In more detail, the (ternary) discriminator on a
set A is the function t : A3 → A defined for all a, b, c ∈ A by

t(a, b, c) :=
{
c if a = b
a otherwise.

An equationally definable class of algebras V is said to be a discrim-
inator variety if it is generated by a class of discriminator algebras.
A pointed discriminator variety is a discriminator variety having a
constant term. For a study of the discriminator in universal algebra,
see Burris and Sankappanavar [6, Chapter 4].

Recall next that a deductive system S over a language type Λ is
said to be algebraizable in the sense of Blok and Pigozzi [4] if there
exists a quasi-equationally definable class of algebras K, having the
same language type as S, such that the S-consequence relation `S

and the equational consequence relation |=K are interpretable in one
another in a certain strong sense. The class K is called the equivalent
quasivariety semantics of S. Informally, K is an equivalent quasivariety
semantics for S if it stands in relation to S just as the class of Boolean
algebras stands in relation to the classical propositional calculus.

A deductive system S is called a pointed discriminator logic if it
is algebraizable and its equivalent quasivariety semantics is a pointed
discriminator variety. Examples of such logics abound in the literature
and include: the classical propositional calculus; the normal modal logic
S5; the basic fuzzy logics with Baaz delta [9, 1, 24]; the n-dimensional
cylindric logics; the n-valued Post logics; the n-valued  Lukasiewicz
logics; and the tetravalent modal logic of Font and Rius [8, 13].

In [3] it is shown that every pointed discriminator logic arises (up
to definitional equivalence) as an axiomatic expansion of SBPC by ex-
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tensional logical connectives. (For a complementary study of axiomatic
expansions of fragments of the intuitionistic propositional calculus, see
Czelakowski and Pigozzi [7].) For example, it is shown in [3] that S5 is
an axiomatic expansion of SBPC by the logical connectives ∩,∪,⊃,∼
of the classical propositional calculus; the other pointed discriminator
logics described above can be analogously presented. SBPC may there-
fore be understood as the deductive system “inherent” in (or common
to) any pointed discriminator logic. It is this observation that motivates
our interest in and study of SBPC.

Consider now the following collection of axioms Ax and inference
rules Ir over the language type of SBPC, comprising nine axioms
taken from the presentation of the “pointed fixedpoint discriminator”
logic BCSK given in [11, 12, 19, 20]1:

x⇒ (y ⇒ x) (A1)
(x⇒ (y ⇒ z)) ⇒ ((x⇒ y) ⇒ (x⇒ z)) (A2)
((x⇒ y) ⇒ x) ⇒ x (A3)
x⇒ (y → x) (A4)
(x→ (y → z)) ⇒ ((x→ y) → (x→ z)) (A5)
(x→ (y → z)) ⇒ (y → (x→ z)) (A6)
((x→ y) → x) ⇒ x (A7)
((x⇒ y) → y) ⇒ ((y ⇒ x) → x) (A8)
(x⇒ y) → (x→ y) (A9)

together with the following six axioms for ∧ and ∨:

x→ (x ∨ y) (A11)
y ⇒ (x ∨ y) (A12)
(x→ z) → ((y → z) → ((x ∨ y) → z)) (A13)
(x ∧ y) ⇒ x (A14)
(x ∧ y) → y (A15)
(x⇒ y) ⇒ ((x⇒ z) ⇒ (x⇒ (y ∧ z))) (A16)

and the rule of inference:

x, x→ y ` y. (MP→)
1 The “pointed fixedpoint discriminator” logic BCSK has traditionally been

presented by the set of axioms (A1)–(A9) together with the rule of inference
(MP→). Axiom (A6) is known to be dependent in this presentation [25], and we
note that (A6) plays no role in the proof of the four desired theses given in the
appendix.
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Note that modus ponens for ⇒, in symbols (MP⇒), follows from
(A9) and two applications of (MP→).

Let C (for “candidate”) denote the deductive system axiomatized
by Ax ∪ Ir. By results of [3], CPC∧,∨,⊃ is the axiomatic extension of
C by the axiom

(x→ y) ⇒ (x⇒ y) (A10)

on the one hand, while BCSK is the {⇒,→}-fragment of C on the
other.

Our goal was to show that the collection of axioms and inference
rules Ax∪ Ir constitutes an axiomatization of SBPC (or equivalently,
that C is SBPC). From general results of algebraic logic, it follows that
Ax∪Ir is a presentation of SBPC if and only if C is algebraizable in the
sense of Blok and Pigozzi. It turns out that this is very convenient from
the perspective of the work reported in [3], since the algebraizability
of SBPC is the foundation on which the edifice of [3] rests. Among
the various possible approaches for showing that Ax∪ Ir constitutes a
complete axiomatization, therefore, our preferred method was to verify
the algebraizability of C.

One of the central results of [4] describes a set of purely syntactic
conditions that are necessary and sufficient for a deductive system
to be algebraizable. In particular, these conditions assert that C is
algebraizable if and only if the formulas

(ϕ⇒ ψ) → ((ϕ ∨ χ) ⇒ (ψ ∨ χ)) (1)
(ϕ⇒ ψ) → ((χ ∨ ϕ) ⇒ (χ ∨ ψ)) (2)
(ϕ⇒ ψ) → ((ψ ⇒ ϕ) → ((ϕ ∧ χ) ⇒ (ψ ∧ χ))) (3)
(ϕ⇒ ψ) → ((χ ∧ ϕ) ⇒ (χ ∧ ψ)) (4)

are theses of C.2

The challenge for automated reasoning was to show that (1)–(4) are
indeed syntactic consequences of Ax ∪ Ir, together with the derived
rule of inference (MP⇒).3

2 This statement implicitly assumes the algebraizability of BCSK, a result which
is now part of the folklore of pointed discriminator logics. By Blok and Pigozzi’s
syntactic conditions for algebraizability, BCSK is algebraizable if and only if the
formulas (ϕ⇒ ψ)→ ((χ→ ϕ)⇒ (χ→ ψ)) and (ϕ⇒ ψ)→ ((ψ → χ)⇒ (ϕ→ χ))
are derivable from (A1)–(A9) and (MP→). If the algebraizability of BCSK is not
assumed, then six theses must be derived to verify the algebraizability of C: the four
formulas (1)–(4) together with the two formulas of this footnote.

3 It is natural to ask why the four desired theses were simply not appended to the
candidate axiomatization of C to provide a presentation that is vacuously complete.
The reason lies in the fact that one of the recurring themes of [3] is the extent
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3. Finding the Proofs

Problems in C are easily represented for a resolution theorem prover.
If we let P(t) represent the assertion that t is a theorem, then
applications of (MP→) and (MP⇒) can be implemented by using
hyperresolution and the following clauses.

-P(x -> y) | -P(x) | P(y).
-P(x => y) | -P(x) | P(y).

Our search for proofs of the four challenge theorems relied very
heavily on the method of proof sketches [22]. The basic idea is to find a
proof of a simplified version of the theorem with relaxed constraints and
then to systematically refine and transform the proof into a syntactic
proof of the original. In this case, we relied on a general approach that
has proven to be effective for numerous logic problems having simi-
lar syntactic structures (for example, including applications of modus
ponens). This approach can be summarized with the following four
high-level steps.

1. Prove an algebraic form of the theorem that includes term-level
equality substitution (paramodulation) as an inference rule.

2. Reprove the algebraic form of the theorem, relying strictly on
resolution and the explicit use of equality substitution axioms.

3. Reprove the theorem in its original logical form, but still include
equalities and term-level substitutions.

4. Systematically eliminate all references to equality in the problem
statement and proofs.

Before describing each of the four steps in more detail (specifically, in
the context of the four challenge theorems), we give a brief introduction
to the method of proof sketches.

The Method of Proof Sketches

Much of our work in proving difficult theorems involves sequences of
Otter and Prover9 experiments and relies heavily on the use of hints [21]
and on the method of proof sketches [22]. Under the hints strategy, a

to which SBPC resembles CPC. In particular, the candidate axiomatization of
SBPC mirrors one of the standard presentations of classical propositional logic (see
for instance [5]). Adjoining the four theses as axioms would destroy the symmetry
between Ax ∪ Ir and this standard presentation.
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generated clause is given special consideration (as defined by the user)
if it subsumes4 or is subsumed by a user-supplied hint clause. The
hints strategy is closely related to the weighting strategy [14], in which
clauses are assigned weights that are used to help direct the search for
a proof. In contrast to weighting, the hints strategy focuses directly on
the identification of key clauses rather than on the general calculation
of weights. Any generated clause that subsumes or is subsumed by a
user-supplied hint clause is identified as being “interesting”. The weight
of such a clause is adjusted (either positively or negatively) according
to user preferences; the cases of subsuming a hint, being subsumed by a
hint, or both are controlled separately. Being based on subsumption, the
hints strategy adds a semantic or logical component to the evaluation
of a clause.

A proof sketch for a theorem T is a sequence of clauses giving a
set of conditions sufficient to prove T . In the ideal case, a proof sketch
consists of a sequence of lemmas, where each lemma is fairly easy to
prove. In any case, the clauses of a proof sketch identify potentially
notable milestones on the way to finding a proof. From a strategic
standpoint, it is desirable to recognize when we have achieved such
milestones and to adapt the continued search for a proof accordingly.
In particular, we wish to focus our attention on such milestone results
and pursue their consequences sooner rather than later.

The hints strategy provides a natural and effective way to take full
advantage of a proof sketch in the search for a proof. Including each
clause from the proof sketch as a hint clause and making an Otter
assignment such as

% decrease by 100 the weight of any derived
% clause that subsumes a hint clause
assign(bsub_hint_add_wt, -100).

virtually ensures that when a clause is derived that subsumes a hint
clause—in particular, one of the key milestone clauses of a proof
sketch—the newly generated clause will become the focus of attention
(that is, chosen as the “given” clause) as soon as possible.

The use of hints is additive in the sense that hints from multiple
proof sketches or from sketches for different parts of a proof can all be
included at the same time. For this reason, hints are particularly valu-
able for “gluing” subproofs together and completing partial proofs, even
when wildly different search strategies were used to find the individual
subproofs.

4 Subsumption normally includes deletion of subsumed clauses. Here we use the
term simply as a convenient way to refer to the subsumption relationship between
clauses.
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In [22], we consider how the generation and use of proof sketches,
together with the sophisticated strategies and procedures supported
by an automated reasoning program such as Otter, can be used to find
proofs to challenging theorems, including open questions. The general
approach is to find proofs with additional assumptions and then to
systematically eliminate these assumptions from the input set, using
all previous proofs as hints.

We now return to a description of the steps we took to prove the
four challenge theorems in the candidate system C.

Step 1. Prove an algebraic form of the theorem that includes term-level
equality substitution (paramodulation) as an inference rule.

In order to permit term-level substitutions, every axiom t of C was
represented with the algebraic formula t = 1, a procedure justified
by algebraizability (see [7, Section 1.5]), and paramodulation was
permitted as an inference rule. For example, axiom (A1) became

x => (y => x) = 1.

and the two modus ponens rules, (MP→) and (MP⇒), became

x != 1 | x -> y != 1 | y = 1.
x != 1 | x => y != 1 | y = 1.

respectively. We included, in addition, the following clauses.

x -> y != 1 | y -> x != 1 | x = y.
x => y != 1 | y => x != 1 | x = y.

Adding the two preceding clauses is equivalent algebraically to
adding axiom (A10) in its algebraic form (x → y) ⇒ (x ⇒ y) = 1.
The equational theory in which we are working at this point is thus
that of the equivalent algebraic semantics of CPC∧,∨,⊃, namely, the
class of generalized Boolean algebras.

Finding these proofs was not especially difficult, but the searches
relied on the method of proof sketches. The intermediate steps made
use of several additional assumptions, for example, a set of identities
relevant to the larger work presented in [3].

% idempotence
x v x = x.
x ^ x = x.

% relative complementation
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x v (x -> y) = 1.
(x -> y) v x = 1.
(x -> y) v (x v y) = 1.
(x v y) v (x -> y) = 1.
(x -> y) ^ (x v y) = y.
(x v y) ^ (x -> y) = y.

% absorption
(y ^ x) v x = x.
(y v x) ^ x = x.
x v (x ^ y) = x.
x ^ (x v y) = x.

% partial ordering
x => (y v x) = 1.
(x => y) => y = x v ((x => y) => y).
(x => y) => y = ((x => y) => y) v x.

% definability of weak implication
(x -> y) -> y = x v y.

% distributivity
(x ^ y) v z = (x v z) ^ (y v z).
x v (y ^ z) = (x v y) ^ (x v z).

% associativity
(x v y) v z = x v (y v z).
(x ^ y) ^ z = x ^ (y ^ z).

We also included as initial extra assumptions the following de-
modulators, all of which are known to follow from the identities
above.

x -> 1 = 1.
1 -> x = x.
x => 1 = 1.
1 => x = x.

All of the additional assumptions were then systematically eliminated
in a sequence of proofs.

We stress that the term-level substitutions we relied on in this step
are not all sound in C; what we’re doing here is more than simply
transforming the syntactic structure of a proof. The method of proof
sketches focuses on the generation of sufficient conditions for proving a
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theorem, conditions that in turn are used to provide strategic guidance
for following proof searches. We have ample empirical evidence of the
effectiveness of the basic approach. See, for example, [23] and [16].

Step 2. Reprove the algebraic form of the theorem, relying strictly on
resolution and the explicit use of equality substitution axioms.

It is known that every paramodulation step in a proof can be replaced
by a sequence of resolution steps with equality axioms such as the
following.

x != y | x -> z = y -> z.
x != y | z -> x = z -> y.

The intention here was to provide all of the intermediate resolvents as
hints for future proofs.

In theory, we could have written special procedures to generate all
of these resolvents, but we elected to use Otter to find them for us.
This turned out to be significantly more difficult (and tedious) than we
anticipated, even when focusing on individual paramodulation steps.
Several of these required multiple Otter runs with carefully selected
input clauses and processing parameters. We also ended up writing
scripts to help automate some of the editing.5

Step 3. Reprove the theorem in its original logical form, but still include
equalities and term-level substitutions.

There are no equalities in the original statement of the problem, but
they were introduced in this step by first including the clauses,

-P(x -> y) | -P(y -> x) | x = y.
-P(x => y) | -P(y => x) | x = y.

and eventually–with proof sketches–reducing this to

-P(x => y) | -P(y => x) | x = y.

The equality substitution axioms used in previous steps remained, and
we added

x != y | -P(x) | P(y).

for substitutions into the predicate P.
In order to take full advantage of all of the proof sketches we had

previously accumulated, it was necessary to translate the hint clauses
as well. In particular, every hint clause of the form

5 We believe we have convinced Bill McCune to include the option of generating
such expanded proofs automatically in a future release of Prover9.
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t = 1.

was replaced by

P(t).

It is easy to see that, in the underlying (quasi-) equational theory,
t1 = t2 if and only if t1 ⇒ t2 = 1 and t2 ⇒ t1 = 1, and that the latter
two equalities imply t1 → t2 = 1 and t2 → t1 = 1, respectively. Hence,
for every hint clause of the form

t1 = t2

we included the four clauses

P(t1 -> t2).
P(t2 -> t1).
P(t1 => t2).
P(t2 => t1).

as additional hint clauses.
It may seem that the previous proof—the result of Step 2—would

map directly to a proof in this representation, but this is not quite the
case. The primary difficulty is that paramodulations from equalities of
the form

t = 1.

(introducing the constant 1 into the resulting clause), do not have direct
analogs in the new representation. Nevertheless, with some effort (and
several Otter runs), we eventually found the desired proofs.

Step 4. Systematically eliminate all references to equality in the
problem statement and proofs.

Recall that the proof sketches we had accumulated up to this point
are not complete in that they include steps that are not theorems in C.
There are gaps in the proofs that need to be filled in within the theory.
Eliminating equality was a difficult and tedious process.

We first replaced the equality substitution axioms with P-form
analogs based on equivalences, for example, including

-P(x => y) | -P(y => x) | -P(x v z) | P(y v z).
-P(x => y) | -P(y => x) | -P(z v x) | P(z v y).
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for operator ∨. We also included transitivity laws for → and ⇒, which
are provable in C.

-P(x => y) | -P(y => z) | P(x => z).
-P(x -> y) | -P(y -> z) | P(x -> z).

Proving this version of the theorems was difficult, requiring several
runs and the generation of several intermediate proof sketches. The
intermediate assumptions we used included numerous P-form analogs
based on equivalences of the term-level equality substitution axioms.
These were restricted to the first few levels of nesting, for example,

-P(x => y) | -P(y => x)
| -P((x v z) -> w) | P((y v z) -> w).

-P(x => y) | -P(y => x)
| -P((z v x) -> w) | P((z v y) -> w).

Finally, we systematically eliminated all of the extra assumptions—
that is, all clauses not appearing in the original problem statement—
until we had the sought-after proofs of the four theorems. This was not
especially difficult from a strategic standpoint, but it was tedious, since
we were able to eliminate only a very few extra assumptions at a time.
We found that if we eliminated too many at once, it was too difficult
to find the next proof in the sequence.

4. Final Comments

We were able to use hints and sketches in a systematic way to prove
what we believe to be very difficult theorems. Some of the steps, how-
ever, were mind bogglingly tedious rather than being mathematically
or strategically interesting. The good news is that we believe much of
this can be automated. We already rely on various editor macros, shell
scripts, programs and special modifications to Otter to help with the
manipulation of clauses and input files, and these have helped tremen-
dously. We’re currently developing an autosketches mode for Prover9
that will handle some of the iterative aspects of the method of proof
sketches.

From a mathematical perspective, the axiomatization Ax ∪ Ir of
SBPC provided in this work is germane for concrete applications of
the main result of [3]—that is, for presenting arbitrary pointed dis-
criminator logics as axiomatic expansions of SBPC. The point is that
Otter has not only played an important role in proving several diffi-
cult theorems; in helping to verify that SBPC is algebraizable, it has
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actively contributed toward the nascent development of a nontrivial
mathematical theory.
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Appendix

Here, combined into a single proof, are the derivations of the four
challenge theorems (1) through (4). These appear, respectively, at steps
228, 224, 248 and 241. The justification for each deduction is a triple
consisting of the inference rule (MP→ or MP⇒), the major premise,
and then the minor premise.

1. x⇒ (y ⇒ x) [A1]
2. (x⇒ (y ⇒ z)) ⇒ ((x⇒ y) ⇒ (x⇒ z)) [A2]
3. ((x⇒ y) ⇒ x) ⇒ x [A3]
4. x⇒ (y → x) [A4]
5. (x→ (y → z)) ⇒ ((x→ y) → (x→ z)) [A5]
6. ((x→ y) → x) ⇒ x [A7]
7. ((x⇒ y) → y) ⇒ ((y ⇒ x) → x) [A8]
8. (x⇒ y) → (x→ y) [A9]
9. x→ (x ∨ y) [A11]
10. x⇒ (y ∨ x) [A12]
11. (x→ y) → ((z → y) → ((x ∨ z) → y)) [A13]
12. (x ∧ y) ⇒ x [A14]
13. (x ∧ y) → y [A15]
14. (x⇒ y) ⇒ ((x⇒ z) ⇒ (x⇒ (y ∧ z))) [A16]
15. x⇒ (y ⇒ (z ⇒ y)) [MP⇒, 1, 1]
16. ((x⇒ (y ⇒ z)) ⇒ (x⇒ y)) ⇒ ((x⇒ (y ⇒ z))

⇒ (x⇒ z)) [MP⇒, 2, 2]
17. x⇒ ((y ⇒ (z ⇒ u)) ⇒ ((y ⇒ z) ⇒ (y ⇒ u))) [MP⇒, 1, 2]
18. (x⇒ y) ⇒ (x⇒ x) [MP⇒, 2, 1]
19. x⇒ (((y ⇒ z) ⇒ y) ⇒ y) [MP⇒, 1, 3]
20. x→ (y ⇒ (z → y)) [MP⇒, 4, 4]
21. x⇒ (y ⇒ (z → y)) [MP⇒, 1, 4]
22. x→ (y ⇒ (z ⇒ y)) [MP⇒, 4, 1]
23. x⇒ ((y → (z → u)) ⇒ ((y → z) → (y → u))) [MP⇒, 1, 5]
24. ((x⇒ y) → y) → ((y ⇒ x) → x) [MP→, 8, 7]
25. ((x→ y) → x) → x [MP→, 8, 6]
26. x→ (y → x) [MP→, 8, 4]
27. (x⇒ (y ⇒ z)) → ((x⇒ y) ⇒ (x⇒ z)) [MP→, 8, 2]
28. x→ (y ⇒ x) [MP→, 8, 1]
29. x→ ((y ⇒ z) → (y → z)) [MP⇒, 4, 8]
30. x→ (y → (y ∨ z)) [MP⇒, 4, 9]
31. x→ (y ⇒ (z ∨ y)) [MP⇒, 4, 10]
32. x⇒ (y ⇒ (z ∨ y)) [MP⇒, 1, 10]
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33. x⇒ ((y ∧ z) ⇒ y) [MP⇒, 1, 12]
34. x→ ((y ∧ z) → z) [MP⇒, 4, 13]
35. x→ (y → (z → y)) [MP→, 26, 26]
36. x→ (y → (z ⇒ y)) [MP→, 26, 28]
37. (x⇒ y) ⇒ (x⇒ (z ⇒ y)) [MP⇒, 2, 15]
38. x⇒ x [MP⇒, 18, 15]
39. x→ x [MP→, 8, 38]
40. (x⇒ y) ⇒ (x⇒ (x ∧ y)) [MP⇒, 14, 38]
41. (x→ y) → ((y ∨ x) → y) [MP→, 11, 39]
42. (x⇒ y) ⇒ (x⇒ (z → y)) [MP⇒, 2, 21]
43. (x→ y) → (x→ (y ∨ z)) [MP⇒, 5, 30]
44. (x⇒ y) ⇒ (x⇒ (z ∨ y)) [MP⇒, 2, 32]
45. (x⇒ (y ∧ z)) ⇒ (x⇒ y) [MP⇒, 2, 33]
46. (x→ (y ∧ z)) → (x→ z) [MP⇒, 5, 34]
47. (x→ y) → (x→ (z ⇒ y)) [MP⇒, 5, 36]
48. (x⇒ ((y ⇒ z) ⇒ y)) ⇒ (x⇒ y) [MP⇒, 2, 19]
49. (x→ (y ⇒ z)) → (x→ (y → z)) [MP⇒, 5, 29]
50. (x⇒ y) → (x⇒ (z ⇒ y)) [MP→, 8, 37]
51. (x⇒ y) → (x⇒ (z → y)) [MP→, 8, 42]
52. (x→ (y → z)) ⇒ (u→ ((x→ y) → (x→ z))) [MP⇒, 42, 5]
53. (x⇒ y) → (x⇒ (z ∨ y)) [MP→, 8, 44]
54. (x⇒ (y ∧ z)) ⇒ (u⇒ (x⇒ y)) [MP⇒, 37, 45]
55. x→ (y ⇒ (x ∨ z)) [MP→, 47, 9]
56. (((x⇒ y) → y) → (y ⇒ x)) → (((x⇒ y) → y)

→ x) [MP⇒, 5, 24]
57. ((x⇒ y) ⇒ (x ∧ z)) ⇒ x [MP⇒, 48, 45]
58. (((x→ y) ⇒ z) ⇒ y) ⇒ (x→ y) [MP⇒, 48, 42]
59. ((x⇒ y) ⇒ (x ∧ z)) → x [MP→, 8, 57]
60. (((x→ y) ⇒ z) ⇒ y) → (x→ y) [MP→, 8, 58]
61. ((((x→ y) ⇒ z) ⇒ y) → x) → ((((x→ y) ⇒ z)

⇒ y) → y) [MP⇒, 5, 60]
62. (x⇒ (y ⇒ (z ⇒ u))) ⇒ (x⇒ ((y ⇒ z) ⇒ (y

⇒ u))) [MP→, 27, 17]
63. (x⇒ (y → (z → u))) ⇒ (x⇒ ((y → z) → (y

→ u))) [MP→, 27, 23]
64. (((x ∨ y) ⇒ y) → y) → (x ∨ y) [MP→, 56, 31]
65. (((x⇒ y) ⇒ y) → y) → (x⇒ y) [MP→, 56, 22]
66. (((x→ y) ⇒ y) → y) → (x→ y) [MP→, 56, 20]
67. (x⇒ y) ⇒ ((z ⇒ x) ⇒ (z ⇒ y)) [MP⇒, 62, 1]
68. (x⇒ y) → ((z ⇒ x) ⇒ (z ⇒ y)) [MP→, 8, 67]
69. (x⇒ (y ⇒ ((z ⇒ u) ⇒ z))) ⇒ (x⇒ (y ⇒ z)) [MP⇒, 67, 48]
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70. (x⇒ y) → ((z ⇒ x) → (z ⇒ y)) [MP→, 49, 68]
71. (x→ (y → z)) ⇒ ((u→ (x→ y)) → (u→ (x

→ z))) [MP⇒, 63, 52]
72. (x→ y) ⇒ ((z → x) → (z → y)) [MP⇒, 63, 4]
73. (x→ y) → ((z → x) → (z → y)) [MP→, 8, 72]
74. (x→ (y ⇒ z)) → (x→ (y ⇒ (u⇒ z))) [MP⇒, 72, 50]
75. (x→ ((y → z) → y)) → (x→ y) [MP⇒, 72, 25]
76. (((x⇒ y) → z) → y) → (x⇒ y) [MP→, 75, 47]
77. (x→ (((y ⇒ z) → u) → z)) → (x→ (y ⇒ z)) [MP→, 73, 76]
78. ((x ∧ y) ⇒ (x⇒ z)) ⇒ ((x ∧ y) ⇒ z) [MP⇒, 16, 33]
79. ((((x→ (y → x)) → z) ⇒ u) ⇒ z) → z [MP→, 61, 35]
80. ((x→ (y → x)) → z) ⇒ z [MP→, 65, 79]
81. (x⇒ ((y → (z → y)) → u)) ⇒ (x⇒ u) [MP→, 68, 80]
82. (x→ (y → z)) ⇒ (y → (x→ z)) [MP⇒, 81, 71]
83. (x→ y) → ((y → z) → (x→ z)) [MP⇒, 82, 73]
84. (x⇒ y) → ((y ⇒ z) → (x⇒ z)) [MP⇒, 82, 70]
85. x→ ((x→ (y ∧ z)) → z) [MP⇒, 82, 46]
86. (x ∨ y) → ((y → x) → x) [MP⇒, 82, 41]
87. x→ ((x→ y) → y) [MP⇒, 82, 39]
88. (x→ y) → ((z → y) → ((z ∨ x) → y)) [MP⇒, 82, 11]
89. x→ ((x⇒ y) → y) [MP⇒, 82, 8]
90. (((x⇒ (y ∧ z)) ⇒ (u⇒ (x⇒ y))) → v) → v [MP→, 87, 54]
91. (((x→ y) → (z → y)) → u) → ((z → x) → u) [MP→, 83, 83]
92. (x→ (y ⇒ (x→ z))) → (y ⇒ (x→ z)) [MP→, 77, 83]
93. (((x→ y) → y) → z) → (x→ z) [MP→, 83, 87]
94. ((x⇒ (y → z)) → u) → ((x⇒ z) → u) [MP→, 83, 51]
95. ((x→ y) → z) → ((x⇒ y) → z) [MP→, 83, 8]
96. ((x⇒ (y ⇒ z)) ⇒ u) → ((x⇒ z) ⇒ u) [MP→, 84, 37]
97. ((x→ y) ⇒ z) → (y ⇒ z) [MP→, 84, 4]
98. ((x⇒ y) ⇒ z) → (y ⇒ z) [MP→, 84, 1]
99. (x→ ((y ⇒ z) ⇒ u)) → (x→ (z ⇒ u)) [MP→, 73, 98]
100. x⇒ (y ⇒ (y ∧ x)) [MP→, 98, 40]
101. (x⇒ y) ⇒ ((x⇒ (y ⇒ z)) ⇒ (x⇒ z)) [MP→, 98, 16]
102. (x⇒ y) → (x→ (y ∨ z)) [MP→, 95, 43]
103. (x→ (y ⇒ (z ∨ u))) → ((x ∨ (y ⇒ u))

→ (y ⇒ (z ∨ u))) [MP→, 88, 53]
104. (x→ y) → ((x ∨ y) → y) [MP→, 88, 39]
105. (((x ∨ y) → y) → z) → ((x→ y) → z) [MP→, 83, 104]
106. (x→ ((y ⇒ (z ⇒ u)) ⇒ v)) → (x→ ((y ⇒ u)

⇒ v)) [MP→, 73, 96]
107. (x⇒ (y ⇒ z)) → (y ⇒ (x⇒ z)) [MP→, 99, 27]
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108. (x→ (y ⇒ (z ⇒ u))) → (x→ (z ⇒ (y ⇒ u))) [MP→, 73, 107]
109. (x⇒ (y ⇒ z)) → (y → (x⇒ z)) [MP→, 49, 107]
110. (x⇒ y) ⇒ ((y ⇒ z) ⇒ (x⇒ z)) [MP→, 107, 67]
111. x→ ((x⇒ y) ⇒ (z → y)) [MP→, 109, 42]
112. x→ ((x⇒ y) ⇒ y) [MP→, 109, 38]
113. (x⇒ y) ⇒ (x→ y) [MP→, 92, 111]
114. ((x→ y) ⇒ z) → ((x⇒ y) ⇒ z) [MP→, 84, 113]
115. (x⇒ (y ⇒ z)) → (x⇒ (y → z)) [MP→, 70, 113]
116. (((x⇒ y) ⇒ (z ⇒ y)) ⇒ u) ⇒ ((z ⇒ x) ⇒ u) [MP⇒, 110, 110]
117. ((x⇒ y) ⇒ z) ⇒ ((z ⇒ x) ⇒ x) [MP⇒, 69, 110]
118. x⇒ (y → (y ∧ x)) [MP→, 115, 100]
119. (x⇒ (y ⇒ z)) ⇒ ((x⇒ y) → (x⇒ z)) [MP→, 115, 2]
120. ((x⇒ (y → (y ∧ x))) ⇒ z) → z [MP→, 89, 118]
121. (x⇒ ((y ⇒ z) ⇒ u)) → (x⇒ ((u⇒ y) ⇒ y)) [MP→, 70, 117]
122. ((x⇒ y) ⇒ z) → ((z ⇒ x) ⇒ x) [MP→, 8, 117]
123. x⇒ ((y ⇒ (x⇒ z)) ⇒ (y ⇒ z)) [MP→, 98, 101]
124. (x⇒ (y ⇒ z)) ⇒ (y ⇒ (x⇒ z)) [MP→, 107, 123]
125. ((x⇒ (y ⇒ z)) ⇒ u) ⇒ ((y ⇒ (x⇒ z)) ⇒ u) [MP⇒, 110, 124]
126. (x⇒ (y ⇒ (z ⇒ u))) ⇒ (x⇒ ((y ⇒ z) → (y

⇒ u))) [MP→, 68, 119]
127. (((x⇒ y) → z) → u) → ((u→ y) → (x⇒ y)) [MP→, 91, 77]
128. (x⇒ ((y ⇒ z) ⇒ u)) → ((u⇒ y) ⇒ (x⇒ y)) [MP→, 108, 121]
129. (x⇒ ((x ∧ y) ⇒ z)) ⇒ ((x ∧ y) ⇒ z) [MP⇒, 125, 78]
130. (x⇒ ((x ∧ y) ⇒ z)) → ((x ∧ y) ⇒ z) [MP→, 8, 129]
131. (((x ∧ y) ⇒ z) → u) → ((x⇒ ((x ∧ y) ⇒ z))

→ u) [MP→, 83, 130]
132. (x→ (y ⇒ z)) → (((x→ u) → z) → (y ⇒ z)) [MP→, 91, 127]
133. ((x→ y) → y) → ((x→ y) ⇒ y) [MP→, 127, 66]
134. ((x ∨ y) → y) → ((x ∨ y) ⇒ y) [MP→, 127, 64]
135. (((x⇒ y) → y) → x) → (y ⇒ x) [MP→, 127, 24]
136. x→ ((x→ y) ⇒ y) [MP→, 93, 133]
137. x→ ((x→ y) ⇒ (z ⇒ y)) [MP→, 74, 136]
138. (x→ y) → ((x ∨ y) ⇒ y) [MP→, 105, 134]
139. ((x→ y) → (z ⇒ u)) → ((x→ u) ⇒ (z ⇒ u)) [MP→, 132, 137]
140. (x→ y) ⇒ ((x ∨ y) ⇒ y) [MP→, 139, 138]
141. (x→ y) ⇒ (((x→ z) → y) ⇒ y) [MP→, 139, 136]
142. (((x⇒ y) → y) → x) ⇒ (y ⇒ x) [MP→, 139, 135]
143. (x→ y) ⇒ (((x→ z) ⇒ y) ⇒ y) [MP→, 139, 112]
144. (((x⇒ y) ⇒ y) → y) ⇒ (x⇒ y) [MP→, 139, 65]
145. (x⇒ y) ⇒ ((x ∨ y) ⇒ y) [MP→, 114, 140]
146. (x ∨ y) ⇒ ((x→ y) ⇒ y) [MP→, 107, 140]
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147. (x ∨ y) ⇒ ((x⇒ y) ⇒ y) [MP→, 107, 145]
148. (x⇒ (y ∨ z)) → (x⇒ ((y → z) ⇒ z)) [MP→, 70, 146]
149. (((x→ y) ⇒ y) ⇒ z) ⇒ ((x ∨ y) ⇒ z) [MP⇒, 110, 146]
150. ((x→ y) → (x ∨ z)) ⇒ (x ∨ z) [MP⇒, 141, 9]
151. (x⇒ (((y ⇒ z) → z) → y)) ⇒ (x⇒ (z ⇒ y)) [MP→, 68, 142]
152. (x⇒ (y → z)) ⇒ ((y → x) ⇒ (y → z)) [MP→, 128, 143]
153. (x⇒ (((y ⇒ z) ⇒ z) → z)) ⇒ (x⇒ (y ⇒ z)) [MP→, 68, 144]
154. (x⇒ (y ∨ z)) → ((y → z) ⇒ (x⇒ z)) [MP→, 108, 148]
155. (x⇒ (((y → z) ⇒ z) ⇒ u)) ⇒ (x⇒ ((y ∨ z)

⇒ u)) [MP→, 68, 149]
156. (x→ y) ⇒ (x→ (x ∧ y)) [MP→, 120, 152]
157. (x⇒ (y ⇒ (z → u))) ⇒ (x⇒ ((z → y) ⇒ (z

→ u))) [MP→, 68, 152]
158. (x⇒ (y ∨ z)) → ((y → z) → (x⇒ z)) [MP→, 49, 154]
159. (x→ (((y ∧ z) ⇒ u) → v)) → (x→ ((y ⇒ ((y

∧ z) ⇒ u)) → v)) [MP→, 73, 131]
160. (x⇒ y) ⇒ ((z → x) ⇒ (z → y)) [MP⇒, 157, 42]
161. (x→ y) ⇒ ((y ⇒ z) ⇒ (x→ z)) [MP→, 107, 160]
162. (x→ y) ⇒ (x→ (z ∨ y)) [MP⇒, 160, 10]
163. ((x→ (y ∨ z)) ⇒ u) ⇒ ((x→ z) ⇒ u) [MP⇒, 110, 162]
164. (x→ (y → z)) ⇒ ((y ∨ z) ⇒ (x→ z)) [MP⇒, 155, 161]
165. (((x→ y) ⇒ y) ⇒ z) ⇒ (x→ z) [MP⇒, 161, 136]
166. ((x ∨ y) ⇒ z) ⇒ (x→ z) [MP⇒, 161, 9]
167. (x⇒ (y → z)) ⇒ (y → (x⇒ z)) [MP⇒, 116, 165]
168. (x→ y) → ((y → z) ⇒ (x→ z)) [MP⇒, 167, 72]
169. (x⇒ y) → ((y → z) ⇒ (x→ z)) [MP→, 95, 168]
170. (((x⇒ y) ⇒ y) → z) ⇒ (((y ⇒ u) ⇒ x) → z) [MP→, 168, 122]
171. (x→ y) ⇒ (((z ⇒ (u→ (u ∧ z))) ⇒ x) → y) [MP→, 168, 120]
172. (x→ y) ⇒ ((((z ⇒ (u ∧ v)) ⇒ (w ⇒ (z ⇒ u)))

→ x) → y) [MP→, 168, 90]
173. (x→ y) ⇒ (((x⇒ z) ⇒ (x ∧ u)) → y) [MP→, 168, 59]
174. ((x→ y) → z) ⇒ (x ∨ z) [MP⇒, 163, 150]
175. ((x→ y) ⇒ z) ⇒ (x ∨ z) [MP→, 114, 174]
176. ((x→ y) → z) → (x ∨ z) [MP→, 8, 174]
177. (x⇒ ((y → z) ⇒ u)) ⇒ (x⇒ (y ∨ u)) [MP→, 68, 175]
178. (x→ y) ∨ (x ∨ z) [MP⇒, 175, 174]
179. ((x ∨ y) → (x→ z)) → (x→ z) [MP→, 86, 178]
180. (x→ ((y → z) → u)) → (x→ (y ∨ u)) [MP→, 73, 176]
181. ((x→ y) → z) → (((x ∨ u) → (x→ y)) → z) [MP→, 83, 179]
182. ((x→ (y ∧ z)) ∨ z) ⇒ (x→ z) [MP⇒, 164, 85]
183. (x ∨ y) ⇒ ((x→ (z ∧ y)) → y) [MP⇒, 164, 46]
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184. (x⇒ ((y → (z ∧ u)) ∨ u)) ⇒ (x⇒ (y → u)) [MP→, 68, 182]
185. (x→ (x ∧ y)) ⇒ (x⇒ (x ∧ y)) [MP⇒, 153, 173]
186. (x⇒ (y → (y ∧ z))) → (x⇒ (y ⇒ (y ∧ z))) [MP→, 70, 185]
187. ((x→ y) ⇒ (z ⇒ u)) ⇒ (z ⇒ (x ∨ u)) [MP⇒, 125, 177]
188. (x⇒ (y ∨ z)) → (y ∨ (x⇒ z)) [MP→, 180, 158]
189. (x→ (y ⇒ (z ∨ u))) → (x→ (z ∨ (y ⇒ u))) [MP→, 73, 188]
190. (x⇒ ((y → z) ⇒ (u⇒ v))) ⇒ (x⇒ (u⇒ (y

∨ v))) [MP→, 68, 187]
191. (((x⇒ y) ⇒ y) → x) ⇒ (y ⇒ x) [MP⇒, 153, 170]
192. (x⇒ (((y ⇒ z) ⇒ z) → y)) ⇒ (x⇒ (z ⇒ y)) [MP→, 68, 191]
193. ((x→ y) → z) → ((x ∨ u) ∨ z) [MP→, 180, 181]
194. (x ∨ y) ∨ ((x ∨ z) ⇒ z) [MP→, 193, 138]
195. (x→ y) ⇒ (x⇒ (x ∧ y)) [MP→, 186, 156]
196. x⇒ ((x→ y) ⇒ (x ∧ y)) [MP→, 107, 195]
197. (x⇒ (y → z)) ⇒ (x⇒ (y ⇒ (y ∧ z))) [MP→, 68, 195]
198. x⇒ (y ⇒ ((y → z) ⇒ (y ∧ z))) [MP→, 28, 196]
199. (x ∧ y) ⇒ ((x→ z) ⇒ (x ∧ z)) [MP⇒, 78, 198]
200. ((x ∧ y) ⇒ (x→ z)) ⇒ ((x ∧ y) ⇒ (x ∧ z)) [MP→, 27, 199]
201. (x⇒ (y → z)) ⇒ ((x⇒ y) → (x⇒ (y ∧ z))) [MP⇒, 126, 197]
202. ((x→ (x ∧ y)) → y) ⇒ ((x→ (x ∧ y)) ⇒ y) [MP⇒, 192, 171]
203. (x⇒ ((y ∧ z) ⇒ (y → u))) ⇒ (x⇒ ((y ∧ z)

⇒ (y ∧ u))) [MP→, 68, 200]
204. (x⇒ (y → z)) → ((x⇒ y) → (x⇒ (y ∧ z))) [MP→, 8, 201]
205. (x⇒ ((y → (y ∧ z)) → z))

⇒ (x⇒ ((y → (y ∧ z)) ⇒ z)) [MP→, 68, 202]
206. (x→ (y ⇒ (z → u))) → (x→ ((y ⇒ z) → (y

⇒ (z ∧ u)))) [MP→, 73, 204]
207. (x→ (y ⇒ z)) ⇒ (y ⇒ ((x→ u) ∨ z)) [MP⇒, 190, 141]
208. ((x⇒ ((y → z) ∨ u)) ⇒ v) ⇒ ((y → (x⇒ u))

⇒ v) [MP⇒, 110, 207]
209. (x→ (y ⇒ z)) ⇒ (y ⇒ (x→ z)) [MP⇒, 208, 184]
210. (x⇒ (y → (z ⇒ u))) ⇒ (x⇒ (z ⇒ (y → u))) [MP→, 68, 209]
211. (x→ (y ⇒ z)) → (y ⇒ (x→ z)) [MP→, 8, 209]
212. (x→ (y ⇒ z)) → (y → (x→ z)) [MP→, 49, 211]
213. ((x ∨ y) ⇒ (z ⇒ u)) ⇒ (z ⇒ (x→ u)) [MP⇒, 210, 166]
214. (x ∨ (y ⇒ z)) → (y ⇒ (x ∨ z)) [MP→, 103, 55]
215. (x→ (y ∨ (z ⇒ u))) → (x→ (z ⇒ (y ∨ u))) [MP→, 73, 214]
216. (x ∨ y) ⇒ ((x ∨ z) ∨ y) [MP→, 214, 194]
217. (((x ∨ y) ∨ z) ⇒ u) ⇒ ((x ∨ z) ⇒ u) [MP⇒, 110, 216]
218. (x ∨ y) ⇒ (((x ∨ z) ⇒ y) ⇒ y) [MP⇒, 217, 147]
219. (x⇒ (y ∨ z)) ⇒ ((y ∨ x) ⇒ (y ∨ z)) [MP→, 128, 218]
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220. (x⇒ (y ∨ z)) → ((y ∨ x) ⇒ (y ∨ z)) [MP→, 8, 219]
221. (x⇒ (y ∨ z)) → (y ∨ ((y ∨ x) ⇒ z)) [MP→, 189, 220]
222. (x→ (y ⇒ (z ∨ u))) → (x→ (z ∨ ((z ∨ y) ⇒ u))) [MP→, 73, 221]
223. (x⇒ y) → (z ∨ ((z ∨ x) ⇒ y)) [MP→, 222, 53]
*224. (x⇒ y) → ((z ∨ x) ⇒ (z ∨ y)) [MP→, 215, 223]
225. (x ∨ y) ⇒ (x ∨ (z ∨ y)) [MP→, 224, 10]
226. (x→ (y ∨ z)) ⇒ ((x ∨ z) ⇒ (y ∨ z)) [MP→, 154, 225]
227. (x→ (y → (z ∨ u))) ⇒ (x→ ((y ∨ u) ⇒ (z

∨ u))) [MP⇒, 160, 226]
*228. (x⇒ y) → ((x ∨ z) ⇒ (y ∨ z)) [MP⇒, 227, 102]
229. ((x⇒ (y ⇒ z)) → (y ⇒ (z ∧ u)))

⇒ ((x⇒ (y ⇒ z)) ⇒ (y ⇒ (z ∧ u))) [MP⇒, 151, 172]
230. (x ∨ y) ⇒ ((x→ (x ∧ y)) ⇒ y) [MP⇒, 205, 183]
231. (x→ (x ∧ y)) ⇒ (x→ y) [MP⇒, 213, 230]
232. (x ∧ y) ⇒ (x→ y) [MP→, 97, 231]
233. ((x→ y) ⇒ z) → ((x ∧ y) ⇒ z) [MP→, 84, 232]
234. ((x→ y) ⇒ z) ⇒ ((x ∧ y) ⇒ z) [MP⇒, 110, 232]
235. (x→ ((y → z) ⇒ u)) → (x→ ((y ∧ z) ⇒ u)) [MP→, 73, 233]
236. (x⇒ ((y → z) ⇒ u)) ⇒ (x⇒ ((y ∧ z) ⇒ u)) [MP→, 68, 234]
237. (x⇒ y) → ((y ∧ z) ⇒ (x→ z)) [MP→, 235, 169]
238. (x⇒ (y → z)) ⇒ ((y ∧ x) ⇒ (y → z)) [MP⇒, 236, 152]
239. (x⇒ (y → z)) ⇒ ((y ∧ x) ⇒ (y ∧ z)) [MP⇒, 203, 238]
240. (x⇒ (y → z)) → ((y ∧ x) ⇒ (y ∧ z)) [MP→, 8, 239]
*241. (x⇒ y) → ((z ∧ x) ⇒ (z ∧ y)) [MP→, 94, 240]
242. (x⇒ y) → (((y ∧ z) ⇒ x) → ((y ∧ z)

⇒ (x ∧ z))) [MP→, 206, 237]
243. (x⇒ y) → ((y ⇒ ((y ∧ z) ⇒ x)) → ((y ∧ z)

⇒ (x ∧ z))) [MP→, 159, 242]
244. ((x⇒ (y ⇒ z)) → (y ⇒ (z ∧ u))) → ((x⇒

(y ⇒ z)) ⇒ (y ⇒ (z ∧ u))) [MP→, 8, 229]
245. ((x⇒ (y ⇒ z)) → (y ⇒ (z ∧ u)))

→ ((x⇒ z) ⇒ (y ⇒ (z ∧ u))) [MP→, 106, 244]
246. (x→ ((y ⇒ (z ⇒ u)) → (z ⇒ (u ∧ v))))

→ (x→ ((y ⇒ u) ⇒ (z ⇒ (u ∧ v)))) [MP→, 73, 245]
247. (x⇒ y) → ((y ⇒ x) ⇒ ((y ∧ z) ⇒ (x ∧ z))) [MP→, 246, 243]
*248. (x⇒ y) → ((y ⇒ x) → ((x ∧ z) ⇒ (y ∧ z))) [MP→, 212, 247]
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