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ABSTRACT
PERCEPTUAL COMPLETION OF OCCLUDED SURFACES
FEBRUARY 1994
LANCE R. WILLIAMS
B.S., PENNSYLVANIA STATE UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Allen R. Hanson

Researchers in computer vision have primarily studied the problem of visual re-
construction of environmental structure that is plainly visible. In this thesis, the
conventional goals of visual reconstruction are generalized to include both visible and
occluded forward facing surfaces. This larger fraction of the environment is termed
the anterior surfaces. Because multiple anterior surface neighborhoods project onto
a single image neighborhood wherever surfaces overlap, surface neighborhoods and
image neighborhoods are not guaranteed to be in one-to-one correspondence, as con-
ventional “shape-from” methods assume. The result is that the topology of three-
dimensional scene structure can no longer be taken for granted, but must be inferred
from evidence provided by image contours.

Where boundaries are not occluded and where surface reflectance is distinct from
that of the background, boundaries will be marked by image contours. However,
where boundaries are occluded, or where surface reflectance matches background re-
flectance, there will be no detectable luminance change in the image. Deducing the
complete image trace of the boundaries of the anterior surfaces under these circum-

stances is called the figural completion problem.

vi



In this thesis, we show that the boundaries of the anterior surfaces can be repre-
sented in viewer-centered coordinates as a labeled knot diagram. The interior neigh-
borhoods of the anterior surfaces are explicitly represented by a combinatorial model
called a paneling, which is produced from a labeled knot diagram by means of a
straightforward construction. Conventional “shape-from” methods formulated as
variational problems and defined over image neighborhoods can be applied to the
neighborhoods of the paneling equally well.

The labeling scheme and paneling construction provide a solid theoretical foun-
dation for a working experimental system which computes surface representations
from illusory contour displays, including well known figures from the visual psychol-
ogy literature. The experimental system employs a two stage process of completion
hypothesis and combinatorial optimization. The labeling scheme is enforced by a sys-
tem of integer linear inequalities so that the final organization is the optimal feasible

solution of an integer linear program.
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CHAPTER 1

INTRODUCTION

“Vision is the art of seeing things invisible.” — Jonathan Swift

The subject of this thesis is perceptual completion of occluded surfaces. In human
vision, perceptual completion processes “fill in the gaps” in the visible world and in
doing so, construct the far richer experience we call the wvisual world. Because of
perceptual completion, the visual world is populated by “objects” with boundaries
which are independent of viewpoint. And while the visible world consists solely of
those surfaces which reflect light onto the retina, the visual world contains objects
with backsides and solid interiors.

The existence of a visual world, distinct from the “real world,” but “going be-
yond” that which is plainly visible is familiar to philosophers of human perception.
See Gibson[13] or Kanizsa[29] for especially lucid accounts. The field of computer
vision, in contrast, has for all practical purposes ignored the problem of visual recon-
struction of environmental structure that is not in plain sight. Because the problem of
perceptual completion is largely unrecognized, its importance can not be established
by citing the computer vision literature, but instead derives from the phenomenology
of human vision. Stated differently, because perceptual completion plays a major role
in what human beings call “seeing,” it is worth studying. The fact is that almost all

problems studied in computer vision today trace their ancestory to this same source.



This is because human vision still provides the ultimate measure of what is and is
not possible to compute from images.

This chapter begins with a review of the salient features of the “standard model” of
visual reconstruction. The standard model is the now familiar theory that the purpose
of early human visual processing is to compute a viewer-centered representation of
visible surfaces which is most often called the 2%-D sketch[38]. However, the position
taken in this thesis is that by considering only the visible surfaces, the standard model
fails to address the most difficult part of the visual reconstruction problem, which is
deducing the topology of three-dimensional scene structure. In the standard model,
the topology of the reconstructed scene is trivially determined by the assumption that
the imaging process maps visible surface neighborhoods! to image neighborhoods in
one-to-one fashion.

In this thesis, the goal of visual reconstruction is generalized to include the fraction
of the environmental surfaces that are potentially visible (because they are forward
facing) but are possibly occluded by intervening surfaces. Unfortunately, surface
neighborhoods and image neighborhoods are no longer guaranteed to be in one-to-
one correspondence. Occlusion confounds the visual mapping since multiple surface
neighborhoods project onto a single image neighborhood wherever surfaces overlap.
The result is that the topology of three-dimensional scene structure can no longer
be taken for granted, but must instead be inferred from the fragmentary evidence
provided by image contours. Solving this perceptual organization problem is the

subject of this thesis.

1A subset of a topological space is a neighborhood of a point p if and only if it contains every
other point of that space which lies within a sufficiently small ball centered on p.



1.1 Visual Reconstruction

The input to the human visual system is an array of brightnesses originating
in light reflected from environmental surfaces. Using only this information, human
beings exhibit a nearly limitless range of behavior requiring detailed knowledge of the
physical structure of the environment. These range from navigating unfamiliar terrain
to recognizing the potential utility of completely novel objects as tools. In short,
vision underlies much of what we call intelligence. Among human vision theorists,
one opinion holds that the huge difference in level of organization between the visual
system’s input, and the abstract inferences about the environment we derive from
it, necessitates the existence of intermediate representations of some sort. These
intermediate representations presumably encode information about the environment
useful in many different problem solving contexts. Adherents of this theory maintain
that computing these general purpose intermediate representations is the purpose of
human early visual processing.

Any meaningful description of environmental structure requires two components.
The first is the topological component, which is a specification of a set of neighbor-
hoods (i.e. a topology). The second component describes how those neighborhoods
are embedded in three-space. Without a description of the neighborhoods, it is mean-
ingless to talk about shape. For example, even computing something as simple as an
orientation requires an appropriately defined neighborhood. This is why the phrase
“structure from motion,” as commonly used, is somewhat of an exaggeration. The
“structure” consists of a set of points in three-space and is therefore trivial from a
topological standpoint. Since the topological component of structure is the set of
environmental neighborhoods, it is worth asking: What kind of neighborhoods are

important?



A solid is a topological entity possessing a connected set of neighborhoods each
of which can be thought of as a tiny ball. Probably because of the atomic theory of
matter, computer vision researchers generally assume that the world contains only
solid objects. In fact, a large fraction of the light falling on the retina is reflected
from structure in the environment with neighborhoods more naturally thought of as
non-solid. For example, the leaves of a tree, a pair of pants, a piece of paper and
blades of grass are generally thought of as two dimensional, with neighborhoods that
are like tiny discs, not balls. Similiarly, telephone wires, paperclips and pine needles
can be thought of as one dimensional.

More complex neighborhoods are equally natural to think about. Consider the
spine of a book, where all the book’s pages meet in a neighborhood that is like neither
a ball nor a disc—or the neighborhood formed by a pin stuck in a pin cushion. The
point is that human beings are capable of imagining “compound” neighborhoods
formed from various combinations of the “elementary” neighborhoods. This seems to
hold for all manner of combinations up to dimension three.

The neighborhood structure is of course dependent on spatial scale. At one scale,
the neighborhoods of a crumpled piece of newspaper are two dimensional, and disc-
like. At a smaller scale, since the paper has non-zero thickness, the disc-like neigh-
borhoods are revealed to be masses of fibers... At the largest scale, the crumpled
piece of paper assumes the character of a solid object, with ball-like neighborhoods.
This is how we think about it when we toss it in the trash after crumpling it.

The important thing is that we think about these things in all of these ways.
English is filled with words which are only meaningful for objects possessing a partic-
ular topological character. Whether or not it makes sense to “crumple” something or
“crush” it depends upon our judgement of whether it is more like a piece of newspa-

per or more like a boulder. Things with disc-like neighborhoods are crumpled, things



with ball-like neighborhoods are crushed. It is only logical that language develops in

ways which are consistent with the human experience of the visual world.

By far the most difficult part of visual reconstruction is deducing the set of environ-
mental neighborhoods. I maintain that this is the fundamental problem of perceptual
organization. In this respect, this thesis goes quite a bit beyond what computer vision
typically regards to be the purpose of perceptual organization: Grouping of image
measurements of one kind or another into collections likely to belong to individual

objects.

Ten years ago Witkin and Tenenbaum|[60] wrote what many consider to be a kind
of “P.0.” manifesto. In “On the Role of Structure in Vision” they argued that the
purpose of perceptual organization is to provide an explicit representation of “primi-
tive image structure” embodying geometric coincidence which “demands explanation”
from higher-level cognitive processes. When I say that the fundamental problem of
perceptual organization is deducing the set of environmental neighborhoods, it is be-
cause | assume these neighborhoods have a manifestation in primitive structure. That

is, they are its original source, and it forms their “precursors” in the reconstruction.

Of course, given such an ambitious goal, it is natural to ask what fraction of
the environmental neighborhoods can realistically be reconstructed given only image
information. At this point it is customary to mention the dimensionality reduction
associated with projection of a three-dimensional world onto a two-dimensional retina,
and how reconstruction is impossible without making additional assumptions about
environmental structure. This is certainly true. But the point taken here is that the
assumptions underlying the “standard model” of visual reconstruction are so strong

that the problem of perceptual organization is completely trivialized.

The standard model of visual reconstruction can be viewed as an attempt to invert
the image trradiance equation. The image irradiance equation relates the brightness

of an image point to the depth, surface orientation, reflectance and illumination of



a visible surface point in the environment. In theory, a solution of the image irradi-
ance equation would consist of a set of what Barrow and Tenenbaum[3] call intrinsic
images, each of which represents one of the physical parameters underlying image
brightness.

The intrinsic images representing depth and surface orientation together form
what Marr[38] called the 2%-D sketch. Specifically, for every image point z,y there is

assumed to be a depth, z = f(z,y) and a pair of values p and ¢ where:

If(z,y)

ox
df(z,y)

dy

The values p and ¢ represent the surface orientation of image point z,y as a
location in gradient space. The unit surface normal of an image point is then given

by the equation:

The methods proposed for computing the 2%—D sketch are generally referred to as
“shape-from” methods. The inspiration for these methods is the influential early work
of Horn[21] on shape-from shading. Surface orientation can be computed directly from
image brightness when the direction of illumination is known and surface reflectance is
predominantly diffuse. Where these assumptions do not hold, alternative shape-from
methods are potentially applicable. For example, in stereopsis the binocular disparity

between points in images from the left and right eyes is measured to determine depth



directly. These measurements can be interpolated to form a dense representation of
depth and surface orientation. Alternatively, optical flow can be used to solve for the
equations of motion of a moving sensor, providing estimates of depth equivalent to
those provided by stereo. It is also possible to derive depth and surface orientation
from texture and focus information.

Many shape-from methods are formulated as problems in the calculus of vari-
ations, which leads to relaxation algorithms defined in local image (i.e. surface)
neighborhoods. Boundary conditions are either free or simple closed plane curves.
Unfortunately, the constraints derived from the image irradiance equation or from
stereo are seldom strong enough to determine a unique solution. Therefore, the func-
tional to be minimimized usually consists of two terms, where the first term embodies
the constraint derived from image brightness (in the case of shape-from shading) or
points of known depth (in the case of stereo), and the second term is a regularization
term, which introduces a bias for smooth solutions. For example, one of the simplest

functionals of this sort is for shape-from shading[23]:

//I[(E(l‘, y) = R(p, )" + (P + py + @z + q,)] do dy (1.1)
where F is the image brightness function, R is the reflectance map in gradient
space and p;, py, ¢, and ¢, are the first partial derivatives of p and ¢ with respect to
z and y. Here E(x,y) — R(p, q) represents the deviation from the ideal brightnesses
predicted by the image irradiance equation and (p? + pfj + ¢ + qj) represents the
deviation from smoothness.
The stated goal of all shape-from methods is computing the depth and surface
orientation of the wvisible surfaces. The visible surfaces are sometimes defined as the
locus of surface points where the surface normal has a positive component in the

viewing direction. This is precisely the subset of the environmental surfaces with



orientations that can be represented as points in gradient space. Of course this
definition only accounts for self-occlusion (i.e. the non-visibility of backward facing
surface patches) and does not account for non-local occlusion (i.e. non-visibility due
to intervening surfaces). Having a positive component in the viewing direction is
therefore a necessary but not a sufficient condition for visibility. For this reason, in

this thesis, we distinguish between the visible surfaces and the anterior surfaces:

Defn. wisible surfaces - the locus of environmental surface points first incident

along the lines of sight.

Defn. anterior surfaces - the locus of environmental surface points where the

surface normal is defined and has a positive component in the viewing direction.

The difference between the visible surfaces and the anterior surfaces is illustrated
through a series of figures beginning with Figure 1.1. This simple ray-traced image
of a sphere and cone is illuminated by a point source coincident with the location
of the viewer, so there are no visible shadows. Figure 1.2 depicts a sideview of the
same scene with the illumination unchanged. Because of the location of the light
source, surfaces not visible from the first viewpoint lie in shadow. The outlines of the
visible and anterior surfaces (with respect to the first viewpoint) appear in sideview
in Figures 1.3(a) and 1.3(b).

Although the standard model only addresses the problem of reconstructing the
visible surfaces, introspection suggests that the human visual system reconstructs a
larger fraction of the environment. Imagine a pool ball sitting on the felt surface
of a pool table. You would be quite surprised if upon picking up the pool ball,
you discovered that a hole of its exact size and shape lay behind it. You would
also be surprised if you walked around the pool table and discovered that the ball
has a flat backside. What can account for this surprise, other than the fact that
new information contradicts previously held unconscious inferences about structure

other than the visible surfaces? Specifically, the new information must contradict
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Figure 1.1: A simple ray-traced image of a sphere and a cone. This scene is illuminated
by a point source coincident with the location of the viewer, so there are no visible
shadows.
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Figure 1.2: A sideview of the same scene with the illumination unchanged. Because
of the location of the light source, surfaces not visible from the first viewpoint lie in
shadow.
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(@)

(b)

Figure 1.3: Distinguishing visible surfaces from anterior surfaces. The outlines of the
visible and anterior surfaces (with respect to the first viewpoint) appear in sideview.
(a) The wvisible surfaces are defined as the locus of surface points first incident along
the lines of sight. (b) The anterior surfaces are the locus of surface points where
the surface normal is defined and has a positive component in the viewing direction.
The visible surfaces are a subset of the anterior surfaces. The standard model only
addresses the problem of reconstructing the visible surfaces.
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the assumption that the felt surface of the pool table continues underneath the ball,
and that the ball’s backside is hemispherical. These are two examples of perceptual
completion, a collective term for those phenomena which “fill in” our experience of
the visual world.

Examples of perceptual completion abound, and include the well known phe-
nomena of illusory contours® which are epitomized by displays such as the Kanizsa
triangle[29] (Figure 1.4). In Kanizsa’s figure, a white triangle appears to partially
occlude three black discs and a second triangle rendered in outline. Although the com-
pletion of the black discs is perceived, this perception is not manifest as a brightness
change. In contrast, the completion of the white triangle is characterized by a signif-
icant difference in apparent brightness between the triangle and its background.® Of
course neither the triangle nor the discs are objectively present. All are the products
of a perceptual completion process.

Perhaps it is not surprising that occluded surfaces are ignored by the standard
model, after all, surface patches which aren’t visible don’t contribute to image bright-
ness. However, the most important reason is that the image irradiance equation
presupposes a continuous and invertible mapping between image neighborhoods and
visible surface neighborhoods. Such a mapping is called a homeomorphism. Un-
der homeomorphism, the visible surfaces are embedded in the image plane. This is
why it is possible to speak of the depth and surface orientation of image point z,y
without ambiguity: depth and surface orientation are assumed to be a function of

image coordinates. This is also why local iterative algorithms can operate on image

2Also called subjective contours.

3The terms modal and amodal are used by Kanizsa to distinguish between instances of perceptual
completion which are accompanied by change in apparent brightness from instances which are not.
Accordingly, Kanizsa describes the completion of the discs in the Kanizsa triangle figure as amodal,
and the completion of the illusory triangle itself as modal.
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Figure 1.4: The Kanizsa triangle.

neighborhoods and reconstruct surface neighborhoods: They are assumed to be in
one-to-one correspondence.*

Although homeomorphism may be an acceptable approximation of the mapping
of visible surface neighborhoods onto the image plane, if the goal of visual recon-

struction is expanded from reconstruction of the visible surfaces to reconstruction of

the anterior surfaces (for example), then the assumption of embedding breaks down.

41t is important to distinguish between discontinuities in the visual mapping and discontinuities
in surface orientation and depth. Marr[38] proposed that one-dimensional discontinuities in surface
orientation and depth are explicitly represented in the 2%—D sketch. Recently, Blake and Zisserman/[5]
have developed a method by which these discontinuities can be identified during reconstruction, so
that smoothness assumptions have appropriate scope. But this addition does not change the funda-
mental assumption about the visual mapping (i.e. that it is a homeomorphism). One-dimensional
discontinuities in surface orientation and depth are simply specialized neighborhoods. Identifying
these neighborhoods in the course of reconstruction, while an important contribution, does not fun-
damentally alter the fact that image neighborhoods are assumed to be in one-to-one correspondence
with visible surface neighborhoods.
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Occlusion confounds the visual mapping of surface neighborhoods to image neighbor-
hoods since multiple surface neighborhoods will project to one image neighborhood
wherever surfaces overlap. The problem of inferring the neighborhood structure of
some fraction of the environment (rather than simply taking it for granted) thus ap-
pears for the first time. This is the crux of the perceptual completion problem, and
of perceptual organization problems in general: What are the neighborhoods? To say
that this problem is hard is an understatement. Certainly, part of the appeal of the
standard model is that it allows some aspects of the visual reconstruction problem
to be studied without first having to solve the more difficult problem of deducing the

topology of environmental structure.®

Although the phenomenological evidence for perceptual completion in human vi-
sion is unassailable[29], one might argue that certain forms of interpolation go beyond
what is reasonable to represent and compute in a viewer-centered representation.®
Certainly, the phrase “perceptual completion” could be used to describe the process
by which an object-centered, three-dimensional representation of surfaces is derived
from the 2%—D sketch. This argument has merit to the extent that reconstruction
of anterior and posterior surfaces would result in a description of the environment
that is independent of viewpoint. Therefore, the question is not whether perceptual
completion is an important and valid phenomenon, rather it is which completion

problems are naturally formulated in viewer-centered coordinates. Stated differently,

what forms of completion are native to the 2%—D sketch?

Marr[38] was curiously contradictory on this point. While suggesting that “con-

tinuation” (i.e. completion) processes operate within the 2%—D sketch, and even sug-

°In a recent article, Barrow and Tenenbaum[4] confirm this. They state that “Our interest in
recovering scene characteristics arose in part through a belief that it was not possible to segment an
image reliably into meaningful regions and boundaries on the basis of raw brightness... However, the
baby may have been thrown out with the bath water, and should perhaps be rescued: perceptual
organization may play a much larger role...”

A representation using a two-dimensional coordinate system registered with the image.
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gesting that “the viewer-centered representation of surfaces may be capable of rep-
resenting more than one surface at once,” he also states that “This formulation [the
2%—D sketch] avoids all the difficulties associated with the terms figure and ground,
region and object —the difficulties inherent in the image segmentation approach...”
Very clearly, it is not possible to have it both ways. If one allows more than one
surface at a point, one must accept the “can of worms” called “segmentation” as
well.

In this thesis, it is hypothesized that the goal of early visual processing is to
compute a viewer-centered representation of the anterior surfaces, of which the vis-
ible surfaces are but a subset. In support of this claim, in Chapter 2, a method for
representing the anterior surfaces of smooth manifold-solids in viewer-centered co-
ordinates is introduced. The assumption of global homeomorphism between visible
surface neighborhoods and image neighborhoods (i.e. embedding), is generalized to
the assumption of local homeomorphism between anterior surface neighborhoods and
image neighborhoods, or tmmersion. The difference in the two assumptions is shown
diagrammatically in Figure 1.5. For scenes composed of smooth manifold-solids,
immersion models the visual mapping of anterior surface neighborhoods to image
neighborhoods almost exactly.” This allows a very good approximation of the com-
plete anterior half of a scene composed of smooth manifold-solids to be represented
in image coordinates.

Before the neighborhoods of the anterior surfaces can be explicitly represented,
the complete image trace of their boundaries must be deduced. Where boundaries
are not occluded and surface reflectance contrasts with that of the background, the

boundaries will be marked by luminance change in the image. However, where bound-

“Local homeomorphism is violated only at points where the direction of the contour generator
coincides with the viewing direction (i.e. at cusps[33]).
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Figure 1.5: The difference between embedding and immersion. (a) An embedding is
a global homeomorphism between visible surface neighborhoods and image neighbor-
hoods first incident along the lines of sight. (b) An immersion is a local homeomor-
phism between anterior surface neighborhoods and image neighborhoods. This allows
multiple anterior surface neighborhoods (i.e. of p and ¢) to project to the same image

neighborhood (i.e. of p').
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aries are occluded, or where surface reflectance matches background reflectance, there
will be no detectable change in image brightness.

In this thesis, figural completion is defined as perceptual completion of the bound-
aries of the anterior surfaces. We show that the boundaries of the anterior surfaces
can be represented in viewer-centered coordinates as a labeled knot diagram. A la-
beled knot diagram is a set of closed and oriented plane curves satisfying the labeling
scheme depicted in Figure 1.6. The image of the surface lies to the right when the
image of its boundary is traversed in the direction of its orientation. Each boundary
point is also assigned an integer value equal to the number of surfaces lying be-
tween the boundary and its projected image. In Chapter 2, it is shown that labeled
knot diagrams (as opposed to arbitrary closed plane curves) always define unique
and topologically valid surfaces. The labeled knot diagram is therefore a boundary
representation. Consequently, completion of the surface boundary is tantamount to
completion of the surface interior. A labeled knot diagram representing the bound-
aries of the anterior surfaces of the ray-traced image of the sphere and cone is shown
in Figure 1.7.

The neighborhoods of the interior are explicitly represented by a combinatorial
model called a paneling.® The paneling is produced by applying a straightforward
procedure called the paneling construction to a labeled knot diagram representing the
boundaries of the anterior surfaces. We note that any shape-from method formulated
as a variational problem and defined over image neighborhoods can be applied to
the neighborhoods of the paneling equally well. In this scheme, both the constraint

and smoothness terms of the shape-from functional would be applied to the visible

8The term “paneling” is used by Griffiths[14] in his informal but very accessible account of the
topology of surfaces. Roughly speaking, a paneling is a model of a surface consisting of a set of
paper panels taped together in prescribed ways. Panelings will be described in greater detail in the
next chapter. More formal treatments of the subject (e.g. [18]) employ triangulations, which are
panelings satisfying other criteria (e.g. all panels must be three-sided).
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Figure 1.6: A boundary labeling scheme. The image of the surface lies to the right
when the image of its boundary is traversed in the direction of its orientation. Each
boundary point is also assigned an integer value equal to the number of surfaces lying
between the boundary and its projected image (i.e. its depth). Finally, the depth of
the boundary of the occluding surface must be less than or equal to the depth of the
boundary of the occluded surface.

neighborhoods of the paneling, while the smoothness term alone would be applied
to the occluded neighborhoods. A paneling representing the neighborhoods of the

anterior surfaces of the image of the sphere and cone is depicted in Figure 1.8.

1.2 Visual Recognition

Although “visual recognition” in human beings is tremendously subtle and likely
uses large amounts of world knowledge in ways which are not completely understood,
computer vision has made some impressive initial progress in solving more limited
recognition problems. Visual recognition (in this more limited sense) is often un-
derstood to mean correspondence between components of a stored geometric model
and contours in an image, together with knowledge of the object’s pose, or spatial
orientation relative to the cameral47, 37]. Of course, the fundamental difficulty in es-

tablishing such a correspondence is the combinatorially prohibitive number of possible
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Figure 1.7: Labeled knot diagram representing boundaries of anterior surfaces. This
figure depicts the output of the figural completion process for the ray-traced image
of the sphere and cone.
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G(1)

Figure 1.8: Paneling construction applied to the labeled knot diagram. The construc-
tion produces a paneling with neighborhoods that approximate those of the anterior
surfaces. For clarity’s sake, the paneling’s three connected components are drawn
separately. Any shape-from method formulated as a variational problem and defined
over image neighborhoods can be applied to the neighborhoods of the paneling equally
well. Both the constraint and smoothness terms of the shape-from functional would
be applied to visible neighborhoods of the paneling, while the smoothness term alone
would be applied to occluded neighborhoods (shown hatched).
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mappings between the components of a stored geometric model and the contours in
an image. To make matters worse, the combinatorial problem is often aggravated by
extraneous contours originating in background clutter and contours which are absent
because of occlusion. It is the opinion of Lowe[37] and Jacobs[28] that the necessary
computational savings can only be achieved if grouping processes are used to collect
together subsets of contours likely to belong to the same object prior to matching.
Kanizsa’s cube demonstration is very telling in this respect. The same percentage of
the cube is visible in Figure 1.9 and Figure 1.10. Yet the cube is easily recognized in
Figure 1.10 and is only recognized with great difficulty in Figure 1.9. The obvious
explanation is that the effect of perceptual organization is different in the two figures,
and one organization facilitates recognition and the other hinders it. Furthermore, it
suggests that perceptual organization processes employ generic knowledge of surfaces
to function effectively in spite of background clutter and occlusion. It is likely that
a similiar strategy will be useful in computer vision also. Clutter is not peculiar to
natural environments; it also occurs in storage bins and among parts lying on con-
veyer belts. Common practices in digital image processing, such as thresholding edge
operator output and the use of a limited number of grey levels, further aggravate the

effect of clutter by producing exactly the conditions required for illusory contours.

1.3 Thesis Overview

This thesis approximately follows the “natural computation” methodology advo-
cated by Richards[45] (see Table 1.1). This methodology is based upon Marr’s[38]
belief that complex information processing systems can only be understood by an-
alyzing them at the three levels of 1) computational theory; 2) algorithm and rep-
resentation; and 3) implementation. Since the first step of the natural computation

methodology requires identifying the “computational goal,” Chapter 2 is devoted to
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Figure 1.9: An array of odd shapes (from Kanizsa[29]).
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the introduction of the labeled knot diagram and the paneling construction. Together,
these constitute an explicit viewer-centered representation of the neighborhoods of the

anterior environmental surfaces.

Chapter 3 begins with a discussion of the natural constraints which define the
set of acceptable solutions (i.e. topological validity and stimulus conformity) and the
ambiguities which remain after the constraints are exhausted (i.e. shape, unit and
depth). Because the problem is underconstrained, it is proposed that the human
visual system resolves the ambiguity in computing a unique completion shape in a
way that affords inferential leverage[60] in resolving the other two ambiguities. Under
this assumption, the problem of computing a labeled knot diagram is shown to be a

graph labeling problem, which is posed as an integer linear program.

Chapter 4 describes an experimental implementation of the computational theory
outlined in Chapter 2 and 3. Our intention was not to realistically model human
vision at the “level of algorithm and representation[38].” Instead, our intention was
to validate the computational theory by demonstrating that a well defined procedure
for computing the mapping between input and output does in fact exist. The ex-
perimental system is demonstrated on a number of illusory contour figures from the

visual psychology literature.

In Chapter 5, the problem formulation is revised in light of recent evidence from
human vision. The revised model is implemented in an experimental system. In the
majority of cases, the implementation of the revised model gives the same solution
and at significant computational savings.

Chapter 5 continues by reviewing the observation (of the Gestalt psychologists)
that grouping phenomena are sensitive to non-local changes in image context. We
argue that numerical relaxation in a locally connected network is consistent with this
sensitivity and that this form of computation underlies figural completion phenomena

in human vision. This leads to a discussion of total unimodularity, a property which
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Table 1.1: Natural Computation Approach.

Natural Computation Approach

Mathematical Formalism

Step 1 Identify the Goals and Givens. What Define the domain and range of the
is the desired representation? What function.
data are available?

Step 2 Show theoretically how a reliable rep- Find a unique mapping (function).
resentation can be computed. What
are the natural constraints which will
force the unique interpretation?

Step 3 Design a particular algorithm that Describe a procedure for computing
correctly interprets the available in- the function.
put information.

Step 4 Test whether the primate visual sys- Identify relation between the ele-

tem uses the particular algorithm. (If
not, identify which step above is in-

ments of the procedure and their bi-
ological (machine) implementation.

compatible and reiterate.)

allows a certain class of integer linear programs to be solved in this fashion. We
demonstrate that the first of the integer linear programs in the revised model is
totally unimodular and argue that computational complexity considerations motivate
this problem decomposition in human vision.

Chapter 6 summarizes the contribution of this thesis and presents a set of predic-
tions of the computational theory. The thesis concludes with a discussion of directions

for future research.



CHAPTER 2

A BOUNDARY REPRESENTATION FOR ANTERIOR
SURFACES

In the previous chapter, two strong assumptions of the standard model of visual
reconstruction were identified. The first concerned the goal of visual reconstruction,
which the standard model assumes is a viewer-centered representation of the visible
surfaces. In this thesis, this goal is generalized to include the fraction of the environ-
mental surfaces which are potentially visible (because they are forward facing) but
are possibly occluded by intervening surfaces. To distinguish these from the visible
surfaces, these were termed the anterior surfaces.

The second assumption of the standard model is the nature of the visual map-
ping, which is conventionally modeled as an embedding (i.e. global homeomorphism)
of the wvisible surfaces in the image plane. In this thesis, this assumption is gener-
alized so that the visual mapping is instead modeled as an immersion (i.e. local
homeomorphism) of the anterior surfaces in the image plane.

In this chapter, a new viewer-centered surface representation called a labeled knot
diagram is introduced. Development of this idea is facilitated by a short review of
elementary combinatorial topology, which begins the chapter. In the course of this
review, the topological properties shared by surfaces which can be embedded in three-
space so that parallel projection can be modeled as an immersion are identified. The
set of scenes for which this projection model suffices are termed anterior scenes. Next

a labeling scheme incorporating a set of necessary constraints on the appearance of

26
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boundaries in anterior scenes is defined. The labeled knot diagram is simply a set of
closed contours satistying this labeling scheme.

A major part of the chapter is devoted to a proof that labeled knot diagrams can
serve as boundary representations. Stated differently, we show that every set of closed
plane curves satisfying the labeling scheme represents a topologically valid anterior
scene. The core of the proof consists of a description of a procedure by which a “paper
model” (i.e. a paneling) of an anterior scene can be constructed from a labeled knot
diagram. The remainder of the proof involves showing that this procedure can always

be applied, and that the paneling it produces satisfies the definition of a surface.

2.1 Topology of Surfaces

In topology, surfaces are divided into different families based upon a small number
of properties invariant under continuous deformations. To facilitate arguments which
appear later in this chapter, it will be useful to identify the topological properties
of surfaces which can be embedded in three-space so that parallel projection induces
a local homemorphism between surface neighborhoods and image neighborhoods. A
mapping of this kind is called an immersion. Image neighborhoods where parallel
projection cannot be modeled by local homemorphism are said to be singular. For
arbitrary embeddings of smooth surfaces, the visual mapping induced by parallel
projection will be singular only at the occluding contours, which are the image of
points where a surface is tangent to the viewing direction.

Since singularities occur only where a surface is tangent to the viewing direction,
they will never appear in images of surfaces embedded in three-space so that surfaces

are nowhere tangent. This leads to the following definition:
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Defn. anterior scene - a set of surfaces embedded in three space so that the
surface normals everywhere are defined and have a positive component in the viewing

direction.

By definition, no singularities can exist in the parallel projection of an anterior

scene onto the image plane. It follows that the visual mapping is an immersion.

Combinatorial topology begins with the idea that a paper model of any surface
can be constructed by “gluing” together some combination of the edges of a set of
panels. For the purposes of this discussion, a panel can be envisioned as a surface
cut out of a single piece of paper with a boundary consisting of a cycle of edges. A
surface is completely determined by a set of panels and a set of identifications, which
are explicit indications that two edges of equal length are to be glued together (and
in which way). These elements together define a paneling. Although a model of every

surface can be constructed in this fashion, not every paneling represents a surface.

2.1.1 Orientability

Two edges of equal length may be glued, one to another, in two different ways.
The ambiguity can be removed by assigning an orientation to the panel’s boundary.
The sense of the identification then depends on whether two edges are glued such

that their orientations are the same or opposed.

For example, a surface can be constructed by identifying two opposite edges of a
rectangularly shaped panel and leaving the other two non-identified (See Figure 2.1).
If the edges are identified such that their orientations are opposed, then an annulus
is created. However, if their orientations are the same, then the surface which results
is a Moebius strip. These two surfaces are qualitatively very different: The annulus
has two sides and a boundary consisting of two components while the Moebius strip
has a single side and a boundary consisting of a single component. A surface with

a single side is said to be non-orientable. We observe that there is no image of a
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Figure 2.1: Annulus vs. Moebius strip. A surface can be constructed by identifying
two opposite edges of a rectangularly shaped panel and leaving the other two non-
identified. Depending on the sense of the identification, the surface which results is
either an annulus or a Moebius strip.
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Figure 2.2: The torus. The torus is constructed by identifying the opposite edges of
a rectangular panel as illustrated (after Hilbert and Cohn-Vossen[19]).
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non-orientable surface which does not contain an occluding contour.! Non-orientable
surfaces cannot be immersed in the plane. For this reason, we adopt the convention
(simplifying later arguments) that the orientations of all pairs of identified edges are

opposed, and that all surfaces are, consequently, orientable. 2

2.1.2 Boundaries

Apart from orientability, a surface can also be classified by the number of com-
ponents in its boundary. A surface possesses a boundary if and only if at least one
edge of some panel from which it is assembled remains non-identified. Within the
paneling, non-identified edges form boundary edges and pairs of identified edges form
intertor edges. Each boundary component consists of a cycle of boundary edges. For
example, the panelings of the annulus and Moebius strip both contain a single interior
edge (i.e. a) and two boundary edges (i.e. b and ¢). But the boundary edges in the
paneling of the annulus form two boundary components while those of the Moebius
strip form just one.

A surface without boundary has no non-identified edges in its paneling. For ex-
ample, a torus is constructed by identifying the opposite edges of a rectangular panel
as illustrated in Figure 2.2. Surfaces without boundary which are also orientable
divide space into two disjoint sets which can be interpreted as the interior and the
exterior of a manifold-solid. 1t should be clear that no surface without boundary can

be immersed in the plane.?

!This can be appreciated by considering the Moebius strip’s Gaussian image. On the Gaussian
sphere, there is a great circle of points representing surface orientations tangent to the viewing
direction. Since there is a connected path on the Moebius strip joining every point with a point of
opposite orientation, its Gaussian image will always cross this great circle.

2Equivalently, we could use panels that are painted black on one side and white on the other and
adopt the convention that no two panel edges are glued in such a way that black and white meet.

3Since the Gaussian image of a surface without boundary occupies the entire Gaussian sphere,
parallel projection must create an occluding contour.
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2.1.3 Genus

After orientability and number of boundary components, the only remaining topo-
logical invariant of surfaces is genus. The orientable surface without boundary of
lowest genus is the sphere (genus zero) while the next lowest is the torus (genus one).
As part of an inductive definition of genus, it will be useful to introduce a technique
for building surfaces of higher genus from surfaces of lower genus. To begin, a disc
is subtracted from two surfaces, creating a hole in each. A “tube” is then used to
connect the hole in the first surface to the hole in the second surface. The resulting
surface is termed the connected sum, and its genus is the sum of those of the two
original surfaces. If this operation is performed on a single surface, it is called adding
a handle, and increases the genus by one. The genus of an orientable surface without
boundary is the number of handles which must be added to a sphere to form a topo-
logically equivalent surface. Since the genus of the torus is one, it is equivalent to a
sphere with one handle.

An orientable surface with boundary is created by subtracting one or more discs
from a sphere with zero or more handles. The only surfaces which can be embedded
in the plane are genus zero surfaces with boundary, which are created by subtracting
one or more discs from a sphere. When a genus zero surface is embedded in the
plane, its boundary forms a set of closed non-self-intersecting plane curves, or Jordan
curves. However, all orientable surfaces with boundary, even those which can not be
embedded in the plane, have planar immersions. Unfortunately, the boundaries of
surfaces with genus greater than zero cannot be represented by Jordan curves, since
they always self-intersect in the image plane.

For example, an orientable surface with boundary of genus one is created when
a disc is subtracted from a torus. This surface, known as a punctured torus, is con-

structed by gluing the edges of a paper panel as illustrated in Figure 2.3. Although
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Figure 2.3: The punctured torus. This orientable surface with boundary can be
constructed from a single panel.
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Figure 2.4: The punctured torus can be flattened. Although the punctured torus
cannot be embedded in a plane, it has a planar immersion.
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an image of a punctured torus embedded like this will always contain occluding con-
tours, it can be readily verified that the essentially flat surface depicted in Figure 2.4
is also a punctured torus. First, it should be clear that prior to gluing along edges
a and b, the surface consists of a single rather oddly shaped panel. Note that this
panel is topologically equivalent to the rectangular panel from which the punctured
torus was constructed in Figure 2.4; when the boundary of each panel is traversed
in the same direction (e.g. clockwise) the edges are encountered in the same order:
adbea fbe. Tt is also clear that the identifications of edges @ and b indicated in Figure
2.4 correspond exactly with the identifications of edges a and b in Figure 2.3. Fur-
thermore, the cycle of free edges, cfed, forms the boundary of both surfaces. From a
topological standpoint, the two surfaces are equivalent, even though the image of the

boundary is very different in the respective figures.

2.2 Labeled Knot Diagrams

Because any surface’s boundary is formed from cycles of non-identified edges in
some paneling, each boundary component is topologically equivalent to a circle. A
topological circle embedded in three-space is called a knot. A generic projection of a
knot onto a plane is called a knot diagram. A knot diagram is a closed plane curve
which intersects itself at a finite number of points called crossings.

In this thesis, knot diagrams are used to represent surface boundaries. Each of the
closed plane curves which together comprise the projection of the boundary onto the
image plane can be assigned an orientation which everywhere indicates which side of
the curve the image of the surface lies. We adopt the convention that the surface lies to

the right as the boundary is traversed in the direction of its orientation. Additionally,
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each boundary point can be assigned an integer value equal to the number of surfaces
lying between the point and its projected image. This number will be referred as the
boundary depth.

If the view of the anterior scene is generic, then the crossings will be the only
points of multiplicity two in the projection of the boundary onto the plane:

Defn. generic view - an image of an anterior scene where: 1) the multiplicity of
the image of the boundary is one everywhere except at a finite number of points where
it is two; and 2) the number of multiplicity two points is invariant to small changes
in viewing direction.

We observe that boundary depth can change only at crossing points in a generic
view of an anterior scene. In a knot diagram, crossings are drawn in a manner
which explicitly indicates the relative depth of the two overlapping strands. For
our purposes, the upper and lower strands of the crossing in the knot diagram will
represent the overlapping image of the nearer and farther boundaries. The depth of
the farther boundary changes by one as it is occluded by the surface defined by the
nearer boundary. The depth of the nearer boundary, of course, remains unchanged.

The above observations constitute a set of necessary constraints on the appearance
of surface boundaries in generic views of anterior scenes. These constraints have been
incorporated into the labeling scheme illustrated in Figure 2.5. The writhe of a
crossing in a knot diagram is the sign of the cross product of the orientations of the
upper and lower strands. The two possible crossing labelings illustrated in Figure 2.5
have opposite values of writhe. Crossings with opposite writhe are mirror images.

It can be easily verified that the depth labels of the different edges in the label-
ing scheme accurately describes the effect of occlusion on the boundary depths at a
crossing. The labeling scheme can therefore be considered necessary in the sense that

the image of the boundary of any anterior scene satisfies the constraints. But does
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a set of closed contours satisfying the labeling scheme always represent an anterior

scene? Is the labeling scheme necessary and sufficient?

2.3 Sufficiency Proof

We now prove that a set of closed contours satisfying the labeling scheme illus-
trated in Figure 2.5 always defines an anterior scene. First, constraints on the number
of interior surface points which project to a single image point are identified. We then
demonstrate that given an oriented knot diagram, values satisfying these constraints
can always be found. This is the precondition of a procedure for constructing a pan-
eling from a knot diagram satisfying the labeling scheme. Finally, we show that every
paneling constructed with this procedure represents an anterior scene which projects
generically as the labeled knot diagram.

Theorem 2.1 Every knot diagram satisfying the labeling scheme illustrated below

represents a generic view of an anterior scene.

O<n<gm

n O<m< n
m m
n n n+1 n
——— ——-
m+1 m

Figure 2.5: A boundary labeling scheme.
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Proof Observe that a knot diagram partitions the plane into a set of disjoint
planar regions. The boundary of each planar region is a cycle of oriented edges
separated by crossing vertices. Every edge forms the side of exactly two planar
regions, one lying to its right, the other to its left (where right and left are with
respect to the edge’s orientation). Note that if an edge is the projection of part of
the boundary of an anterior scene, then the multiplicity of the projection of interior
surface points onto image points is one greater on the right side of the edge than on
the left. Furthermore, the multiplicity of the projection of interior surface points onto
image points will be constant within a planar region.

Let A and B be neighboring regions in an oriented knot diagram and let A lie to
the right of B. If the labeled knot diagram represents an anterior scene, and if 4
and g are the multiplicities of the projection of interior surface points within regions
A and B, then v4 — v = 1. Observe that the set of difference constraints among
all neighboring planar regions form the node-edge incidence matrix of a network. Let
the nodes of the network corresponding to A and B be vy and vg respectively. We
adopt the convention that the edge of the network joining v4 with vg is directed from
v to vg when region A lies to the right of region B in the knot diagram so that the
weight of an edge in the network is equal to one when traversed in the direction of

its orientation.

Example

An example of a closed plane curve satisfying the labeling scheme (i.e. a labeled
knot diagram) is illustrated in Figure 2.6. This plane curve partitions the plane
into regions where the number of surface points which project onto a single image
point differs by one across region boundaries. Together, these regions define a network

representing a system of difference equations (see Figure 2.7). The weights of edges in
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Figure 2.6: A labeled knot diagram. A labeled knot diagram is a set of closed plane
curves satisfying the labeling scheme. Because it consists of a set of closed plane
curves, a labeled knot diagram partitions the plane into regions.
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Figure 2.7: Multiplicity network. This network represents a system of difference
equations involving the multiplicity of the projection of interior surface points onto
adjacent planar regions. The weights of edges in the network are 1 when traversed
in the direction of the arrows and —1 when traversed in the opposite direction. The
closed plane curve corresponding to the labeled knot diagram of the previous figure
is shown dotted.
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the network are 1 when traversed in the direction of the arrows and —1 when traversed

in the opposite direction. The system of difference equations appears below:

1 -1 0 0 0 0 0 0 0 0 1
1 0 -1 0 0 0 0 0 0 0 1
1 0 0 0 -1 0 0 0 0 0|, - 1
01 0 -1 0 0 0 0 0 0 4 1
01 0 0 0 -1 0 0 0 0 B 1
01 0 0 0 0 —1 0 0 0 e 1
00 1 -1 0 0 0 0 0 0 D 1
00 1 0 0 0 —1 0 0 0 T
00 0 1 0 0 0 —1 0 0 w 1
00 0 0 1 -1 0 0 0 0 e 1
00 0 0 1 0 -1 0 0 0 TH 1
00 0 0 0 1L 0 0 0 —1 m 1
o0 0 0 0 0 1 -1 0 o |LW 1
00 0 0 0 0 1 0 —1 0 1
000 0 0 0 0 1 0 0 —1| 1

Recall that a system of difference equations has a solution it and only if the sums
of the weights of every cycle in its corresponding network equal zero (where the weight
of an edge is 1 or —1 depending on the direction of traversal)[56]. We demonstrate not
only that a solution to this system of difference constraints always exists but also that
a solution exists where the value of 7 for every planar region is greater than the largest
depth label among all edges bordering that region in the knot diagram. Fortunately,
this second condition is easy to satisfy, since it is always the case that if {z1, 2, ..., 2,}
is a solution to a system of difference equations, then {z; + ¢, 22 +¢,..., 2, + ¢} is also
a solution for any constant ¢ (and there are no other solutions). Since a sufficiently
large ¢ can always be found* it is sufficient to prove that the sums of the weights

around every closed cycle in a network constructed as described equal zero.

4Clearly, the simplest solution will use the smallest possible value of c.
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We begin by proving the following lemma:

Lemma 2.1 Let J be an oriented Jordan curve in the plane and let C' be an
arbitrary, oriented, closed plane curve. If J intersects C' at m points, and zfj_; and ¢
are the vectors tangent to J and C at these points, then 7! sgn(ﬁ- x &) = 0.

Proof A Jordan curve divides the plane into two disjoint regions which we call
the black region and the white region. We adopt the convention that the black region
lies to the right as the Jordan curve is traversed in the direction of its orientation
while the white region lies to the left. If in the course of traversing oriented plane
curve (', an ant crosses Jordan curve J at crossing ¢, then the ant is conveyed either
from the black region to the white region or from the white region to the black region.
In the first case, sgn(j_'; x ¢;) = 1 while in the second case sgn(fi x ¢;) = —1. Since

successive crossings, ¢ and ¢ 4+ 1, must occur in opposite directions:

Sgn(ji X C_;) + Sgn(ﬁﬂ X a+1) =0

Since in the course of a complete circuit, C' must intersect J an even number of

times,

Z Sgn(ji X 5;) = Z Sgﬂ(j:)i X Ezi) + Sgﬂ(j2i+1 X E2i+1) =00
=0 =0

We now proceed with the proof that the sums of the weights around every closed
cycle in a network constructed as described equal zero. Assign locations in the plane
to the vertices in the network, such that each vertex is located within its respective
planar region. Since edges only connect vertices located in adjacent planar regions,
the network clearly has a planar embedding. We further note that every edge in
the network need only cross an edge in the knot diagram once: At the boundary

between adjacent regions. Furthermore, at these crossing points, the signs of the cross
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products of vectors tangent to edges of the network and edges of the knot diagram
are everywhere equal to 1, which equals the network edge weight when traversed in
the direction of its orientation. Conversely, if the edge is traversed in the opposite
direction, then the sign of the cross product is —1, which again corresponds to the
weight of the network edge. It follows that when a simple cycle is traversed in a given
direction, the signs of the cross products of vectors tangent to the cycle and the edges
of the knot diagram equal the weights of the network edges. Since the network is
a planar graph, the traversal of every simple cycle (i.e. a cycle in which no vertex
is visited twice) traces an oriented Jordan curve in the plane. Therefore by Lemma
2.1, the sum of the weights for simple cycles is zero. Complex cycles, in turn, are the
sums of one or more simple cycles, each of which is an oriented Jordan curve. Clearly
then, the sums of the weights around every cycle in the network also equals zero, so

that the system of difference equations always has a solution.

Let us summarize the proof to this point. We began with the observation that
a knot diagram partitions the plane into regions. We then described a system of
difference equations which the multiplicities of the projection of interior surface points
onto the different regions must satisty if the knot diagram is an image of a surface
boundary. It was subsequently shown that a solution to this system of difference

equations can always be found.

The second part of the proof is a description of a procedure for constructing a
paneling given a knot diagram labeled according to the scheme illustrated in Figure
2.5 and a solution to the system of difference equations. We then prove that the
paneling actually does represent a surface with boundary by demonstrating that the

neighborhood of every point is homeomorphic to either a disc or half-disc.

Since each region of the planar partition induced by the knot diagram is a topo-
logical disc, flat panels of the same shape and size can be cut out from a sheet of

paper. For each region, R, create «vr copies of the paper panel, where vr is a so-
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lution to the above system of difference equations. Let the copies of region R be
R(1),R(2), ..., R(yr) and let them be arranged in a stack above region R in the plane
such that R(1) is the uppermost region and R(yg) is the lowermost region.

Let A and B be neighboring regions and let n be the boundary depth of the edge
in the knot diagram separating them. Note that if A lies to the right of B then
v4 — 8 = 1. Unless n equals zero, identify the side (bordering B) of each panel
(above region A) numbered 1 through n with the adjacent side of the corresponding
copy of region B (i.e. A(l) = B(l),...,A(n) = B(n)). Let the side of A(n + 1)
adjacent to B remain non-identified. Now, unless 74 equals n + 1, identify the side
(bordering B) of each panel (above region A) numbered n + 2 through v4 with the
adjacent side of the copy of region B numbered n+ 1 through v4 —1 (i.e. A(n+2) =
B(n+1),...,A(v4) = B(va — 1)). We refer to this implicitly defined set of edge
identifications as the identification scheme. The effect of the identification scheme
is to create n interior edges above and v4 — n — 1 interior edges beneath a single
boundary edge in the paneling. The set of identifications can be divided into three

subranges, the first and last of which are potentially empty:®

(b) A(n+1)—0

(¢c) Aln+2)=B(n+1),...A(ya) = B(ya—1)

As previously noted, by everywhere gluing along the edges specified by the identi-
fication scheme, a paneling is created. However, we still must show that this paneling
represents an anterior scene. This will be done by demonstrating that the neighbor-
hood of every point of the paneling has structure characteristic of either an interior

surface point or a boundary point. Towards this end, we observe that points of the

5If the final index of a subrange is less than the initial index, then that subrange is empty.
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Viewing Direction

I

A1) - B(1)
A(N) -— B(n)
An+ 1) /
/
A(n+ 2) - B(n+ 1)
A(V,) - - B(Ya-1)
A Ve B

..................................................................................................................

Figure 2.8: Paneling construction. Paper panels stacked above regions A and B in
the plane. Following the identification scheme, all copies of regions A and B except
A(n+ 1) are glued along their adjacent sides. The free side of A(n+ 1) becomes part
of the boundary of the surface.
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X

G(2)

Figure 2.9: The paneling resulting from the construction. Bold edges remain free,
and form the boundary. Additional identifications are indicated by x and y.
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paneling can be divided into the following categories: 1) Points interior to a panel;
2) Points lying on an identified edge; 3) Points lying on a non-identified edge; and 4)
Vertex points. In each of these cases, we demonstrate that the neighborhood of the

point has structure characteristic of an interior surface point or a boundary point.

The first three cases are trivial. First, it is clear that a point interior to a panel
forms an interior point of the surface. Second, the nature of the identification scheme
ensures that every panel edge is identified with at most one other. Pairs of identified
panel edges therefore form interior edges of the paneling. Third, it is also clear that
non-identified panel edges form boundary edges of the paneling. This leaves only the

fourth case.

We therefore consider the neighborhood structure of vertex points. These are
points of the paneling where the corners of two or more panels meet and are created
when the construction is applied to the edges incident at a crossing in the knot
diagram. We note that the result need only be demonstrated for crossings with
writhe equal to +1 since the case of crossings with writhe equal to —1 follows from

mirror symmetry.

To better appreciate the need for an explicit proof of the proposition that neigh-
borhoods of vertex points produced by the construction are homeomorphic to either
discs or half-discs, it will be useful to study a negative example. The knot dia-
gram shown in Figure 2.10 satisfies all conditions of the labeling scheme but the
boundary depth order requirement. More specifically, although boundary depths are
positive and depth change is consistent with the orientation of the occluding strand,
the boundary depth of the occluding strand is greater than the depth of the occluded
strand at the four crossings bordering region /. Nevertheless, the construction still
can be applied to this knot diagram. This results in the paneling shown in Figure
2.11. The structure of the neighborhoods of each of the four crossings violating the

depth order requirement is fairly complex, and is best appreciated through a paper
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Figure 2.10: A knot diagram violating the labeling scheme. The labeling of the four
crossings on the boundary of region [ is in violation of the depth order requirement.
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Figure 2.11: A pathological paneling. This paneling is produced when the construc-
tion is applied to the knot diagram in the previous figure. Bold edges remain free, and
form the boundary. Additional identifications are required along edges labeled w, =,y
and z. Although the set of boundary points form a single connected component, the
set of interior points does not.



50

model, which is readily constructed with scissors and tape. But even without build-
ing a model, one consequence of the unusual neighborhood structure can be readily
appreciated: Although the boundary set is connected, the set of interior points is not!
Since none of panel I(2)’s four sides is identified, each forms part of the boundary.
Consequently, there exists no unbroken path, wholly interior to the surface, connect-
ing an interior point of /(2) with an interior point of any other panel. It is precisely
this type of pathology that we wish to demonstrate is impossible in a knot diagram

satisfying the labeling scheme in all respects. Toward that end, we continue the proof.

O<m<n
A m B

n+1 n
-

C m D

Figure 2.12: Four regions incident at a crossing with writhe equal to +1.

Let the four regions incident at a crossing with writhe equal to +1 be A, B, C' and
D as illustrated in Figure 2.12. Note that the depth of the edges dividing regions
A and B is m, regions C' and D is m, regions A and C' is n + 1, and regions B and
D is n, with 0 < m < n < v as guaranteed by the labeling scheme. Since region C
lies to the right of the image of both boundaries, the multiplicity of region C' is one
greater than the multiplicity of regions A and D (i.e. v¢ = yp+1 =74+1) and two

greater than the multiplicity of region B (i.e. v¢ = v+ 2). We will show that, after
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gluing, exactly two of the y¢ copies of region C' will form boundary vertices (with
neighborhoods homeomorphic to half-discs) while the remainder will form interior
vertices (with neighborhoods homeomorphic to discs). In the process, all copies of
the other three regions will be accounted for.

We begin by enumerating the set of edge identifications prescribed by the iden-
tification scheme for copies of regions A, B, C' and D. These identifications are

understood to apply to the adjacent edges of the specified copies:

1. Identifications between copies of A and B.

(b) A(m+1)—10

(¢) A(m +2) = B(m +1),..., A(v4) = B(ya — 1)
2. Identifications between copies of C' and D.

(a) C(1) = D(1),...,C(m) = D(m)

(b) C(m+1)—10

(¢) C(m+2) = D(m+1),...,C(y¢) = D(v¢ — 1)
3. Identifications between copies of C' and A.

(a) C(1) = A(1),....,C(n+1) = A(n + 1)

(b) C(n+2)—10

(¢) Cn+3)=An+2),...Clvc) = A(ye — 1)

4. Identifications between copies of D and B.
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(¢) Din+2)=B(n+1),...D(yp) = B(yp — 1)

The identifications can be grouped into five consecutive subranges instead of three

by exploiting the fact that ve =y4+1=9p+1=94+2and 0 < m < n < ~¢:

1. Identifications between copies of A and B.

(b) A(m+1) —0

() A(m+2)=B(m+1),..,A(n+1) = B(n)

(d) None.

() A(n+2) = B(n+1),..,A(vc — 1) = B(yo — 2)
2. Identifications between copies of C' and D.

(a) C(1) = D(1),...,C(m) = D(m)

(b) C(m+1)—10

(¢) C(m+2)=D(m+1),...C(n+1) = D(n)

(d) C(n+2)=D(n+1)

(e) Cn+3)=D(n+1),..,Clrc) = D(ye — 1)

3. Identifications between copies of C' and A.

(b) C(m+1)= A(m+1)
(c) C(m+2)=A(m+2),...C(n+1) = A(n+1)
(d) C(n+2)—10

(e) C(n+3)=An+2),...Clyc) = Alye — 1)
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4. Identifications between copies of D and B.

(b) None.
(¢) Dim+1)= B(m+1),...,D(n) = B(n)
(d) D(n+1)—10

() Din+2)=B(n+1),...D(y —1) = B(ye —2)

The effect of gluing the panels according to the prescribed identifications is best
illustrated by means of a diagram such as Figure 2.13. Pairs of identified edges
are adjacent in the diagram. This diagram illustrates, in the most general case, the
vertices of the paneling which are produced by the construction when applied at a
single crossing. The fact that these and only these vertices are created can be verified
by noting that: 1) Every identification prescribed by the identification scheme appears
in the diagram; and 2) Every identification appearing in the diagram is prescribed by
the identification scheme.

The effect of identifications 1-4 (b) and (d) is to create two vertices with neigh-
borhoods homeomorphic to half-discs in the paneling. These are boundary vertices.
The effect of identifications 1-4 (a),(c) and (e) is: 1) To create m interior vertices
above the upper boundary vertex; 2) To create n — m interior vertices between the
upper and lower boundary vertices; and 3) To create ¢ — n — 2 interior vertices
beneath the lower boundary vertex. Clearly, if m = 0 no interior vertices are created
above the upper boundary vertex. Similiarly, if m = n then no interior vertices are
created between the upper and lower boundary vertices. Finally, if n = 7. — 2, no
interior vertices are created beneath the lower boundary vertex. Inspection of the
diagram confirms that exactly four panels meet at each interior vertex, and that the

neighborhood structure of each interior vertex resembles a disc.



A(1)...A(m) B(1)...B(m)

C(1)...C(m) D(1)...D(m)
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A(m+1)

C(im+1)

B(m+1)...B(n)

C(m+2)..C(n+1)

D(m +1)...D(n)

(d) (e)
A(n+2).. A(ye — 1) B(n+1)...B(yc —2)
C(n+2) D(n+1) C(n+3)..C(ve) D(n+2)..D(yc — 1)

Figure 2.13: Paneling vertices produced by the construction. These vertices (and no

others) are produced by the construction when applied to edges incident at a crossing.

Thick lines are boundary edges.
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We now show that the image of the boundary of the anterior scene produced by
the construction corresponds to the knot diagram in every respect and that the view is
generic. First, the definition of the construction guarantees that each edge in the knot
diagram produces exactly one non-identified edge in the paneling. The multiplicity
of the projection of boundary points is therefore equal to one everywhere except at
crossings. Furthermore, at crossings the multiplicity of the projection of boundary
points is two, since exactly two boundary vertices are produced in the paneling when
the construction is applied to the edges incident at a crossing. It follows that the view
is generic. Second, the definition of the construction guarantees that the image of
the surface everywhere lies to the right of the image of its boundary, so that contour
orientation is respected. Finally, the definition of the construction guarantees that
the boundary depth everywhere matches the depth attributes of the labeled knot
diagram, since exactly n interior panel edges are assembled above each boundary

edge.O

2.4 Smooth Manifold-Solids

An orientable surface divides three-dimensional space into two disjoint sets which
can be interpreted as the interior and exterior of a manifold-solid. In addition, if
the first three derivatives of surface orientation are continuous everywhere, then the
manifold-solid is said to be smooth. We conclude this chapter by conjecturing that the
anterior surfaces of scenes composed of smooth manifold-solids can be represented by
labeled knot diagrams. Developing these ideas more fully is a topic for future work.

The occluding contour is the projection onto the image plane of the contour gen-
erator, which is the locus of points on the surface of a smooth manifold-solid which

are tangent to the viewing direction. The contour generator consists of one or more
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simple closed curves which divide the surface into two disjoint sets called the anterior
and posterior. The anterior, which possibly consists of multiple components, is the
portion of the surface potentially visible to the viewer. The surface orientation of

every anterior point has a positive component in the viewing direction.

Conjecture 2.1 Let A be the anterior scene formed by slicing a manifold-solid
along the contour generator and discarding the backward facing surfaces. There is a
topologically equivalent anterior scene A', arbitrarily close to A, which can be repre-

sented by a labeled knot diagram.

Rationale If the bounding surface of a manifold-solid is cut everywhere along the
contour generator, then each of the frontward facing components forms an orientable
surface with boundary. Although these surfaces define an anterior scene (i.e. A), in
general, the embedding of this scene will violate the definition of generic view, and

so cannot be represented by a labeled knot diagram.

First, since the surface normal everywhere along the boundary of the anterior
scene (i.e. 6.A) is perpendicular to the viewing direction (the boundary consists of
points which previously formed the contour generator), an arbitrarily small rotation
will result in self-occlusion of some portion of A. Although non-generic in the broad

sense of the word, this is not where the problem lies.

The problem lies in the fact that the occluding contour of the smooth-manifold
solid can contain cusps, which are the images of points where the direction of the con-
tour generator coincides with the the viewing direction[33]. Because 6.4 is described
by the same space curve(s) as the contour generator, 6.4 is asymptotic to the viewing
direction at precisely the same points. Consequently, what were cusps in the occlud-
ing contour (i.e. prior to slicing) are now multiplicity two points (i.e. singularities) in
the image of 6 A. However, unlike crossings, these singularities are not stable: when
the viewing direction is changed slightly, 6 A4 will no longer be asymptotic at these

points and the singularities disappear. This violates the definition of generic view.
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Proof of the conjecture would require showing that there exists a transformation,
T, which maps anterior scene A to a topologically equivalent anterior scene A" arbi-
trarily close to A. Furthermore, transformation 7' must be defined so that the images
of both A" and 6 A" are non-singular. This would establish that the view of A’ is
generic, so that the image of 6 A’ is a labeled knot diagram.

Figure 2.14(a) depicts a smooth manifold-solid and its occluding contour. The oc-
cluding contour contains two cusps which form a “swallowtail.” Figure 2.14(b) shows
the anterior scene formed by slicing the manifold-solid along the contour generator,
discarding the backward facing surfaces, and applying transformation 7T'. Transforma-
tion T', which can be thought of as “erosion” of A inward from its boundary, changes
one of the two cusps into a small loop. The image of 6 A’ is a labeled knot diagram.
This labeled knot diagram represents an anterior scene which is an arbitrarily close

to the anterior surfaces of the smooth manifold-solid.
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(@)

(b)

Figure 2.14: Anterior scene constructed from smooth manifold-solid. (a) A smooth
manifold-solid and its image (after Callahan[8]). The image of the contour generator
contains two cusps which form a “swallowtail.” (b) Anterior scene A’ is formed by
slicing the manifold-solid along the contour generator, discarding the backward facing
surfaces, and applying transformation 7. Transformation 7', which can be thought
of as “erosion” of A inward from its boundary, changes one of the two cusps into a
small loop. We conjecture that the image of 6.4’ is a labeled knot diagram.



CHAPTER 3

FIGURAL COMPLETION: A PROBLEM-LEVEL
FORMULATION

In this chapter, a computational theory of figural completion is described. In more
concrete terms, the problem of computing a labeled knot diagram representing an an-
terior scene from a set of contour fragments representing image luminance boundaries
is investigated.

This thesis’ treatment of the figural completion problem is quite a bit different
than many treatments of perceptual organization problems in computer vision. Too
few grouping problems are explored at the level of computational theory. Often there
is no clear statement of a computational goal. This quickly leads to the paradoxical
situation of algorithms which compute functions which have no definitions indepen-
dent of the algorithms themselves. Quite often, a clearly developed computational
theory leads directly to a formulation as an optimization problem. In this thesis, this

optimization problem takes the form of an integer linear program.

3.1 Natural Constraints

This chapter begins with the somewhat pessimistic observation that the natural
constraints which apply to this problem are few in number and not nearly sufficient
to determine a unique solution. That having been said, we observe that these con-

straints have two sources. The first is the requirement that the organization be a

99
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labeled knot diagram. This can be termed the topological validity requirement. Basi-
cally, only closed plane-curves satistfying the labeling scheme define generic views of
anterior scenes. Because this was discussed in detail in the previous chapter, we con-
sider the second source of constraints, which will be termed the stimulus conformity
requirement. The importance of this requirement has been stressed by Irvin Rock[48],
who observed that “the [perceptual] solution must not contradict the stimulus” and
“must contain everything implied by the stimulus.” Regarding illusory contour dis-
plays, Rock hypothesized that the depth of visible boundaries must be zero, and that
light surfaces must be visible against dark surfaces and vice versa. Consider, for ex-
ample, the stimulus depicted in Figure 3.1(a). Although Figure 3.1(b) and (c) both
depict generic views of topologically valid anterior scenes, the anterior scene depicted
in Figure 3.1(c) contradicts the stimulus in two different ways. First, contours plainly
visible in the stimulus (i.e. luminance boundaries) are hypothesized to have depths
greater than zero in the solution. Second, although the depth of the black surface is
hypothesized to be zero everywhere, its boundary is only intermittently defined by
a change in image brightness. In particular, there is no luminance boundary where
it nominally overlaps the white triangle. The importance of stimulus conformity be-
comes obvious when one realizes that Figure 3.1(c) is actually Figure 3.1(b) (the

correct inference) viewed from underneath.

3.2 Inherent Ambiguities

Given only these constraints, the problem of computing a labeled knot diagram
from an image of a anterior scene remains underconstrained in three qualitatively
different ways. The first kind of ambiguity can be termed shape ambiguity. The
essence of shape ambiguity is illustrated in Figure 3.2. Figure 3.2(a) apparently

depicts a square opaque surface occluding a second surface of indeterminate shape.
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(@)

(b)

(€)

Figure 3.1: Stimulus conformity. (a) A variation of the Kanizsa triangle. (b) The
anterior scene generally perceived by human observers. (¢) A second anterior scene.
Although topologically valid, this interpretation is not supported by the image evi-
dence. In fact (c) depicts how (b) would appear if it were viewed from underneath.
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Without “X-ray” vision, this problem can not be solved in any absolute sense. Even if
smoothness is assumed (with no real justification), an infinitude of completion shapes
which can be transformed one into another by smooth deformations in the plane still
remain. Yet humans experience a particular shape, which is depicted in Figure 3.2(b).
The other completions can be imagined, but they are not perceived preattentively.

Unlike shape ambiguity the other two forms of ambiguity are combinatorial, and
therefore finite. The first of these is unit ambiguity, which is ambiguity in identi-
fying which contour fragments match which to form boundaries. The word “unit”
is used here in the manner it is used by the Gestalt psychologists (see for exam-
ple Schumann[54]), and in this thesis refers to the boundary components which are
the products of the grouping process. Unit ambiguity is illustrated in Figure 3.3.
Rock[48] calls the interpretation in Figure 3.3(b) the “literal solution.” Both the
literal solution and the solution depicted in Figure 3.3(c) are topologically valid and
conform to the image evidence. Yet these two interpretations consist of very different
sets of “units,” or boundary components.!

Second, there is depth ambiguity, which is ambiguity in the signs of occlusion
(i.e. figure-ground sense) of different boundary components and their relative depths
at crossings. Consider Figure 3.4(a), a variation of the Kanizsa triangle. Figure
3.4(b) illustrates the organization experienced by most observers: An illusory triangle
appears to partially occlude three black discs and a second black triangle. Yet the
other organizations depicted in the figure (i.e. (c), (d), (e) and (f)) also represent
topologically valid anterior scenes conforming to the image evidence. These differ
from the preferred interpretation in the signs of occlusion assigned to the different

boundary components, and in the relative depths of different portions of boundary.

!One might ask why boundary components are considered to be the elementary “units” when
complete surfaces might be more natural. There are several reasons for this choice, which will
become clear in Chapter 5.
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(a) (b)

(€)

Figure 3.2: Shape ambiguity. (a) A square opaque surface occluding a second surface
of indeterminate shape. (b) The shape which properly functioning human visual
systems infer. (c), (d), (e) and (f) These completions can be imagined, but they are
not perceived preattentively.
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(€)

Figure 3.3: Unit ambiguity. (a) A variation of the Kanizsa triangle. (b) The orga-
nization Rock calls the “literal solution.” (c) The organization experienced by most
observers. Although both are topologically valid anterior scenes conforming to the
image evidence, they contain different sets of closed boundaries.
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(@)

(€)

(e)

Figure 3.4: Depth ambiguity. (a) A variation of the Kanizsa triangle. (b) The
organization experienced by most observers. (c), (d), (e) and (f) Other topologically
valid anterior scenes conforming to the image evidence. Although, each organization
contains the same set of closed boundaries, individual boundaries differ in sign of
occlusion and/or relative depth.
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(@) (b)

(©) (d)

Figure 3.5: Completion shapes. Amodal completion of a partially occluded circle and
square (redrawn from Kanizsa[29]). In both cases, completion is accomplished in a
manner which preserves tangent and curvature continuity at the terminal ends of the
occluded boundaries.
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(b)

(©)

Figure 3.6: Symmetry is not a factor. This figure, redrawn from Kanizsa[29], demon-
strates that symmetry is not a factor in determining completion shape. (a) The
stimulus. (b) The shape reported by test subjects. (¢) This shape can be imagined,
but is not preattentively inferred.
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(@)

(b)

(©)

Figure 3.7: Shape is independent of role. Completion shape is determined by the
position, orientation and curvature of the boundary fragments which the completion
joins, not by the role the completion might play in a larger organization. The arrows
represent hypothetical signs of occlusion of the different boundary components. In
(b) the smaller square is nominally interpreted as a solid, while in (c) this square is
nominally interpreted as a hole. If the smaller square were a hole, and the completion
were of the shape depicted in (b), then the completion would be visible, which it very
clearly is not. If the smaller square were a hole, then the shape of the completion
must be similiar to that depicted in (c), which is not very compelling.
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3.3 Completion Shape

In human vision, a relatively small number of factors seem to determine the shape
of perceptual completions. These include the position, orientation and curvature of
the boundary fragments which the completion joins. Although few in number, the
interplay of these factors can be quite subtle. Consider Figure 3.5 (redrawn from
Kanizsa[29]), which illustrates the amodal completion of a partially occluded circle
and square. In both cases, completion is accomplished in a manner which preserves
tangent and curvature continuity at the terminal ends of the occluded boundaries.
Significantly, in the case of the square, curvature continuity at these “distinguished”
points is achieved at the expense of introducing a tangent and curvature discontinuity
(i.e. a corner) at a more “generic” location underneath the occluding surface. The
human visual system seems unwilling to accept the spatial coincidence inherent in
the superposition of a tangent and curvature discontinuity and a point belonging to
a second boundary.

Significant for not being a factor is symmetry. Consider Figure 3.6 (also redrawn
from Kanizsa[29]). Figure 3.6(b) depicts the shape of the completion reported by
test subjects when presented with the stimulus depicted in Figure 3.6(a). Kanizsa
maintains that the shape depicted in Figure 3.6(c) can be imagined, but is not
preattentively perceived. This suggests that completion shape is determined without
regard to the role the completion might play in a larger organization. Additional
evidence that this is in fact the case is provided by Figure 3.7. The arrows represent
hypothetical signs of occlusion of the different boundary components. In Figure
3.7(b), the smaller square is nominally interpreted as a solid, while in Figure 3.7(c),
this square is nominally interpreted as a hole. If the smaller square were a hole, and
the completion were of the shape depicted in Figure 3.7(b), then the completion would

be visible, which it very clearly is not. If the smaller square were a hole, then the shape
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of the completion must be similiar to that depicted in Figure 3.7(c), which is not
very compelling. In fact, it seems quite contrived. This suggests that while the shape
and location of completions can determine topological aspects of the organization (i.e.
unit and depth), topological aspects do not determine completion shape. A still more
radical notion is advanced by Kellman and Loukides[32], who theorize that “unit
formation” occurs prior to and independently of “depth placement.” This possibility

will be considered in detail in Chapter 5.

3.3.1 Curves of Least Energy

Even if we assume that completion shape is solely a function of the position,
orientation and curvature of the boundary fragments which the completion joins,
tangent and curvature continuity, do not, by themselves, uniquely determine com-
pletion shape. Although no comprehensive theory exists, computational models have
been proposed for the shape of illusory contours joining boundary fragments with
orientation difference significantly less than 7. Ullman[57] originally hypothesized
that the curve used by the human visual system to join two contour fragments is
constructed from two circular arcs. Fach circular arc is tangent to its sponsoring
contour at one end and to the other arc at their point of intersection (the curve is
continuous in tangent, but not curvature). According to Ullman, from the family of
possible curves of this form, the pair of circular arcs which minimizes total bending
energy (i.e. E = [r(s)*ds, where k is curvature) models the shape of the illusory
contour. Horn[22] subsequently proposed that the shape of the contour joining two
boundary fragments is described by the true curve of least energy, to which Ullman’s
curve is a two arc approximation.

More recently, Kass, Witkin and Terzopolous[30] have demonstrated the utility

of active minimum energy seeking contours called “snakes” in a variety of computer
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vision applications. The “internal” energy in the snake active contour model is defined

to be:

1
Eins = 5 [ alvauls) + Blva(s)|* ds (3.1)

Here v, and v, are finite difference approximations of the first and second deriva-
tives. The |v..(s)|? therefore plays the role of k(s)?. Kass et. al suggest that the
curve minimizing this functional models the shape of an illusory contour with the
same end conditions and demonstrate this agreement on a number of figures which
elicit illusory contours in human vision.

Nitzberg and Mumford[39] point out that the problem of computing the shape
of the curve of least energy was first studied by Euler, and have used “elastica” to
represent potential completions in a combinatorial optimization approach to figural

completion.? The functional they propose is of the form:

E= /(a k(s)? + B) ds (3.2)

The elastica and snake energy functionals differ primarily in their second terms:
the snake functional minimizes |v,(s)|* while the classical functional minimizes arc
length. The significance of this difference is unclear.

Of course, even if one assumes that the human visual system uses the curve of

least energy (or a related curve) to represent the shape of perceptual completions,

2As in this thesis, Nitzberg and Mumford[39] have studied figural completion in illusory contour
figures such as the Kanizsa triangle. They also describe a combinatorial optimization approach
where potential completions are explicitly represented by curves of least energy. The objective
function they minimize includes terms which implement a preference for organizations consisting
of low-energy completions bounding regions of uniform brightness. Unlike this thesis; they assume
that environmental surfaces can be represented by sets of closed, non-self-intersecting plane curves
(i.e. Jordan curves) of constant depth. Consequently, surfaces with boundaries which project as
self-intersecting curves in the image plane can not be represented. However, there is no physical
basis for this assumption and there is abundant evidence (e.g. Figure 1.10) that the human visual
system does not use it.
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then the question of why it does so remains. Ullman[57] listed criteria he believed
illusory contours joining boundary fragments with small orientation difference must
satisfy, including smoothness, isotropy and extensibility. Smoothness and isotropy
imply tangent continuity and rotational invariance, which are clearly desirable prop-
erties and in accordance with observation. Extensibility is subtler, and simply stated,
requires that any two points on a curve of least energy be joined by a curve of least
energy for that interval. This is an example of the optimal substructure property
characteristic of problems which can be solved by dynamic programming, and in this

instance, makes local parallel computation in a network possible (see Figure 5.8(b)).

3.3.2 Inferential Leverage

Extensibility provides a compelling argument at the algorithmic level for using
the curve of least energy to fill the gaps between boundary fragments. Is there an
additional, computational theory level rationale? Witkin and Tenenbaum[60] examine
this question at length and reject those commonly cited. They point out that Occam’s
razor provides no philosophical justification for “smooth as possible” solutions in
computer vision since the definition of smooth (or simple) inevitably depends on
the choice of representation. They also point out that a minimum energy solution
is, at best, only marginally more likely than any other, and can not be adequately
justified on the basis of prior probabilities. Although it is possible that given the
ambiguity in completion shape, algorithmic level considerations (i.e. extensibility)
and marginally higher prior probabilities become the determining factors, Witkin
and Tenenbaum ultimately offer a different rationale for the use of minimum energy
solutions. They suggest that although these solutions are not significantly more likely
than others, the simple fact that a smooth low energy interpolating curve exists is itself

a reliable indicator of a non-accidental relationship. This has important implications
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for the task at hand: the likelihood that two contour fragments form consecutive
segments of the same boundary is assumed to be a function of the shape of the smooth
interpolating curve of least energy joining them. We hypothesize that the human
visual system resolves the ambiguity in completion shape somewhat arbitrarily, but
in doing so, it gains information useful for resolving the unit ambiguity.

Witkin and Tenenbaum|[60] argue that perceptually significant geometric rela-
tions like collinearity and parallelism are actually the zero distortion limiting cases

3 The measures are defined to be the

of more general “fuzzy identity” measures.
total energy in least-distortion transformations mapping one token’s position into
another’s. They suggest that there is a correlation between the degree of distor-
tion and the likelihood that the tokens are products of a single physical process
(i.e. they have a common origin). In their opinion, whether the prior probabil-
ity of a particular measurement is high or low is far less important than the ratio
of the probability density functions in the non-accidental and accidental cases (i.e.
Pr(energy | —accidental)/Pr(energy | accidental)). Distortion measures offering
the most “inferential leverage” maximize this ratio.

Although maximizing likelihood can serve as a rationale for choosing one unit
organization over another, there has been no serious attempt in this thesis to identify
the probability density functions, which by Bayes’ Rule, relate energy (and other el-
ements of the shape of the curve of least energy) to completion likelihood. Whether
or not this is actually feasible is another matter. It is Witkin and Tenenbaum’s[60]
opinion that identifying the precise functional form of the probability densities un-
derlying perceptual organization is unrealistic given the complexity of the real world.

They are only prepared to say that these densities achieve their maximum at zero

3This idea has been further developed by Richards, Feldman and Jepson[46] who propose that
perceptually significant categories correspond to the “non-tranverse modes” of feature probability
densities. We will have more to say about this in the next chapter, where the features and categories
which proved useful in an experimental system are discussed.
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and decrease monotonically with increasing distortion (e.g. from strict collinearity,

strict parallelism, etc.).

As part of a study of the reduction of search made possible by prior grouping in
visual object recognition, Jacobs[28] computed the probability density of the size of
boundary gaps due to occlusion in random juxtapositions of a set of flat polygonal
surfaces.* Jacobs concluded that small gaps predominate and that incident frequency
rapidly drops off with increasing size. Since the probability density of distances be-
tween the endpoints of boundary fragments belonging to separate objects is uniform
(assuming positional independence), gap size, like bending energy, provides inferen-
tial leverage in identifying fragments which form consecutive segments of the same
boundary. However, the specific shape of the probability densities Jacobs computed
varied considerably for different sets of polygons, casting doubt on the idea that a

universal distribution exists or can be quantified in a principled way.

3.4 Surface Organization

Regardless of whether or not the shape of the curve of least energy provides infer-
ential leverage useful for resolving unit ambiguity, significant computational gains are
achieved simply by committing to a set of completions of fixed plausible shape. Since
the image traces of potential completions are determined solely by the tangents and
curvatures of the boundary fragments which they join, the locations of points of con-
tour intersection (whether of completions or of completions and boundary fragments)
are independent of a specific surface organization. By committing (even if arbitrarily)
to a set of potential completions of fixed shape, the problem of constructing a labeled

knot diagram representing the surfaces in a scene becomes purely combinatorial:

41t should be noted that Jacobs defined gap size as the Euclidean distance between fragment
endpoints. It seems equally natural to define gap size as the length of the curve of least energy
joining the two boundary fragments, and this is the definition adopted here.
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1. Selecting an optimal subset of unique completions of fixed shape
2. Enforcing the crossing labeling scheme at fixed points of contour intersection
3. Ensuring that the depth of every contour conforms to the stimulus

These three tasks can be combined into a single graph labeling problem. We
maintain that this graph labeling problem is intrinsic to figural completion, not to a
specific method of solution, and is therefore an essential part of the computational
theory. To proceed with this characterization, it will be necessary to define the graph
upon which the labeling problem operates.

We begin with a set of simple closed plane curves which define regions of roughly
uniform brightness. These closed plane curves are segmented at tangent disconti-
nuities to create a set of contours which will be called boundary fragments.> The
boundary fragments form the edges of a graph, Ginpuwr = (Vendpoints, E fragments). Ev-
ery vertex (representing a fragment endpoint) is located at a point in the plane, and
every edge is a C'! smooth contour joining two vertices. Boundary fragments may
or may not be be oriented. If they are oriented, then the direction of the edge indi-
cates the sign of the brightness gradient. We adopt the convention that the darker
region lies to the right as the boundary fragment is traversed in the direction of its
orientation.

Ginput is augmented to form Gron—ptanar = (Vendpointss Efragments Y Ecompletions) DY
adding edges representing potential completions. As with each element of E,qgpments,

each element of E,,ppietions 15 a contour joining two elements of V., 4poines. Finally,

5This is done without regard to the sign of contrast, so that no distinction is made between
positive curvature maxima and negative curvature minima. Although Hoffman and Richards[20]
propose that silhouettes are divided into parts at negative minima of curvature, we observe that this
does not correctly predict part decomposition in illusory contour figures like the Kanizsa triangle.
In general, negative minima of curvature will correspond to part boundaries only in the case of black
surfaces occluding black surfaces against a white background. In the Kanizsa triangle, a presumably
white triangle occludes black discs against a white background, so that positive curvature maxima
are also perceived as part boundaries.
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a planar graph, Gpianq, 1s created by splitting the edges of Gon—pianar Wherever two

intersect, and creating a vertex at that point called a crossing. If V. ,s5ings 1s the

!
completions

set of crossings, and FY% . ... U E is the set of edges after the splitting
operation, then Gpianar = (Vendpoints U Verossingss Efragments Y Prompletions)- Figure
3.8 illustrates what Gjqnqr looks like in the case of the Kanizsa Triangle. Here the
endpoints (i.e. Viugpoints) are drawn as filled circles and the crossings (i.e. Virossings)
as non-filled circles. The boundary fragments (i.e. EY,, . ...,) are drawn as solid lines

and the set of potential completions (i.e. F’ ), as dotted lines.

completions

The problem of maximizing (or minimizing) a linear objective function subject
to linear inequality (or equality) constraints is termed a linear program (or LP). An
integer linear program (or ILP) is a linear program where the solution is further
constrained to have integer components (See Figure 3.9). Although integer lin-
ear programming, in its full generality, is NP-complete, there are specific instances,
such as bipartite matching and maximum network flow, which have polynomial time
algorithms. Integer linear programming is a standard and powerful formalism for
describing combinatorial optimization problems of all kinds. By writing a fixed num-
ber of integer linear constraints for each vertex and edge in G4pqr, an integer linear
program equivalent to the graph labeling problem is generated. The optimal labeled
subgraph of Gianer 1s a labeled knot diagram and is termed Gipor. Grnot defines the

surface organization.

3.4.1 Topological Validity

The first constraint enforced is that every edge (whether boundary fragment or
completion) has one of two orientations (i.e. — and «) and this orientation rep-

resents its sign of occlusion. As always, the convention is that the surface lies to
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max C X

subjectto AX< b
0

<
X >

X Integer

Y

Figure 3.9: An integer linear program. The problem of maximizing (or minimizing) a
linear objective function subject to linear inequality (or equality) constraints is termed
a linear program (or LP). An integer linear program (or ILP) is a linear program where
the solution is further constrained to have integer components.
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the right as its boundary is traversed in the direction of its orientation.® The two
possible orientations of a boundary fragment with respect to one of its endpoints, p,
are represented as 0-1 valued integers x, and z;. If p and ¢ are opposite endpoints
of a single boundary fragment, then the direction from endpoint ¢ to endpoint p is
represented by z, (i.e. ;) and the direction from endpoint p to endpoint ¢ is x; (i.e.
z,). Using this representation, the necessary constraint is the following integer linear

inequality, enforced at every endpoint, p € V. apoints:

z, + Lr; < 1 (3.3)

Since the image projections of surface boundaries are closed plane curves, all in-
stantiated edges must form graph cycles in Gy,¢. It follows that there must be a
unique completion through each endpoint. Furthermore, completions can not be in-
stantiated independently of their “sponsoring” boundary fragments but can only join
fragments to form closed boundaries. Finally, the sign of occlusion of the completion
must be unique and compatible with the sign of occlusion of the sponsoring bound-
ary fragments. This ensures that every cycle in Gy, has a unique sign of occlusion.
Let completions(p) be the potential completions of the boundary fragment through

endpoint p (Figure 3.10). Two constraints per endpoint guarantee all of the above:

r, = Z T; (3.4)

J€completions(p)

l’; = Z 1:; (3.5)

JjE€completions(p)

These constraints play a role analogous to those in a network flow problem. In

this case, “sign of occlusion” is “conserved” at each endpoint. The right side of each

SNote that the direction of the sign of occlusion is distinct from the direction of the sign of
contrast.
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inequality is the sum of all completions whose sign of occlusion is consistent with the
sign of the sponsoring boundary fragment on the left side. Since the left sides are
0-1 valued, the right sides are likewise bounded, guaranteeing a unique completion.
When z, = 2}, = 0, the right sides of both inequalities must also equal zero, which
ensures that no completion is instantiated independently of a sponsoring boundary
fragment. Conversely, a fragment can not form part of a surface boundary if it is not
completed through both its endpoints.” This guarantees that all instantiated edges
are part of cycles.

We now systematically present the linear constraints required to model the oc-
clusion of one opaque surface by another. Recall that as part of the process of
constructing Gignar, at every point where one edge crosses another, the edges are
split into four new edges and joined by a crossing vertex. Call the four edges u, d, [
and r and the crossing vertex ¢ (Figure 3.11). Associated with each of the four edges
are 0-1 valued integers x and 2’ representing their signs of occlusion. Also associated
with each edge is a positive integer variable n representing the boundary depth (i.e.
the number of surfaces between the edge and the eye or camera). Certain constraints
are immediately apparent. First of all, the signs of occlusion of edge u and edge d
must be equal. Likewise for edge [ and edge r. As simple equality constraints, they
can be enforced by substitution and needn’t actually appear in the linear program:
Ty, =4, ¢, =2, 2y =2, and z] =z,

A second observation is that if v and [ (and by implication d and r) are instanti-
ated, then the surface which u bounds (call it S,) is either above or below the surface
which [ bounds (call it &;). This is independent of the specific signs of occlusion of
u or [. When one considers that only the sign of occlusion of the uppermost surface

has any effect on the relative depths of the four edges (i.e. ny, ng, n; and n,), it

“More formally, these constraints ensure that the neighborhood of every point of the completed
boundary is homeomorphic to an open interval.
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(b) (€) (d)

(e) (M

Figure 3.10: Potential completions. (a) Potential completions at endpoint p, of graph
Glptanar; (b),(c) and (d) Unique continuation in case where z, = 1; (e),(f) and (g)
Unique continuation in case where z, = 1.
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becomes clear that crossing ¢ can be in one of four principal states. The specific state
is determined by which of u, d, [ or r is being occluded by the uppermost surface.
When §; is above S, and the sign of occlusion of [ is r — [ (i.e. x] = 1), then the
crossing is in the up state (denoted by T). If edge I’s sign of occlusion is [ — r (i.e.
x; = 1) then the crossing is in the down state (denoted by L). When S, is above S
the crossing is either in the left () state or the right (4) state, depending on whether

the sign of occlusion of u is v — d (i.e. 2/, =1) or d — u (i.e. x, = 1).

Figure 3.11: Four principal crossing states.
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The four states are represented in the linear program with four 0-1 valued variables

zl, 21, 25 and z7. Crossing c is in the up state exactly when z] = 1 and z! =
z7 = 2z} = 0. The other three states are represented similarly. Having established

a representation, it is now possible to describe the first constraint enforced at every
crossing. It ensures that one of the four crossing states will be true if both uw and [
are instantiated. For every ¢ € Viossing (With adjacent edges, u,d,l and r) enforce

the following:

ot vtz < al vat4at 4l 41 (3.6)

When u and [ are instantiated, the left side of the inequality equals two, so that

L

L. 2" and zJ must equal one. Another constraint makes the four

at least one of z], =

states mutually exclusive:

xj—l—xi—l—xi—l—x? < 1 (3.7)

The specific signs of occlusion which are preconditions for each of the four states

appear on the right sides of the inequalities which follow:

] < af (3.8)
et < o (3.9)
< 2 (3.10)
;. < o, (3.11)
For example, crossing ¢ can only be in the left state (i.e. 2 = 1) when edge u’s

sign of occlusion is u — d (i.e. 2!, = 1).
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It is important to note that the four principal crossing states stand for specific
differences in relative depth across the crossing vertex. The following constraints

define the crossing states as relative depths:

Ny —ng = T, —TT (3.12)
ng —n, = a —x (3.13)

There is one additional requirement which must be explicitly enforced at every
crossing vertex. This is the requirement that the depth of the occluding surface must
be less than or equal to the depth of the occluded surface. In terms of the variables

of the integer linear program, the following four conditions must be satisfied:

1. if ] =1 then n, > n
2. if 2t =1 then ng > ny
3. if:l:E: 1 then n; > n,

4. if:E: =1 then n, > n,

The first of these conditions reflects the requirement that the depth of the surface
occluding edge u must be less than the depth of edge u itself. The other three represent
the same requirement for edges d, [ and r. Unfortunately, there is no easy way to
achieve this effect with integer linear inequalities. However, with a bit of creativity,

the necessary constraint can be enforced for values of n less than some constant N:

rl = N(1—=z]) < n,—mn (3.14)
zr—N(1—zr) < ng—mn (3.15)
ef = N(1—25) < n—n, (3.16)
.TL’;' - N(1 - xj) < ny— Ny (3.17)
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Although these inequalities are not very elegant, it is easy to verify that in each
of the four crossing states, they correctly enforce the depth order requirement. For
example, when x| = 1, the left side of the first inequality equals one, and will only

be satisfied by values of n, greater than n;.

3.4.2 Stimulus Conformity

Topological validity is a necessary but not a sufficient condition for feasibility of
Grnot- For a solution to be feasible, it must also conform to the image evidence. Most
importantly, since boundary fragments are visible in the image (i.e. they correspond
to luminance boundaries), it is necessary that their depth indices in Gyt equal zero
(i.e. for every visible boundary fragment f € E%,., ..., we require that ny = 0).
This can be enforced by simply excluding all the ns for these edges from the linear

program, and need not increase the size of the constraint matrix.

Also important, if a completion is instantiated, and its boundary depth equals
zero (indicating that it should be visible) then the absence of a corresponding lumi-
nance boundary should be explainable. In Rock’s[48] words “the [perceptual] solution
must not contradict the stimulus.” Consider contour j which joins visible boundary
fragments ¢ and k (possibly through an arbitrary number of additional edges and
crossings; see Figure 3.12). Let x; be the sign of occlusion of edge j corresponding to
the ¢ — & direction and z’ be the opposite sign. Depending on its sign of occlusion,
edge j bounds either surface S; or surface S;. Associated with S; is reflectance ;
and with S is reflectance ¢. Assuming roughly uniform illumination, ¢; and ¢’
can be approximated by the average brightness within narrow regions on either side
of edge j. In a similiar manner, we can compute @;, ¢!, ¢, and ¢} associated with
surfaces §;, S/, S and ;.

Following Rock[48], we hypothesize that illusory contours occur only in those

situations where the missing section of surface boundary presumably projects to the
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image plane with little or no brightness change. Let |Ag,| be the magnitude of the

brightness gradient across contour j, then:

|Ap;| = |p; — ¢l (3.18)

When z; =1 and n; = 0 then j joins : and k£ to form the visible boundary of a
single surface: §; = §; = 8. Assuming roughly uniform illumination, we conclude
that ; ~ p; &~ @g. Conversely, if 2 = 1 and n; = 0, then j joins : and k to form
the visible boundary of surface §; = 8! = §;. We conclude that o] ~ ¢} ~ .
Since nj; = 0, the assumption is that no surfaces lie between the boundary and the
eye or camera. Normally, under these circumstances, the change in reflectance across
the surface boundary produces a luminance boundary in the image. However, when a
surface occludes another surface with similiar reflectance then ¢; ~ ¢’ and |[Ap;| ~ 0.
This suggests that illusory contours should be permitted only where the observed
image brightnesses are consistent with the existence of two overlapping surfaces of
roughly constant and approximately equal reflectance. This effect can be achieved by

adding Constraint 3.19 unless ¢’ ~ ¢; & ¢; ~ p;, and adding Constraint 3.20 unless

~ /N /N /-
;=@ =P~ P

&
IN

. < nj (3.20)

A “pacman” from the Kanizsa triangle can be used to illustrate the visibility
constraints which are written in the three possible cases (see Figure 3.13). First,
because contour ¢ is a visible boundary fragment, its depth is constrained to be zero
(i.e. n; = 0). Second, because the completion represented by contour j (with the

sign of occlusion indicated) satisfies the conditions described above for an illusory
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contour, no constraint is placed on its depth. Finally, contour k& (again with the
sign of occlusion indicated) represents the potential completion of the disc. Since the
brightnesses are consistent with a dark surface against a light background, its depth
is constrained to be greater than zero (i.e. x; < ny). If instantiated, the completion

must be amodal.

3.4.3 Preference

By committing to a set of potential completions of fixed shape, the surface organi-
zation problem was reduced to a graph labeling problem. However, the integer linear
constraints defining the labeling problem only guarantee that the surface organization
is topologically valid and conforms to the image evidence. Each of the integer points
within the feasible region of the integer linear program can be viewed as a “predic-
tion” about the actual state of the world. Usually, there will be more than one such
integer point. If the goal of the computation is to choose the organization which is
most likely to be correct (i.e. verdicality), then it is important that the predictions
be equally specific. In our analysis, events are represented by 0-1 valued expressions.
If two points in the feasible region are to be compared, then each must be interpreted
as a prediction over the same set of events. We propose that the prediction consist
of an assignment to each element of the set of potential completions, the label “ac-
cidental” or “non-accidental.” Since the set of potential completions is of fixed size,

these predictions are equally specific.

3.4.3.1 Unit Preference

In any given surface organization, some subset of completions is instantiated while
a complementary set remains uninstantiated. Recall that one of the motivations for

using curves of least energy to represent potential completions lay in a presumed
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Figure 3.12: Brightnesses adjacent to visible boundary fragments and completion.
This information, together with the sign of occlusion, determines whether a comple-
tion will be modal or amodal.

Figure 3.13: Examples of visibility contraints. A “pacman” from the Kanizsa triangle
is used to illustrate the visibility constraints which are written in the three possible
cases. First, because contour 2 is a visible boundary fragment, its depth is constrained
to be zero (i.e. n; = 0). Second, because the completion represented by contour j
(with the sign of occlusion indicated) satisfies the conditions described in the text
for illusory contours, no constraint is placed on its depth. Finally, contour & (again
with the sign of occlusion indicated) represents the potential completion of the disc.
Since the brightnesses are consistent with a dark surface against a light background,
its depth is constrained to be greater than zero (i.e. x; < nyg). If instantiated, the
completion must be amodal.
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relationship between the shape of the curve of least energy and the likelihood that
two contour fragments have a common non-accidental origin (i.e. the likelihood that
they form consecutive segments of a single boundary). It was assumed that shape
and completion likelihood were related through an unspecified probability density
function.®

The instantiation of a completion is, in effect, an assertion that its origin is non-
accidental. Since a completion is instantiated if and only if z;+ 2} = 1, the probability
that completion #’s origin is non-accidental can be written as Pr(z; + z; = 1). Al-
though we will see very shortly that the converse does not hold, let us assume (for
the moment) that the converse is also true. That is, failure to instantiate a comple-
tion is tantamount to an assertion that its origin is accidental. The probability that
completion ¢’s origin is accidental then becomes 1 — Pr(z; + ! = 1). Finally, let
us also assume that whether a completion’s origin is accidental or non-accidental is
independent of whether any other completion’s origin is accidental or non-accidental.

That is, for any two completions, ¢ and j:

Pr(zi+a=1]e;+a}=1)=Pr(ei+2;=1)

Because every completion either is or is not instantiated, the likelihood of a given
surface organization (assuming that all completion’s origins are independent) be-

comes:

ZeEcompletions

8For the purposes of the experimental implementation, specific shape features and probability
densities were chosen. These are described in the next chapter.
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This function is, in turn, a monotonically increasing function of the sum of the
logarithms of the likelihoods, so that maximimizing the sum of the logarithms is
equivalent to maximizing the original function. The sum of the log-likelihoods has
the advantage of being linear in the unknowns, which is essential if the objective
function is to be part of a linear program. Since any completion, ¢, is instantiated
if and only if z; + ! = 1, the logarithm of the likelihood that a specific subset of

completions will be instantiated is:

Qunit = E In(Pr(z;+2i=1))(z;+z}) + In(l—Pr(z;+zi=1))(1—z;—z!)

1€ Ecompletions

In information theory, surprise is used as a measure of the amount of information
the news of an event carries. For example, because it is less likely to be raining in
Las Vegas than Seattle, there is more information in the statement “It is raining in
Las Vegas” than in “It is raining in Seattle.” If one expects to see a certain event,
x, with probability, Pr(z), then the degree of surprise when one doesn’t see x is
—In(1 — Pr(z)). The surprise at not seeing z is infinite when Pr(z) = 1 and zero
when Pr(z) = 0.

The surprise metaphor appears frequently in theories of grouping. For example,
Rock[48] suggests that: “The perceptual system detects continuity of direction among
contours. Once doing so, not to accept two or more elements as part of a larger entity
is to accept that continuity as the result of coincidental placement in space of these
elements, that is, of elements that have no intrinsic relationship to one another.”
A similiar concept of “non-accidentalness” has been emphasized by Lowe[37]. By
instantiating a completion, we are accounting for its coincidence of shape (i.e. we
are attributing the origin of the two boundary fragments it joins to a single physical

process). If a completion is not instantiated, we are asserting that the two fragments



91

originate in independent physical processes. The coincidence of shape represented by
the potential completion is therefore attributed to chance. The In(1 — Pr(z; + 2} =
1))(1—a; — %) term in objective function @y is a measure of the surprise implicit in
the failure of a surface organization to account for the coincidence of shape represented
by potential completion z.

We observe that objective function )y, simultaneously maximizes likelihood
and minimizes surprise. Consequently, variable weights range from negative infin-
ity to positive infinity. In comparison, the log-likelihood weighting function which
Ullman[58] proposed for the correspondence problem in apparent motion uses exclu-
sively negative weights (i.e. log-likelihoods). While maximizing a linear objective
function with exclusively negative weights would be adequate under the assumption
that every boundary fragment appears in the solution (i.e. for every fragment end-
point p, z, + x;, = 1), it is not adequate if every boundary fragment need not be
instantiated (i.e. for every fragment endpoint p, z, + z;, < 1). In the latter case, the
objective function is always minimized by the solution where no boundary fragments
are instantiated, that is, by the zero vector, which is always in the feasible region.
This is due to the fact there is no penalty for failing to account for observed spa-
tial coincidence. Yet, minimizing surprise alone is also problematic, since this policy
favors organizations which incorporate large numbers of completions, regardless of
overall likelihood. Stated differently, it encourages highly unlikely explanations for
what are potentially only negligible coincidences. For these reasons, it seems that
the objective function employed here is better than an objective function based upon
surprise or likelihood alone.

As it currently stands, this analysis is incomplete, since it does not adequately
account for the phenomenon of illusory contours and the difference in human per-

ception of contrast and outline stimuli[29]. Compare Figure 3.14(a), in which an
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illusory triangle is readily perceived, to Figure 3.14(c). Although the closed contours
in Figure 3.14(c) correspond to the boundaries of the black regions in Figure 3.14(a),
they do not trigger the percept of an illusory triangle. A second demonstration of
this phenomenon is provided by Figure 3.14(b) and Figure 3.14(d). While Figure
3.14(b) is perceived as two overlapping bars, Figure 3.14(d) is perceived as a cross
in outline. Finally, Figure 3.14(e) and Figure 3.14(f) demonstrate that figural com-
pletion does play a role in the organization of outline stimuli, but seems to governed
by different logic depending on whether contrast or outline stimuli are involved.

It has been known since Hubel and Wiesel[25] that simple cells in the human
visual cortex have oriented receptive fields of either odd or even symmetry. Hubel and
Wiesel conjectured that these neurons are feature detectors which respond to edges
and bars (depending on their symmetry) of different orientations. More recently, it
has been hypothesized that figural completion phenomena are the result of integrating
simple cell responses over extended spatial areas (see for example [15]). A possible
explanation for the qualitatively different completion effects in contrast and outline
stimuli is that the output of cortical simple cells with odd and even receptive fields
are integrated separately and in different ways. Although this may represent an
explanation at the “implementation level” it clearly begs the question of “why it
should be so.”

Kanizsa[29] attributed the discrepancy to the (apparent) “incompleteness” of el-
ements in the contrast stimulus (e.g. discs with missing sectors) and the “complete-
ness” of the same elements in the outline stimulus (e.g. closed contours). However,
in this instance, Kanizsa seems to be guilty of what he himself calls the “stimulus
error,” that is, he confuses stimulus and percept.

To identify a possible explanation for the difference between contrast and outline

stimuli, let us again consider Figure 3.3, this time for the purpose of determining the
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Figure 3.14: Figural completion in contrast and outline stimuli. Although figural com-
pletion does play a role in the organization of outline stimuli, it seems to be governed
by different logic depending on whether contrast or outline stimuli are involved.




94

different degrees of surprise implied by the two unit organizations.® Figure 3.15(b)
and (c) show magnified views of one neighborhood (i.e. the area within the circle in
Figure 3.15(a)) in the two unit organizations. In the “literal solution” (i.e. Figure
3.15(b)) the only completion instantiated is the “corner” (i.e. #). Since the other two
completions (i.e. j and k) are not instantiated, the spatial coincidence they represent

is attributed to chance, and the degree of surprise, Siiterql, 1s equal to:

Stiteral = —In(1 — Pr(z; + 2% = 1)) —In(1 — Pr(zy 4 2}, = 1))

Now compare this to the “illusory contour solution” where only completions 7 and
k are instantiated (Figure 3.15(b)). If we assume that because completion 7 is not
instantiated, the spatial coincidence it represents is attributed to chancel® then the
degree of surprise equals —In(1 — Pr(z; + 2! = 1)). However, in the illusory contour
solution, this assumption does not hold because all three completions originate in the
same physical process: the occlusion of one surface by another. Since the corner is
an artifact of occlusion, the illusory contour solution provides a single explanation
for the existence of each of the potential completions, even though the corner is
not instantiated. Since no spatial coincidence is attributed to chance, the degree of
surprise, Siusory, 18 actually zero.

Obviously, the surprise term of objective function ().,,.;; does not evaluate to Sj;ierar
and Sjysory as required. However, if all corners which are not orientation discontinu-
ities are assumed to be artifacts of occlusion, then the desired effect can be achieved

by assigning corners zero weight in the objective function:

9The unit organization consists of the subset of potential completions which are instantiated in
the surface organization.

10Recall that this was the first of two assumptions which led to the objective function. The second
was the independence assumption.
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(b)

Figure 3.15: Two possible unit organizations shown in magnified view. (b) Rock’s
" The spatial coincidence represented by completions j and k is
attributed to chance, so that the degree of surprise (i.e. Siitepar) is —In(1—Pr(z;+2} =
1)) —In(1 — Pr(zg 4+ 25, = 1)). (c) The “illusory contour solution” offers a unified
explanation for all of the completions, even though the corner is not instantiated.

“literal solution.’

The degree of surprise (i.e. Siusory) is therefore zero.
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Q= Z In(Pr(z;+2i=1))(z;+2!) + In(1—Pr(z;+2:=1))(1—z;— %)

1€ Ecompletions —FEcorners

We hypothesize that where contrast stimuli are involved, there is an assumption
that corners occur for two reasons, neither of which is accidental. The probability that
corner ¢’s origin is accidental is therefore zero, not Pr(1 — z; — «!). This assumption
apparently does not hold for outline stimuli. Presumably, in the physical model
underlying outline stimuli, overlapping boundaries image as “T-junctions,” and never
as corners. Accordingly, the spatial coincidence represented by a corner can only
be accounted for by the “literal solution” (i.e. the solution in which the corner is
instantiated). This suggests that objective function (), should be used for outline

stimuli and that !, ., should be used for contrast stimuli.

3.4.3.2 Depth Preference

Neither Qi nor @’ ., incorporate all of the factors which contribute to preference
in human vision. Both partition the feasible region into equivalence classes such that
two integer points are in the same equivalence class if and only if they contain the
same set of potential completions (i.e. they represent the same unit organization). As
was demonstrated by Figure 3.4, a given unit organization will usually admit many
different depth labelings, so that the majority of these equivalence classes will contain

many distinct (athough equally “likely”) integer points. If the goal is to compute a

unique organization, then additional preference criteria must be employed.

Additional preference criteria are described by Rock[48] who demonstrates the
role they play with numerous examples. First among these is the correlation between
the sign of occlusion and the sign of contrast. The effect of this preference in human

vision is that against a white background, there is a strong tendency to perceive
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black figure. Similiarly, the sign of occlusion is strongly correlated with the sign of
curvature. Consequently, in human vision, figure tends to be perceived as convex and
ground as concave. Finally, there is a strong tendency in human vision to perceive
the space between closely spaced parallel lines as figure. This also holds for the space
between pairs of contours exhibiting bilateral symmetry, although this tendency is
weaker than the others.

Another very interesting phenomenon, important in preference, is known as the
Petter effect[43]. The Petter effect occurs when two surfaces of equal reflectance
overlap. Because the reflectances of the two surfaces are the same, their relative
depth can not be determined from figural information alone. Even so, there is a
strong tendency to see the broader of the two surfaces in front of the narrower (i.e.
the longer completion is perceived amodally).

A dramatic example of the Petter effect, designed by Kanizsa[29], is shown in Fig-
ure 3.16. The striking thing about this figure is that even though an interpretation
as two surfaces embedded in planes at constant depth is absolutely plausible, given
the image evidence, it is not perceived. Nor is the interpretation as a single surface
embedded in a plane at constant depth perceived, although this too, is entirely plau-
sible. Instead, as Kanizsa points out, the slender “tail” of each surface seems to pass
under the “head.”

At first glance, it appears to be a simple matter to incorporate both the additional
figure-ground preferences and the preference underlying the Petter effect into a new

objective function:

Q;u'rface: aQ;nit + ﬁQdepth (321)

Clearly, the variables required to form 0-1 valued expressions representing the

competing depth labelings exist in the integer linear program. Specifically, z; = 1 and
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Figure 3.16: Kanizsa’s “Paisleys.” Although interpretations as surfaces embedded in
planes at constant depth are plausible, they are not perceived. As Kanizsa points
out, the slender “tail” of each surface seems to pass under the “head.” This is an
example of the Petter effect.

z! = 1 represent the two possible signs of occlusion, and z] + 2+ =1 and 2" + 2] =1
represent the two possible depth orderings at a crossing. Unfortunately, matters are
not so simple. The problem of determining the relative likelihood of a contour’s
two possible signs of occlusion as a function of its sign of contrast is presumably
straightforward. Nor would it be difficult (in principle) to characterize the relative
likelihood of a crossing’s two possible depth orderings as a function of the lengths of
the intersecting completions. The problem, once again, is ensuring that the objective

function interprets all points in the feasible region as equally specific predictions.
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Consider the two predictions: z; + ! = 0 and z; + x; = 1. The first prediction is
that the spatial coincidence represented by contour 7 is accidental while the second
prediction is that the spatial coincidence represented by contour ¢ is non-accidental.
Let us assume that they are equally likely (each is correct with probability 0.5).
Because these two predictions are equally specific, their likelihoods can be compared.
Now consider the two predictions: z; + } = 0 and z; = 1. If both signs of occlusion
are also equally likely, then the probability that z; + «! = 0 is still 0.5, but the
probability that z; = 1 is only 0.25. Maximizing the sum of the logarithms of the
likelihoods would be inappropriate because the second prediction is less likely only
because it is more specific. Because they are not equally specific, the likelihoods of
these two predictions cannot be compared.

In summary, although it would be a simple matter to assign weights to variables
of the integer linear program, and in doing so, mimic the figure-ground preferences of
the human visual system, it is difficult to do this in a way that does not introduce a
bias for (or against) organizations with larger numbers of completions. Solving this

problem is a subject for future work.



CHAPTER 4

EXPERIMENTAL SYSTEM

Here we depart from the natural computation[45] methodology outlined in the
first chapter. Although algorithms and representations implementing the computa-
tional theory are the primary focus of this chapter, we make no claims as to their
biological plausibility. Instead, our intention is to validate the computational theory
by demonstrating that a well defined procedure for computing the mapping does in
fact exist.!

To simplify implementation of the experimental system, “off-the-shelt” compo-
nents were used wherever possible. For example, the straight-line grouping algorithm
developed by Boldt[6] was used to generate the input set of boundary fragments.
Consequently, the experimental system was tested with straight-sided figures. This
limitation is not as significant as it may seem, since it proved to be a simple matter to
design straight-sided equivalents of some of the better known figures from the illusory

contour literature. Four of these are shown in Figure 4.1.

4.1 Minimum Energy Cubic Bezier Splines

In the design of the experimental system, practical considerations like simplicity,

economy and efficiency were stressed. For simplicity’s sake, cubic Bezier splines of

In particular, the experimental system is not intended to be a theory at what Marr[38] termed
“the level of algorithm and representation.”

100
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Figure 4.1: Four test figures from the illusory contour literature. Clockwise from
upper left: Warped Square, Ehrenstein, Kanizsa Plusses and Woven Square.



102

minimum energy were used to represent completion shape, not true curves of least
energy. Consequently, only tangent continuity (not tangent and curvature continuity),
was enforced at fragment endpoints. This is a reasonable simplification, since the
total bending energy in the minimum energy cubic Bezier spline still provides strong
evidence of a mutual non-accidental origin.

Since the shape of a cubic Bezier spline is determined by only four points, the
use of splines also satisfied the need for an economical representation. Although
the minimum energy cubic Bezier spline does not possess the optimal substructure
property which makes efficient parallel computation possible, computing its control
polygon on a non-parallel computer is considerably faster than computing a point
vector approximating the true curve of least energy. Finally, using cubic Bezier splines
to represent all contours in the system (both completions and boundary fragments)
allowed procedures for display, spatial querying and intersection to treat contours in
a uniform fashion, which simplified system implementation.

Let p and p’ be the ends of the two boundary fragments which are to be joined and
i and #' be vectors tangent to the fragments at those points (See Figure 4.2). A cubic
spline which smoothly passes through both points with orientations matching those
of the fragments is easily constructed in the Bezier form by specitying the locations
of four control points. The first and fourth control points, by and b3 are simply the
ends of the fragments (i.e. by = p and b3 = p’). The locations of the second and third
control points control the spline’s orientation at either end. If the orientation of the
spline and the boundary fragment are to match at point p, then the second control
point, by, must lie along the line passing through p and tangent to #. Similiarly, the
third control point, by, is constrained to lie along the line passing through p’ with
tangent {'. Because the locations of b; and b, are not completely determined, there

will be (in general) a two parameter family of smooth cubic splines passing through
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Figure 4.2: A cubic Bezier spline. In general, there is a two parameter family of
smooth cubic splines passing through any two points p and p’ with specified tangents.
The free parameters are the distance between b; and by in the direction of { (i.e.
d = |by—0bg|) and the distance between b3 and by in the direction of # (i.e. d = |bs—b2|).

two points with specified tangents. The free parameters are the distance between b,
and by in the direction of ¢ (i.e. d = |by—bg|) and the distance between bs and by in the
direction of ¢’ (i.e. d' = |bs —by|). The total bending energy, E = [ £(s)*ds, is readily
computed for a particular Bezier control polygon by Simpson’s method, and the d
and d’ minimizing this quantity can be computed through a multivariate minimization
technique, such as the downhill simplex method described in [44]. Because the shape
of the minimum energy cubic spline is invariant to translation, rotation and scale
change, a table of d and d' values minimizing the bending energy of a cubic Bezier
spline passing through any two points in the plane with arbitrary tangents can be
precomputed and indexed by two angles (see Figure 4.3). This results in significant

run-time savings.
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Figure 4.3: Two angle parameterization. A table of d and d’ values minimizing the
bending energy of a cubic Bezier spline passing through two points in the plane
with arbitrary tangents can be precomputed and indexed by two angles. This is a
consequence of the invariance of the shape of the minimum energy cubic spline to
translation, rotation and scale change.

4.2 Completion Features and Categories

If the world only contained objects with smooth boundaries, then the figural com-
pletion problem would be greatly simplified, since all orientation discontinuities (i.e.
“corners”) would be artifacts of occlusion. In this world, the probability density of
completion shape features could potentially be quite simple (e.g. unimodal). Un-
fortunately, in the real world, the problem is more complicated because there is no

way of knowing whether a corner is simply an artifact of occlusion or whether it is
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the image of an orientation discontinuity in a surface boundary. Consequently, the
probability density function defining the distribution of completion shape features is
at least bimodal, since gaps originate in at least two distinct physical processes (i.e.
gaps due to occlusion and gaps due to orientation discontinuity). If straight-sided
surfaces occur with sufficient frequency, then it is likely that the probability density

of completion shape features is even more complex.

The approach adopted here is consistent with a recent theory of perceptual cat-
egories proposed by Richards, Feldman, and Jepson[46]. Richards et al. argue that
the categories used by the human visual system to classify geometric configurations
of a given type (e.g. triples of points, pairs of line segments, etc.) form a natu-
ral hierarchy. Assuming that the geometric configuration can be parameterized in
the generic case by k parameters, then the hierarchy is formed by systematically re-
moving degrees of freedom from the generic (i.e. tranverse) configuration to create
categories representing degenerate (i.e. non-tranverse) configurations of increasing
codimension. The usefulness of their theory follows from an assumption that, within
a given context, a subset of this hierarchy models the physical processes underlying
image structure. Under this assumption, there will be peaks (or modes) in the feature
probability densities corresponding to one or more of the perceptual categories. Fig-
ure 4.4 illustrates the perceptual categories predicted by Richards et al. for planar
configurations of two line segments together with the subset of categories used in the

experimental system described here.

Consider the conditional probability densities of completion shape features given

gaps caused by:

e Orientation discontinuity (i.e. “corner”)
e Partial occlusion of a straight boundary (i.e. “straight”)

e Generic occlusion (i.e. “generic”)
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Figure 4.4: Perceptual categories. The perceptual categories predicted by Richards
et al. for planar configurations of two line segments together with the subset of cate-
gories used in the experimental system described here. In the case of two straight line
segments, the geometric configuration can be parameterized in the generic case by
three parameters. The hierarchy is formed by systematically removing degrees of free-
dom from the generic (i.e. tranverse) configuration to create categories representing
degenerate (i.e. non-tranverse) configurations of increasing codimension.
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Figure 4.5: A Bayes classifier. The category minimizing squared Mahalanobis distance
between observed and mean shape feature values (with zero mean) is used to compute
a heuristic measure of likelihood.

Although the likelihood that a gap between two fragments is non-accidental and
originates in occlusion rapidly increases as distance between their near endpoints
decreases, a gap having nearly zero length is much more likely to be caused by an
orientation discontinuity. Similiarly, although likelihood increases as energy in the
interpolating curve decreases, the existence of a smooth interpolating curve with
nearly zero total bending energy has special significance when straight-sided surfaces
are allowed.

For these reasons,? it proved useful to divide the set of completions into three
categories and employ a multicategory Bayes classifier[10] to select among them (see

Figure 4.5). The category minimizing squared Mahalanobis distance[10] (i.e. covari-

2Together with the need to distinguish corners from other completions, as required by objective

function Q,,,;;-
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ance weighted Euclidean distance) between observed and mean shape feature values

(with zero mean) is used to compute a heuristic measure of likelihood:

Pr(completion | x) = exp(— min(x*'C} _ x,x'C;l . x, x'C 1 . x)) (4.1)

where the components of x are:

T2

z3

Ty

Ts5

corner straight generic

[ k(s)? ds |

b0 — b 42)

/ ds (4.3)

I+ [ds+ T

|6 — 6| (4.5)
0 if k(0)x(f ds) >0

{ 1 otherwise (4.6)

Here z; is the total bending energy normalized by the distance between the frag-

ment endpoints, xy is gap size,® x3 is gap size relative to the size of the boundary

fragments, x4 is change in orientation, and z5 is the presence of an inflection point.

The matrices defining the feature probability densities for each category are:

1.0 x 10°

CCO’I’TLGT

0

o OO

0 0 0 0

50 0 0 0
0 0.05 0 0 (4.7)
0 0 1.0x10° 0
0 0 0 1.0 x 107°

3Elder and Zucker[11] investigate the relationship between number and size of boundary gaps
and the degree of perceptual closure. They measure latency time in a visual search task where the
target and distractor elements are incomplete outlines figures. The total length of missing boundary
is distributed either uniformly or in a single gap. They conclude that the sum of the squares of the
gap lengths models the relationship between the number and size of boundary gaps and the degree
of perceptual closure. This is consistent with the use of squared Mahalanobis distance as a measure

of log-likelihood.
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[0.001 0 0 0 0
0 2500.0 O 0 0
Cotraight = 0 0 025 0 0 (4.8)
0 0 0 0.001 0
0 0 0 0 1.0x10°
(5.0 0 0 0 0
0 10000 0 O 0
Cyeneric = | 0 0 025 0 0 (4.9)
0 0 0 Z 0
0 0 0 0 L.0x107°

In the heuristic likelihood function, Ceorpner, Cstraight and Cleneric play the role of
covariance matrices since each is positive definite and is used to define a multivariate
density resembling a Gaussian. Although these “densities” are not normalized, the
heuristic likelihood function returns values between 0 and 1 and these values are used
as probabilities.

The specific values which comprise Ceoner, Cstraight and Cyeneric were chosen partly
by design and partly by trial and error. For example, since gaps caused by orientation
discontinuity are very short, length (i.e. z3) must be nearly zero if a completion is to
be classified as a “corner.” The values of energy and relative orientation (i.e. ; and
x4), on the other hand, are completely irrelevant. Accordingly, the diagonal entry
for the length feature in C.pper was set to the value of 0.5 (pixels) and the entries
for energy and relative orientation were set to 1.0 x 10%. This illustrates that certain
entries function more like all or nothing “switches” than covariances. Because the
diagonal entries for energy and relative orientation are so large, these values do not
affect the “likelihood” of a completion classified as a corner.

Similiarly, the two features which together characterize the “straight” category are
energy and relative orientation (i.e. x; and z4). A completion joining two collinear
lines should have nearly zero energy and its orientation should remain constant.

However, whether or not an essentially straight completion contains an inflection



110

point (i.e. x5) is immaterial. Accordingly, the diagonal entries for energy and relative
orientation in Cirqigne Were both set to 0.001 while the diagonal entry for inflection
was set to 1.0 x 10? (i.e. “don’t care”).

Finally, the “generic” category functions as a “catch all.” The only shape feature
which is of special importance is the presence or absence of an inflection point. To
control the number of potential completions, the diagonal entry for the inflection
feature in Cyeneric was set to 1.0 x 1072, The result is that inflection points are not
allowed. The values of the other diagonal entries were determined by a process of

trial and error.

4.3 Building the Graphs

Although the graphs Ginput, Gron—planars Gplanar and Gt are important parts
of the “in principle” problem formulation, until now there has been no mention of
specific representations or methods of construction. Indeed, descriptions at this level
are not properly part of a computational theory. However, they are important for

understanding its implementation in the experimental system.

4.3.1 Boundary Fragments

The straight line segments which serve as input to the experimental system are pro-
duced by Boldt’s zero crossing grouping algorithm[6]. This algorithm is quite elegant
and definitely worth studying, if only because its recursive formulation addresses the
difficult problem of multiple spatial scales in an intelligent manner. Although more
costly to run than simpler algorithms, its value is appreciated by the many members

of the computer vision group at the University of Massachusetts who have applied



111

it to a large number of problems requiring stable descriptions and accurate spatial
localization[7, 36, 53].*

Boldt’s algorithm begins by creating an initial set of unit length line segments with
orientation normal to the direction of maximum gradient along zero crossing contours
of the Laplacian convolved image. The endpoints of these initial line segments form
the vertices of a graph, which Boldt calls the link graph. The edges of the link graph
are the line segments themselves. To the link graph, a second set of edges which
Boldt calls links are added. Each link represents the potential merging of two line
segments through the endpoints it connects. Some of the geometric relations used
as linking criteria are endpoint proximity, orientation difference, lateral distance,
segment overlap and contrast difference. All paths in the link graph within a fixed
replacement radius around each line segment are enumerated. The segments along
the path minimizing the mean-squared-error of a straight line fit are replaced by
a new line segment. The algorithm is then invoked recursively on the new set of
line segments, using a larger replacement radius, resulting in ever smaller sets of
increasingly longer lines. Boldt’s algorithm typically requires about fifteen link and
replace cycles to produce straight lines spanning an image of size 256 x 256. The line

segments are then filtered on length and contrast.

4.3.2 Adding Potential Completions

After correctness, the primary consideration in building a practical system is
computational complexity. In general, if there are n boundary fragments with 2n

endpoints, there will be O(n?) potential completions and O(n*) crossing vertices in

4In his forthcoming dissertation, Dolan[9] studies the problem of generalizing Boldt’s algorithm
to compute image curves other than straight lines.



Figure 4.6: Gy for the four test figures. The line segments are produced by Boldt’s
algorithm.
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Gplanar- Since there are a constant number of variables and constraints per crossing

=

9

vertex, the constraint matrix for the integer linear program will be of size O(n?®).
Since the test figures typically contain about 50 boundary fragments, the space re-
quirements alone of the “naive” formulation are unacceptable.

Fortunately, there are several good strategies for limiting the number of potential
completions which are explicitly represented by edges in Gn—pianar - Since a factor of
two reduction in the number of edges in Gop—pianar can result in as much as a factor
of four reduction in the number of crossings in Gignq,, this is the obvious point to
apply pruning strategies. These strategies are listed below in roughly their order of

usefulness:

Likelihood threshold

k-most likely at each endpoint

e Contrast sign constraint

Overlap pruning

The first of these strategies is self explanatory: only completions with a likelihood
above some fixed value are explicitly represented by edges in Gon—planer- Although
for any two points in the plane and most combinations of tangent orientations there
exists a well defined cubic spline of minimum energy, the majority of these are too
long to be plausible completions. There is little point in wasting effort explicitly
representing these edges and trying to figure out if and where they intersect one

another.

5Use of sparse matrix representations (not exploited here) would bring this back down to O(n*).
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Of course the problem of determining a satisfactory threshold remains. The
threshold needs to be high enough so that totally implausible completions are pruned,
but low enough so that potentially viable completions are retained. The problem of
choosing this value becomes much simpler if the threshold strategy is combined with
the second strategy of explicitly representing only the k-most likely completions at
each endpoint (where k is a small integer constant). Since the k-most likely strategy
limits the number of potential completions to O(n), there is a great deal of latitude in
choosing the value for the minimum allowable likelihood. For all of the experimental
results in this thesis, this value was 1.0 x 1072,

A further factor of two reduction is possible by only allowing completions which
join boundary fragments with compatible signs of contrast.® Unfortunately, this con-
straint is only valid for two tone stimuli without extra markings, but when used in
combination with the k-most likely strategy effectively doubles the allowable size of
k. The problem of computing the k-most likely completions is then solved in the
obvious way: the n?/2 allowable completions are enumerated and the k-most likely
(above the threshold) are stored for each endpoint. For all of the experimental results
in this thesis, £ = 3.

The final strategy, overlap pruning, is a bit more involved. The intent is to elim-
inate completions which are unlikely to be instantiated in the surface organization
because more compelling paths incorporating larger sets of boundary fragments exist.
This happens most often when a surface with a smooth boundary lies in front of a clut-
tered background. Where the surface and its background are of similiar orientation

and reflectance, there will be little or no brightness difference. Elsewhere, fragments

6The use of the contrast sign constraint in the experimental system is a simple expedient to control
the number of potential completions and is not consistent with human vision. Indeed, Grossberg
and Mingolla[15] demonstrate that illusory contours can join luminance boundaries with opposite
signs of contrast.
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Figure 4.7: Overlap pruning. (a) Fragments f1, fo and f3 form consecutive segments
of a single surface boundary. Completion ¢3 is redundant, since only completions ¢;
and ¢z will be instantiated in the surface organization. (b) Overlap pruning eliminates
redundant completions.

aligned along the trace of the occluding surface boundary will be detectable. Since
the fragments all lie along a single smooth curve, overlapping completions joining
many different fragment pairs will be added to Gyon_pianer- Yet, only completions
joining fragments consecutive on the boundary will be instantiated in the surface or-
ganization. The others are “redundant.” A completion can be considered redundant
when its likelihood is lower than the product of the likelihoods along an alternative
path joining the same fragments.

A hypothetical example is depicted in Figure 4.7(a). Here fragments f1, f; and
f3 form consecutive segments of a single surface boundary. The reflectance of the
background matches the surface in the interval between f; and f; and between f; and
f3, producing the gaps. Because the boundary is smooth, a completion joining any two

of these fragments will appear, individually, very compelling. Yet only completions ¢;
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and ¢y will be instantiated in the surface organization. Completion ¢z is redundant.
The more fragments aligned along a boundary, the greater the number of redundant
completions.

Of course, the process of identifying redundant completions (which requires search
for alternative paths) can itself be quite expensive. There will clearly be a point of
diminishing return, since the redundant completions which are the most expensive to
identify and eliminate (i.e. those with the longest alternative paths) will also be the
rarest. A reasonable strategy, likely to eliminate the bulk of the redundant comple-
tions, is to eliminate those with alternative paths less than some fixed length. In the
current implementation, this length is two. The process of identifying and eliminating
redundant completions is fast and efficient, since the set of length two paths is easily
enumerated, and the likelihood of each of these paths can be quickly checked against
the likelihood of length one paths stored in a hash table. Edges forming length one
paths with lower likelihood are deleted from G0, —pianar- In practice, the average time
complexity of this process is linear in the number of boundary fragments. The effect
of overlap pruning is demonstrated in Figures 4.8 and 4.9, which show G,.0n—pianar

for the Ehrenstein test figure before and after overlap pruning.

4.3.3 Identifying Crossings

Because all contours, whether boundary fragments or completions, are represented
by cubic Bezier splines, it was possible to use a standard algorithm to identify and
localize points of contour intersection. The method which proved to be the fastest

7

and most stable was recursive subdivision.” The recursive subdivision method for

locating crossings exploits two properties of the Bezier representation. First, a Bezier

“For descriptions and comparisons of different methods for finding points where two Bezier curves
intersect, see Sederberg[55].
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Figure 4.8: Before overlap pruning. A magnified view of a portion of Gon—pianar
(k = 3) for the Ehrenstein test figure is shown prior to overlap pruning. Boundary
fragments are drawn thick, potential completions (including redundant completions)
are drawn thin.

Figure 4.9: After overlap pruning. The same view of Gyon—pianar (K = 3) after overlap
pruning. Redundant completions have been eliminated.
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Figure 4.10: Gpianqer for the four test figures. This graph represents the k-most-likely
completions (k = 3) for every boundary fragment as cubic Bezier splines of least
energy. Boundary fragments are drawn thick and potential completions are drawn
thin. Graph vertices (endpoints and crossings) are omitted for clarity’s sake.
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curve of a given degree, parameterized on an interval 0 to s, can always be subdivided

s
29

into two Bezier curves of the same degree, one parameterized on the interval 0 to
and the other on the interval £ to s. The second property is that unlike other spline
representations, a Bezier curve lies completely within the convex-hull of its control
points. Together, these two properties allow a straightforward recursive search to
locate crossings. In order to build Ggner from Gropn—pianar, €dges of Gon—planar are
compared pairwise to locate points of intersection. When a point of intersection is
found, the two Bezier curves are subdivided, and a crossing vertex (i.e. an element of

Virossing) 18 “spliced in.” The G janar computed for the four contrast test figures are

shown in Figure 4.10.

4.3.4 Solving the ILP

The integer linear program is generated by writing a fixed set of integer linear in-
equalities, as described in the last chapter, for each of the vertices and edges of Gpignar-
The ILP is solved by the method of branch and bound search[40, 51]. In branch and
bound search, all integer points within the feasible region are enumerated (either ex-
plicitly or implicitly), and the optimal feasible solution is selected. This process is
greatly facilitated by the fact that the LP formed by “relaxing” the requirement for
an integer solution provides an upperbound on the solution of the “harder” ILP. A
standard algorithm for solving LP’s, such as the simplex algorithm, can be used to
compute these upperbounds. In the course of enumerating the feasible solutions, the
upperbounds computed by simplex can be compared to the current lowerbound on the
solution to the ILP. Where the current lowerbound on the solution to the ILP exceeds
the upperbound computed by the simplex algorithm, no improvement is possible, and
the “search-tree” can be pruned. The search continues until either all solutions have

been enumerated, in which case the optimal feasible solution is found, or the problem
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is shown to be infeasible. When an optimal feasible solution exists, it is interpreted
as a labeling of Gpignar, which defines Gy,ot (i.e. a labeled knot diagram).
The labeled knot diagrams computed for the four test figures are shown in Figure

4.11. These organizations maximize the following objective function:

Q;urface = aQ;nit + :3 Qdepth (410)

Here, )!, ., is as defined in Chapter 3 while Q4. implements a preference for
black figure against a white background. If we adopt the convention that x; repre-
sents the sign of occlusion with orientation matching the sign of contrast (and let !
represent the opposite sign), then this can be accomplished by assigning a positive

unit weight to x; for ¢ € Ef,qgments:

Qiepth = Y, i (4.11)

1€ fragments

As was noted in Chapter 3, without the Q) epir, term, the ILP is underconstrained.
In all experiments, o = 3 = 1.

At least superficially, these organizations resemble what humans perceive. The
appropriate illusory surfaces are constructed for the Warped Square, Fhrenstein and
Woven Square test figures. In the case of the Woven Square, the computed illusory
surface passes over and under the diamond shaped frame, so as to conform with the
“proximal stimulus.” This is in agreement with the human percept. Finally, like
the human visual system, the experimental system does not construct an illusory
rectangle in the case of the Kanizsa Plusses figure.

However, the printed output is misleading in at least one respect: although from
Figure 4.11, it is clear that four “sticks” are completed underneath an illusory disc,

what is not obvious is that the experimental system also commits to a particular
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Figure 4.11: Gy,0e for the four test figures.
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ordering in depth. That is, Gjn.t represents precisely one of the twenty-four (i.e. 4!)
possible depth orderings. It seems unlikely that the human visual system, in this
situation, commits to a unique depth ordering. Indeed, perceptual completion of the
“sticks” is not even a precondition for formation of the illusory disc, since Ehrenstein
figures with odd numbers of inducing elements also elicit illusory discs. This suggests

that the computational goal may ultimately need to be modified.

4.4 OQOutline Stimuli

Kanizsa’s line drawings of partially occluded cubes demonstrate that figural com-
pletion phenomena are not peculiar to perception of contrast stimuli but are also
characteristic of perception of outline stimuli (see Figure 4.12). The contours which
form a line drawing differ from the luminance boundaries of a natural image in that
the former possess no sign of contrast. In the experiments conducted thus far, the sign
of contrast was used in two different ways. First, it was used to limit the number of
potential completions: only completions joining boundary fragments with compatible
signs of contrast are explicitly represented as edges in Gon—planer- Second, by weight-
ing the variables representing the sign of occlusion by an appropriate function of the
sign of contrast, it was possible to implement the human preference for perceiving
black figure against white ground.

Unfortunately, in line drawings, signs of contrast do not exist and therefore can
not be used for either purpose. As far as limiting the number of potential completions
is concerned, we note that although the size of G,,n—pianar potentially doubles, this
additional complexity is not insurmountable. However, because the sign of contrast
plays a critical role in figure-ground preference, it was necessary to find a substitute

for this purpose.
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In the last chapter, we noted that in human vision there is a tendency to perceive
the space between closely spaced parallel lines as figure. Pairs of lines related in this
way are called bars. In the experimental system, bars were identified by computing
the following measure for all pairs of boundary fragments and discarding those pairs

beneath a set value (i.e. 1.0 x 107%):

Pr(bar | x) = exp(— x'Cj;1x) (4.12)

where the components of x are:

v, = |0—0 (4.13)
9 = width (4.14)
width
T3 = ——— 4.1
e overlap (4.15)
and Chg, 1s:
0.001 0 0
Crar = 0 50.0 0 (4.16)
0 0 0.5

Here x; is orientation difference, x5 is width (i.e. the distance between an arbi-
trarily chosen endpoint of one boundary fragment and the second boundary fragment
along a direction perpendicular to the first boundary fragment), and x5 is “aspect ra-
tio” (i.e. the ratio of width and a second quantity called overlap, which is the length
of the region of overlap in the perpendicular projection of one boundary fragment
onto the second). The meaning of these quantities is illustrated in Figure 4.13.

Every boundary fragment bordering a bar can be oriented so that the interior of
the bar lies to the right as the fragment is traversed in the direction of its orien-

tation. Fragments which do not border a bar remain unoriented. The orientation
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width

Figure 4.13: The meaning of orientation, overlap and width.

of a fragment which forms a bar to its left and right is ambiguous. Where defined
and unambiguous, these orientations can be substituted for sign of contrast and can
be used both to limit the number of potential completions and as a basis for figure-
ground preference. The bars identified for the cube line drawings are shown in Figure
4.14. The Gpignar computed for the cube line drawings, and constrained by the bar
orientations wherever possible, are shown in Figure 4.15.

The optimal Gy, for the Kaniza cube line drawings are shown in Figure 4.16.
Unlike G,0¢ for the contrast test figures, these organizations optimize Q) syr fqce, Which
assigns non-zero weight to corners. It is tempting to describe these results by simply
observing that in each case, the experimental system has successfully “completed
the occluded cube.” It is particularly worth noting that the experimental system
has completed the difficult X’s with Bars test figure in a consistent manner. This

demonstrates the disambiguating power of topological constraints.
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Figure 4.14: Orientations consistent with bars in cube line drawings. Every boundary
fragment bordering a bar can be oriented so that the interior of the bar lies to the
right as the fragment is traversed in the direction of its orientation. Fragments which
do not border a bar remain unoriented. The orientation of a fragment which forms
a bar to its left and right is ambiguous. Where defined and unambiguous, these
orientations can be substituted for sign of contrast and can be used both to limit the
number of potential completions and as a basis for figure-ground preference.
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Figure 4.16: G0t for Kanizsa’s partially occluded cubes. It is particularly worth not-
ing that the experimental system has completed the difficult X’s with Bars test figure
in a consistent manner. This demonstrates the disambiguating power of topological

constraints.
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Figure 4.17: Four equally optimal organizations. As with the Ehrenstein test figure,
the printed output for the Y’s with Bars test figure is somewhat misleading because
it does not indicate that the experimental system arbitrarily commits to the organi-
zation shown in (c¢). Although all four are topologically consistent orientable surfaces
with boundary, (c¢) and (d) lead to inconsistent three-dimensional interpretations as
cubes.

However, as with the Ehrenstein test figure, the printed output for the Y’s with
Bars test figure is somewhat misleading because it does not indicate that the ex-
perimental system arbitrarily commits to one of four equally optimal organizations
(see Figure 4.17(c)). Furthermore, two of the four organizations, while topologically
sound, are inconsistent in their three-dimensional embedding in space. Although the
two consistent organizations could serve as the precursors of a Necker cube stimulus
(see Figure 4.18), strictly speaking, what has been perceptually completed is not a

cube, but an orientable surface with boundary.

4.5 Theory and Experiment

This section is included to illustrate the role the experimental system played in de-
velopment of the computational theory which forms the major part of this thesis. The

labeling scheme originated in a series of observations about edges in scenes formed
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Figure 4.18: Labeled knot diagram as the precursor of a Necker cube stimulus. Al-
though strictly speaking, the only thing the experimental system has perceptually
completed is an orientable surface with boundary, a straightforward abstraction pro-
cess could produce a Necker cube stimulus.

from flat vinyl cutout shapes called “Colorforms.” These observations were incorpo-
rated into a set of necessary constraints on the appearance of edges in these simple
scenes.® These constraints formed the basis of the integer linear program described
in [59].

The requirement that the depth of the occluding surface be less than or equal
to the depth of the occluded surface was among the constraints that were readily
apparent. However, because this particular constraint is very ugly when expressed in
terms of integer linear inequalities, it was omitted from the integer linear program.
A certain amount of wishful thinking prevailed—it was hoped that this constraint
somehow derived from the others. A not very energetic search failed to discover a
“counterexample.”

This changed with the discovery of a “counterexample” while experimenting with

different objective functions. The anomolous Gy, is displayed in Figure 4.19 (this

81t is interesting to speculate that had stiff cardboard been used instead of flexible vinyl, a more
restrictive set of necessary constraints might have resulted.
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Figure 4.19: “Knotted” experimental output. This knot diagram was accidently pro-
duced in the course of experimenting with different objective functions. Because it can
not be reduced to the unknot by a sequence of Reidemeister moves (see Kauffman[31]),
it is knotted in the true mathematical sense.

was the source of Figure 2.10 in Chapter 2). This example shows that the contrast
sign constraint alone does not ensure topological validity. It was later discovered
that this figure is in fact “knotted” in the true mathematical sense (i.e. it can not
be reduced to the unknot by a sequence of Reidemeister moves). It happens to be
Knot 815 in the table of knots included in Kauffman’s[31] book “On Knots.” This
was a pretty momentous event. While integer linear inequalities enforcing the “depth
order requirement” could be added to the integer linear program to fix the immediate
problem (see Chapter 3), deeper questions emerged: how could one be certain that a
second “counterexample” of a different kind would never appear? What, apart from

the fact that it contradicts the depth order requirement, makes Figure 4.19 “bad?”
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That is, what independent criterion could be used to judge the “sufficiency” of a given
set of constraints?

This lead to a clear definition of a domain which until this point had only been
defined as “scenes which can be constructed from Colorforms.” The sufficiency cri-
terion proved to be the mathematical definition of surface with boundary. These are
objects which possess neighborhoods that are everywhere homeomorphic to either

discs or half-discs.



CHAPTER 5

A REVISED PROBLEM-LEVEL FORMULATION

Figural completion was portrayed in Chapter 3 as the problem of computing a
labeled knot diagram representing an anterior scene from a set of contour fragments
representing image luminance boundaries. Given this computational goal and this
input, three distinct sources of ambiguity were identified. These were termed shape,
unit and depth. Since the applicable physical constraints were insufficient to overcome
these ambiguities, an additional assumption was introduced. Broadly speaking, this
assumption was: the shape of a perceptual completion is independent of the role it
plays in the organization. This assumption allowed the figural completion problem
to be decomposed into two independent sub-problems, the first devoted to shape, the
second devoted jointly to unit and depth. Decomposed in this way, it proved possible
to formulate the second sub-problem as an integer linear program, which led to a
unique solution.

In this chapter, a further decomposition is proposed. Again, this decomposition
occurs along the lines of the inherent ambiguities (see Figure 5.1). Specifically, it
is proposed that unit ambiguity is resolved in advance and independently of depth
ambiguity. The integer linear program for the surface organization model is replaced
by two simpler integer linear programs in the unit/depth organization model. The
results of a revised experimental implementation are compared to those of the original.

The motivation for this new decomposition is two-fold. First, evidence from hu-

man vision supports the hypothesis that unit organization occurs in advance and

133
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Figure 5.1: Alternate problem decompositions. Figural completion requires three dif-
ferent sources of ambiguity to be overcome (i.e. shape, unit and depth). In theory, all
three can be resolved concurrently, which would result in the problem decomposition
shown in (a). However, in Chapter 3, we proposed that the shape of a perceptual
completion is independent of the role it plays in the organization. This permitted
the decomposition shown in (b), which we refer to as the surface organization model.
In this chapter, a further decomposition is proposed. The unit/depth organization
model, shown in (c), requires the additional assumption that unit ambiguity can be
resolved in advance and independently of depth ambiguity.
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independently of depth organization (see Figures 5.2 and 5.3). This lends support
to the conjecture of Kellman and Loukides[32] mentioned in Chapter 3. Second, the
integer linear program for the unit organization sub-problem is shown to possess a
property called total unimodularity, which allows it to be solved by numerical re-
laxation in a locally connected network. We argue that this form of computation
is consistent with the observation that figural completion is sensitive to non-local

changes in image context.

5.1 Evidence from Human Vision

In Chapter 3, the figural completion problem was reduced to a graph labeling
problem and posed as an integer linear program. This was made possible by assuming
that completion shape is determined solely by the tangents and curvatures of the
terminal ends of the occluded boundaries and not by a completion’s role in any
eventual surface organization. A still more radical notion is proposed by Kellman
and Loukides[32], who argue that unit organization is accomplished in advance and
independently of depth organization. More specifically, they propose that visible
contour fragments are organized into closed plane curves before their relative depths
at points of intersection are determined.

If the goal of figural completion is to compute a topologically valid surface organi-
zation, then there is a fundamental theoretical problem with Kellman and Loukides’s
proposal. Unless unit and depth organization are accomplished together, there is
no guarantee that the set of closed plane curves produced by the unit organization
process will have a consistent depth labeling. Yet, recent evidence seems to suggest

that the human visual system has not heard of this theory.

Consider the stimulus depicted in Figure 5.2(a) which is a variation of a figure

designed by Fahle and Palm[12]. Although only one illusory rectangle is physically
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Figure 5.2: Prediction of surface organization model. (a) A variation of a figure
designed by Fahle and Palm[12]. Although only one illusory rectangle is physically
possible, the arrangement of the inducing elements and the overall symmetry of the
figure seems to suggest that two are present. (b) and (c) Bistable interpretation
predicted by surface organization model.
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Figure 5.3: Prediction of unit/depth organization model. (a) Same stimulus as the
previous figure. (b) and (c) Bistable interpretation predicted by unit/depth organi-
zation model.
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possible, the arrangement of the inducing elements and the overall symmetry of the
figure seems to suggest that two are present. Since only one illusory rectangle is
possible, the surface organization model predicts that Figure 5.2(b) and (c) will
be perceived with equal likelihood. Each of these is a distinct surface organization,
containing a different set of boundary components. Both are topologically valid and
consistent with the image evidence.

However, an informal study of the visual systems of the author’s colleagues sug-
gests that nothing like Figure 5.2(b) and (c) is perceived. In fact, most subjects
experience something more closely resembling Figure 5.3(b) and (c). Here two illu-
sory rectangles exist in some degree of perceptual tension. Sometimes one is on top,
sometimes the other. Some observers describe the illusory rectangles as intersecting
one another. There are two significant conclusions which can be drawn about this.
First, irrespective of which illusory rectangle is on top, the unit organization consists
of the same set of boundary components. Second, neither organization is topologically
valid. It is as if the visual system commits to a unit organization which subsequently

can not be consistently labeled.

5.2 The Unit/depth Organization Model

The unit/depth organization model is defined by two independent and individually
simpler graph labeling problems. Like the ILP for the surface organization model (i.e.
ILPsyrface ), these are also formulated as integer linear programs, which we will refer
to as ILP,,;; and [LP. . While ILPg,, ¢4 1s a labeling problem on Gignar, the
unit organization problem in isolation, I L P,,;, is a labeling problem on its precursor,
Glnon—planar- Lhe overall structure of the unit/depth organization model is compared
to the surface organization model in Figure 5.4. If z; equals one when completion

J € completions(p) is instantiated, and x; equals zero when completion j is not
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Figure 5.4: A comparison of the labeling problems. (a) The integer linear program
for the surface organization model (i.e. ILPsy; fqce) is a labeling problem on Gpignar-
Unit and depth organization constrain one another, resulting in true surface organiza-
tion. (b) In the unit/depth organization model, unit organization is accomplished in
advance and independently of depth organization. ILP,,; is not a labeling problem
on Gylanar, but on its precursor, Gon—pianar- Completions not instantiated in the unit
organization are deleted. A much simpler G 44, 1s then labeled by I L Py .
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instantiated, then I'LP,,; is formed by generating one constraint per endpoint p of

the form:

:Ep = E :E]'

JjE€completions(p)

The objective function for I L Py, is Qunit or Q! ., depending on whether contrast
or outline stimuli are involved. The optimal feasible solution of ILP,,;; defines the
unit organization. Any completion not instantiated in the unit organization (i.e.
any completion j, such that z; = 0) is deleted from Gon—plane-- The structure of
Gron—planar after pruning is very simple. Since the in-degree and out-degree of every
endpoint vertex is equal to one, the connected components of Gopn—pianar are all
simple graph cycles. If the unit organization has a consistent depth labeling (which is
not guaranteed) then these cycles represent the boundary components of an anterior
scene.

The unit organizations computed for the four contrast test figures are shown in
Figure 5.5. These are the optimal feasible solutions of I LP,,;;. In three of the four
cases, the unit organization can be consistently labeled; these act as the precursors
of topologically valid anterior scenes. However, in the case of the Kanizsa Plusses
test figure no consistent labeling is possible. This suggests that either the unit/depth
organization model is incorrect, or that the objective function, as defined, does not
incorporate all of the preference factors which operate in human vision.

Figure 5.6 shows the unit organizations computed for the two outline test figures.
In the case of the Y’s with Bars test figure, the unit organization is the same as

for the surface organization model. However, in the case of the X’s with Bars test

figure, the unit organization admits no consistent depth labeling. This shows that
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in the experimental implementation of the surface organization model, topological
constraints can play a role in unit formation.

Like the ILP for the surface organization model, I L Py, is a labeling problem on
Gplanar- As before, Gianer 1s created by splitting the edges of Gopn—pianar Wherever
two intersect, and creating a crossing at that point. But ILPj., is considerably
simpler than [LPs,; fqce, since it exploits the fact that every edge in Gpignq, must
appear in Gppot.

The principal simplification is that the sign of occlusion of all edges in the same
boundary component can be represented by a single 0-1 valued variable. The con-

straint that boundary component, b, must have a unique sign of occlusion is then:

z + oy = 1 (5.1)

The set of constraints which must be enforced at crossing vertices is also somewhat
simplified. Recall that in the surface organization model, the four states associated
with crossing ¢ were represented by 0-1 valued variables z,zt, 27 and z. If either
of the completions intersecting at crossing ¢ is not instantiated then the value of
these four variables is zero. However, in the unit/depth organization model (since
every completion in Gjjnq, must appear in the surface organization) the constraint
requiring crossing ¢ to be in one of the four crossing states when two intersecting

completions (i.e. uw and [) are instantiated is extraneous, since the left side of the

inequality always equals one:

T, + 2, +a a2 < wj—l—xi—l—mi—l—:ﬁj—l—l (5.2)

Furthermore, the inequality constraint in /L P, 4. which ensures that the four

states are mutually exclusive is replaced by a stronger, equality constraint in I L Py,
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Figure 5.5: Unit organizations for the contrast test figures. In three of the four
cases, the unit organization can be consistently labeled; these act as the precursors of
topologically valid anterior scenes. However, in the case of the Kanizsa Plusses test
figure (lower left), no consistent labeling is possible.
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Figure 5.6: Unit organizations for the outline test figures. In the case of the Y’s with
Bars test figure (top), the unit organization is the same as for the surface organization
model. However, in the case of the X’s with Bars test figure (bottom), the unit
organization admits no consistent depth labeling.
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.172——|-$j'—|-$lc_—|-fﬁj = 1 (53)

The other constraints enforced at crossings are the same as for the surface organi-
zation model. These include the constraints which ensure that the contour bounding
the uppermost surface possesses the appropriate sign of occlusion, the constraints
which relate boundary depth to the four crossing states, and the constraints which
enforce the depth order requirement.

Having described the integer linear constraints which define 1L Py, all that re-
mains is to define its objective function. Recall that a major problem with the surface
organization model was the theoretical difficulty in combining unit and depth pref-
erence factors in a single objective function. Ideally, the objective function should
interpret points within the feasible region as equally specific predictions about the
actual state of the world. Unfortunately, as shown in Chapter 3, the relative like-
lihoods of different figure-ground assignments can not be compared when the unit
organizations are of different size. One advantage of dividing I L Py, fqce into I LPy0
and 1L Py, is that this theoretical objection disappears. The objective function for
I L Py, needs only to differentiate among alternative figure-ground assignments for

a unit organization of fixed size.!

5.3 Cost Comparison of Two Models

To provide some indication of the relative computational complexity of the sur-
face and unit/depth organization models, it will be useful to compare the problem

size and execution statistics of their experimental implementations. The important

1For the experimental results, Qsurface was actually used. However, because the contribution of
Qunit 10 Qsurface Temains constant, this was equivalent to using Qgepts .
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Figure Obj. Fun. | Variables | Constraints | Pivots | Multiplies | B.B.
Warped Square 41 676 966 1124 | 7.34 x 108 1
Ehrenstein 51.2 792 1073 1209 | 1.03 x 10° 1
Kanizsa Plusses 97 875 1204 1411 1.49 x 10° 1
Woven Square 53.4 782 1222 1263 | 1.21 x 10° 1
Y’s with Bars 249.8 2510 4181 13377 | 1.40 x 101 1
X’s with Bars 119.9 738 1611 5339 | 6.35 x 107 9

problem size statistics are the number of variables and constraints comprising each
integer linear program. Execution statistics include the total number of nodes in the
search tree for the branch and bound enumeration (each node represents a separate
application of the simplex algorithm), and the total number of simplex pivot steps.
The statistics for 1L Py face, I LPynic and I L Py, were collected for the four contrast
and two outline test figures. Table 5.1 lists these statistics for 1L Py, f4ce while Tables
5.2 and 5.3 list them for I LP,,;; and ILP. . These tables also include the value of
the objective function for the optimal feasible solution and an estimate of the total
number of floating point multiplies required to solve the problem. Assuming that the
complexity of a simplex pivot step is proportional to the size of the constraint matrix
(i.e. the product of the number of variables and constraints), then the product of
the size of the constraint matrix and the total number of pivot steps provides a good
estimate of the total number of multiplies. This, in turn, provides an indication of
the time-complexity on a sequential computer.

The computational advantage of decomposing the figural completion problem ac-
cording to the unit/depth organization model are convincingly demonstrated in Tables
5.4 and 5.5. Table 5.4 compares the total number of simplex pivot steps for 1L Py, fqce
to the sum of the totals for ILP,,;; and ILP.,. Table 5.5 similiarly compares the

total number of floating point multiplies. The average reduction in the total number



Table 5.2: Complexity statistics for 1L P,,;.
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Figure Obj. Fun. | Variables | Constraints | Pivots | Multiplies | B.B.
Warped Square 17 112 161 44 7.93 x 10° 1
Ehrenstein 35.2 96 129 46 5.70 x 10° 1
Kanizsa Plusses 61.2 159 193 39 1.20 x 10° 1
Woven Square 25.4 114 161 36 6.61 x 10° 1
Y’s with Bars 195.8 198 181 167 | 5.98 x 10° 1
X’s with Bars 73.3 119 133 68 1.08 x 10° 1

Table 5.3: Complexity statistics for 1L Py.p.

Figure Obj. Fun. | Variables | Constraints | Pivots | Multiplies | B.B.
Warped Square 41 264 407 118 | 1.27 x 107 1
Ehrenstein 51.2 352 521 459 | 8.42 x 107 1
Kanizsa Plusses inf. 336 521 139 | 2.43 x 107 3
Woven Square 53.4 264 441 134 1.56 x 107 1
Y’s with Bars 249.8 408 829 337 | 1.14 x 10® 1
X’s with Bars inf. 318 741 120 | 2.83 x 107 1

Table 5.4: Surface vs. unit/depth organization models (total pivot steps).

Figure Surface | Unit/depth | Percent Cost | Percent Savings
Warped Square | 1124 162 14.4 85.6
Ehrenstein 1209 505 41.8 58.2
Kanizsa Plusses | 1411 178 12.6 87.4
Woven Square 1263 170 13.5 86.5
Y’s with Bars 13377 504 3.8 96.2
X’s with Bars 5339 188 3.5 96.5

Table 5.5: Surface vs. unit/depth organization models (total multiplies).

Figure Surface Unit/depth | Percent Cost | Percent Savings
Warped Square | 7.34 x 10% | 1.35 x 107 1.8 98.2
Ehrenstein 1.03 x 10° | 8.47 x 107 8.3 91.7
Kanizsa Plusses | 1.49 x 10° | 2.55 x 107 1.7 98.3
Woven Square | 1.21 x 10° | 1.63 x 107 1.4 98.6
Y’s with Bars | 1.40 x 10* | 1.20 x 10® 0.1 99.9
X’s with Bars | 6.35 x 10° | 2.94 x 107 0.5 99.5
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of simplex pivot steps for the five (out of a total of seven) instances where the results
of two models could be compared, is 83 percent. The average reduction in the total

number of floating point multiplies, for the same five instances is 97 percent.

5.4 Context Dependency of Figural Completion

Although the philosophy of the Gestalt psychologists is supposedly captured by
the sentence “The whole is greater than the sum of its parts,” Kanizsa[29] points out
that this statement is actually somewhat of a misrepresentation. Gestalt philosophy,
in small part, was an early 20th century attempt to describe a set of phenomena in
human vision using metaphors from physics[34, 35]. For example, the Gestalt “field”
is the medium through which visual stimuli exhert influence on one another in the
process of perceptual organization. This is analogous to the electromagnetic field,
which mediates the attractive force among charged particles. While the failure of the
Gestalt program is often attributed to its lack of the metaphor of computation, Gestalt
demonstrations can still provide important clues to the nature of the computational

processes underlying human vision.

As a computational problem, early vision effects a mapping from an image on the
retina (the stimulus) to a more abstract intermediate representation (the percept).
Both the stimulus and the percept can be thought of as vectors in appropriate vector
spaces. Assuming that the components of the stimulus vector are indexed spatially,
then the spatial support of a function can be defined as the subset of the components
of the stimulus vector required to compute that function. The spatial support of a
function is said to be local when it occupies a bounded area of the retina and global
when it occupies the entire retina. As for the percept vector, although the precise
details are unimportant, it is reasonable (at least) to expect that some subset of its

components represent the figure-ground sense of different image contours.
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Figure 5.7: Context dependency in Gestalt display. Although, the central portion
of the upper and lower displays is the same, identical elements in different contexts
play markedly different roles. In particular, the figure-ground sense of the contour
marked with the arrow is opposite in the two different contexts. This demonstration
was designed by Kanizsa[29].
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Figure 5.8: Two extremes in network computation. (a) A network computing a global
transform. (b) A relaxation network.
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One of the connotations of the word “Gestalt” is irreducible whole. Using the lan-
guage developed in the previous paragraph, we might say that many Gestalt demon-
strations strongly suggest that the function mapping the stimulus to the percept can
not be decomposed into independent functions computable with local spatial sup-
port. Ullman[58] called a device for computing such a non-decomposable function a
“Gestaltron.” The fact that the computation underlying illusory contours possesses
this property is dramatically illustrated in Figure 5.7, a demonstration designed by
Kanizsa[29]. Although, the central portion of the upper and lower displays is the
same, identical elements in different contexts play markedly different roles. In par-
ticular, the figure-ground sense of the contour marked with the arrow is opposite in

the two different contexts.

5.5 Network Computation

Ballard[2] considered the structure of networks which might compute the map-
ping function and identified two fundamental types. The first are networks consisting
of independent processing elements with global spatial support. These networks are
actually global associative memories, and in principle, are capable of implementing
completely arbitrary mappings of input to output. However, because interconnectiv-
ity requirements are so severe, their application is limited in practice to mappings
between low dimensional parameter spaces. A typical example is a network which
detects straight lines by computing a global Hough transform[24], where the compo-
nents of the percept vector represent individual straight lines parameterized by their
orientation and distance from the origin.

In a recent paper, Guy and Medioni[16] describe an abstract transform for com-
puting a tangent field representing global image structure from local tangent measure-

ments. Like the Hough transform, the key to their approach is the local summation
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of a set of global voting patterns. Unlike the Hough transform, the accumulator is
spatially registered with the image and the voting pattern is a vector, not a scalar
field. Elements of the vector field represent orientations which are co-circular to the
tangent measurements. Also, the magnitude of the field decreases exponentially with
distance. The vectors are combined locally through analysis of moments, and the
principal axis of the vectors which accumulate at a location is used as an estimate of
the dominant direction.?

The second type consists of processing elements with local spatial support cou-
pled in a locally connected network. For example, Parent and Zucker[41] describe
a network method for computing a discrete tangent and curvature field consistent
with local orientation and curvature measurements produced by operators analo-
gous to simple cells in the visual cortex. Their network solves a relazation labeling
problem[27, 50]. A relaxation labeling problem requires that one element of a set of
labels be assigned to each element of a set of objects. The probability that object
¢ has label A is denoted by p;(A). The compatibility of object ¢ possessing label A
and object j possessing label X' is denoted by r;;(A, \'). The goal is to find the most
probable assignment of labels to objects subject to the compatibilities. This is ac-
complished through an iterative gradient ascent algorithm. The update is computed
locally and in parallel for each object. In Parent and Zucker’s network, the A represent
discrete orientation and curvature values at image point i. The p;()\) are assigned
values proportional to the initial tangent and curvature responses of the simple cells.
The r;;(A, ') reflect the degree of co-circularity of tangent and curvature labels at
points ¢ and j. In the course of relaxation, local tangent and curvature measurements

are adjusted to reflect global context.

2Although Guy and Medioni never explicitly formulate an optimization problem, and although
their method of computation is very different from relaxation, their choice of computational goal
and their use of the co-circularity constraint is very much in the spirit of the earlier work of Parent
and Zucker[41].
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Ullman’s[58] minimal mapping theory of the correspondence problem in apparent
motion is a second example of a global optimization problem solved by a locally
connected network of processing elements. Apparent motion in human vision is a
natural consequence of a presumed correspondence between elements of the visual
field (i.e. correspondence tokens) at two different points in time. Since there are many
possible one-to-one mappings between correspondence tokens at two points in time,
the correspondence problem in apparent motion is underconstrained. The problem
of computing a unique mapping is formulated by Ullman as a linear programming
problem.

In Ullman’s formulation, ¢;; is the logarithm of the likelihood that token : at time
t matches token j at time ¢t + 1. Within the linear program, 0-1 valued variables
x;; form a permutation matrix which defines the mapping between tokens at the two
times. A priori knowledge of the probability density function defining the distribution
of image velocities provides the values of the different ¢;;. Assuming independence,
the maximum likelihood correspondence maximizes the sum of the product of z;; and
gi; subject to linear inequality constraints which ensure that every token has at least
one match.

The constraint matrix of this particular linear program is of a special type pos-
sessing a property known as total unimodularity. The basic feasible solutions of such
a linear programming problem always have integer components (See Figure 5.9).
In addition to bipartite matching, other linear programs with this property include
maximum network flow. This has very important practical consequences. Since the
solution vectors always have integer components, the constraint that the z;; be 0-1
valued need not be explicitly enforced, as it must be in more general integer linear
programs. Ullman suggests that the problem of computing the optimal feasible solu-

tion can be solved by a gradient search method due to Arrow and Hurwicz[1]. The
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gradient search locates a saddle point in a Lagrangian constructed according to the
theory of Lagrange multipliers. Significantly, the different components of the La-
grangian gradient can be computed locally and in parallel, which leads to a network

implementation.

5.6 Total Unimodularity

In this section we briefly discuss the notion of total unimodularity and its impor-
tance to integer linear programming. Understanding total unimodularity will allow
us to gauge the feasibility of reformulating the figural completion problem as a set of
more tractable linear programming problems (i.e. LP’s), which can be solved by the
method of Arrow and Hurwicz[1] (following the suggestion of Ullman[58]). The key
ideas are from Papadimitriou and Steiglitz[40].?

Although for reasons of clarity, both equality and inequality constraints have been
used when defining integer linear programs, any ILP can be reduced to the following

canonical form:

max ¢’ x
subject to A x < b
x > 0
X integer
Here, A, b and ¢ have only integer components.

A square, integer matrix is untmodular if its determinant is 1. An integer matrix

is totally unimodular (TUM) if and only if the determinant of every square, non-

3Specifically, the use of Theorems 5.1 and 5.2 to establish a sufficient condition for an integer
linear program having only integer solutions is due to Papadimitriou and Steiglitz[40].
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Figure 5.9: Total unimodularity. (a) An integer linear programming problem with a
non-unimodular constraint matrix. (b) An integer linear programming problem with
a totally unimodular constraint matrix. The basic feasible solutions all lie on the
integer lattice.
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singular submatrix is £1. The following theorem, due to Heller and Tomkins[17]
establishes a sufficient condition for total unimodularity.

Theorem 5.1 (Heller and Tompkins) An integer matriz A with a;; = 0,+1 is
TUM if no more than two nonzero entries appear in any column, and if the rows of

A can be partitioned into two sets such that:

1. If a column has two entries of the same sign, their rows are in different sets;

2. If a column has two entries of different signs, their rows are in the same set.

The following theorem, due to Hoffman and Kruskal[20], establishes the connection
between total unimodularity and integer basic feasible solutions:

Theorem 5.2 (Hoffman and Kruskal) If A is TUM and b is integer, then every
basic feastble solution is integer.

This theorem can be appreciated by noting that the simplices of the constraint
polytope of a linear program are defined by square submatrices within its tableau. The
basic feasible solutions are equal to the product of the inverses of square submatrices
and the vector b. By Cramer’s rule, the inverse of an integer submatrix will be integer
if its determinant is equal to +1. Since b is also integer, this ensures that the basic

feasible solution is integer.

5.7 A Complexity Result

We will show that ILP,,; is TUM under certain additional assumptions which
will now be described. Recall that Gon—pianar = (Vendpoints, E fragments U Feompletions )-
Since the fragments in Ef,qgments are also luminance boundaries, it is possible to
assign an orientation (i.e. sign of contrast) to each fragment so that the darker of the

two regions it borders lies to the right when a fragment is traversed in the direction
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of its orientation. Now, divide the set of endpoints, V., dpoints, into two disjoint sets,
P and @), such that each endpoint p € P is an initial endpoint of some fragment and
each endpoint ¢ € () is a terminal endpoint of some fragment.

Assuming that the sign of contrast remains constant around every boundary, then
every completion in FEe,pmpietions 15 adjacent to exactly one element of P and one
element of Q. Gon_pianar is therefore a bipartite graph.?

We now show that if G,0,—pianar 1s bipartite then the rows of the constraint matrix
defining I LP,,;; can be divided into two disjoint sets satisfying the conditions of
Theorem 5.2.

Theorem 5.3 If G.on—planar 15 bipartite, then ILP,,; is TUM.

Proof Divide the rows of the constraint matrix into two sets, such that a row is

in set I, it it is of the form:

T, — Z z; =0 (5.4)

j€completions(p)

(where p € P) and a row is in set [, if it is of the form:

Ty — Z z; =0 (5.5)

j€completions(q)

(where ¢ € Q).

The variables of ILP,,;; can themselves be divided into two sets, namely those
representing boundary fragments (i.e. {z, | p € P U Q}) and those representing
completions (i.e. {z; | 7 € Ecompletions}). Observe that in both Constraint 5.4 and
Constraint 5.5 the column entries for variables representing boundary fragments are

always +1 (i.e. x, and x,) while those representing completions (i.e. x;) are always

4If this were not true, it would imply that there is a completion which joins two fragments with
opposite signs of contrast, which contradicts our assumption.
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—1. Since the column entries for a given variable are always of the same sign, to
prove that [ LP,,;; is TUM, it is sufficient to show that every column has exactly two
non-zero entries, one in a row in [, and one in a row in [,. This is shown first for
variables representing boundary fragments.

By convention, if p and ¢ are opposite endpoints of a single boundary fragment
then z, = x, so that these variables form a single column of the constraint matrix.

Clearly, one of these entries (i.e. x,) is in [, and the other (i.e. ;) is in I,.

The situation for a variable representing instantiation of a completion is only
slightly more involved. We observe that since G)on_pianer 1s bipartite, for any two
endpoints p,p’ € P, it is the case that completions(p) N completions(p’) = 0.
It follows that the column of the constraint matrix representing variable z;, where
J € completions(p) has at most one non-zero entry among the rows comprising set
I,. Since for any two endpoints ¢,¢" € @, it is the case that completions(q) N
completions(q') = 0 it also follows that the column of the constraint matrix repre-
senting variable z; has at most one non-zero entry among the rows comprising set
I,. Since the column of the constraint matrix representing variable z; is non-zero at
most twice (i.e. once within a row of [, and once within a row of 1), this establishes

that ILP,,;; is TUM when G,0n—pianer 1s bipartite.O

5.8 Other Considerations

Until this chapter, there had been no attempt to study the problem of figural
completion at any other level than that of computational theory. However, in this
chapter, the computational theory was revised. This revision was motivated in part
by evidence from human vision and in part by speculation about biologically plausible
forms of computation. This was the first and only time that issues of algorithms and

representations were entertained.



158

The result of that analysis was fairly modest: since the integer linear program
defining the unit organization problem is TUM, it can, in principle, be solved by
numerical relaxation in a locally connected network.> Still, this falls far short of
proposing a biologically plausible algorithm and representation. Probably the best
precedent for this is the work of Parent and Zucker[41], which was briefly described
earlier in this chapter.

Their work is notable for a number of reasons. First, the representation passes
the first litmus test for biological plausibility: in contrast with many neural network
models,® contour organizations in Parent and Zucker’s scheme are represented as
linear combinations of a fized basis set of tangent/curvature “units.”” Unless the
brain has evolved dynamic memory allocation and garbage collection, the use of a
fixed set of units is absolutely essential.

Second, when compared to representing contours by “grouping items” or “tokens,”
the discrete tangent /curvature field possesses important representational advantages.
Recall that in Chapter 4, a procedure for identifying and eliminating “redundant”
completions was described. A completion is considered redundant when its likelihood
is lower than the product of the likelihoods along an alternative path joining the
same fragments. Because sets of redundant completions overlap in the image, they
are likely to be products of a single physical process. However, because completions
are represented as distinct tokens in the experimental system, overlapping contours
significantly increase the complexity of the grouping problem. The irony is that,

in an appropriately designed parallel distributed representation, such as the discrete

5An open problem is whether or not some variation of the depth labeling problem can be shown
to be TUM as well. As defined, it very clearly is not. Again, the awkward depth order requirement
is to blame: it can not be written as a set of integer linear inequalities with +1 coefficients.

Including Ullman’s network formulation of the correspondence problem in apparent motion,
which motivated the use of linear programming in this thesis.

"Here the word unit is synonymous with “neural unit,” and has nothing to do with the Gestalt
concept of unit.
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tangent /curvature field, overlapping stimuli could combine additively, and therefore
reinforce a single percept.

This “redundancy” phenomenon, more than any other, illustrates that token rep-
resentations are ill-suited to the task of representing and grouping image contours.
The problem is not peculiar to the experimental system described in this thesis, but
shows up whenever token representations are used in contour grouping. When used
to represent image contours, tokens make all the wrong things explicit. For example,
an artist drawing a rough charcoal sketch draws contours with sets of crude overlap-
ping strokes. Where more emphasis is required, the artist retraces old strokes with
bolder, darker strokes. The precise image trace is unimportant. Even less important
is where individual strokes begin and end. If these observations are correct, then why
are the locations of a contour’s endpoints, together with its precise trace, the basis
of most contour representations? In the case of a charcoal sketch, tokens faithfully
model the idiosyncrasies of the method of manufacture, but fail to make plain what
the eye actually sees.

Finally, and of special significance, is the fact that Parent and Zucker’s represen-
tation permits multiple tangent/curvature labels to exist at a single image location.
Because this allows contours to cross without penalty, it suggests that the discrete
tangent and curvature field can be adapted to the problem of representing the differ-
ent graphs (i.e. Gpianar, €tc.) required by our formulation of the figural completion
problem. With some cleverness, it might even be possible to cast the different sub-
problems required to construct a labeled knot diagram as relaxation labeling problems
using this same set of tangent /curvature units. This is a promising direction for future

work.



CHAPTER 6

CONCLUSION

In their choice of goals, representations and methods, conventional theories of
visual reconstruction have failed to address the problem of reconstructing environ-
mental structure which is not in plain sight. Because conventional theories assume
that parallel projection maps visible surface neighborhoods to image neighborhoods in
one-to-one fashion, the problem of deducing the topology of environmental structure
has largely gone unrecognized. This thesis, in contrast, has suggested that deducing
the topology of environmental structure, whether visible or occluded, is the funda-
mental problem of perceptual organization, and that figural completion phenomena

must be understood in this context.

6.1 Contributions

The major contribution of this thesis is a computational theory of figural comple-
tion. By computational theory, it is meant first of all that the goal of the computation
has been clearly elucidated (this was the topic of Chapter 2). It is my opinion that,
in this regard, labeled knot diagrams are as fundamental to the theory of figural
completion as correspondence is to the theory of apparent motion. Second, the natu-
ral constraints which assist the human visual system in achieving this goal, together
with the inherent ambiguities, have been identified. Here, the topological constraints

implicit in the labeling scheme play much the same role as rigidity does in theories
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of motion understanding. Together, these elements allowed the figural completion
problem to be formulated abstractly as a combinatorial optimization problem. This
combinatorial optimization problem, in the form of an integer linear program, was

described in detail in Chapter 3.
One of the things which distinguishes a good theory from a bad theory is that a

good theory can be wrong, that is, it makes predictions which can be tested. While
the jury is still out on whether or not the computational theory proposed here is

correct, it is specific enough that it allows some testable predictions to be made:

e In Chapter 2, it was conjectured that the goal of figural completion is to compute
a labeled knot diagram representing the boundaries of the anterior surfaces.
This leads to the following prediction: In human vision, the image traces of
perceptual completions (whether modal or amodal), together with their signs of

occlusion and relative depths at points of intersection, are explicitly represented.

e In Chapter 3, we observed that the problem of computing a labeled knot diagram
from visible boundary fragments requires overcoming three different forms of
ambiguity. These were termed shape, unit and depth. It was conjectured that
shape ambiguity is resolved independently, and in advance of unit and depth
ambiguity. In this way, it was suggested, figural completion is reduced to a
combinatorial optimization problem. This leads to the prediction that the shape
of a perceptual completion is independent of the subset of completions which is

instantiated, their signs of occlusion and relative depths.

e Also in Chapter 3, it was conjectured that the shape of a perceptual completion
is solely a function of the tangent, curvature and relative positions of the end-
points of the occluded boundary. This leads to the prediction that completions
joining pairs of boundary fragments sharing these attributes will always be of

the same shape.
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e Finally, in Chapter 5, we considered the hypothesis of Kellman and Loukides[32]
that unit ambiguity is resolved independently and in advance of depth ambigu-
ity. This leads to the prediction (partially confirmed) that topologically invalid

unit organizations exist.

Although the primary reason for building the experimental system (described in
Chapter 4) was to test the computational theory which is the major contribution of
this thesis, its algorithms and representations should interest researchers in computer
vision also. It is widely acknowledged that perceptual organization is among the most
difficult problems facing researchers in computer vision today. In my opinion, research
in bottom-up visual reconstruction has virtually come to a standstill because of lack
of progress in this area. This thesis has explored a previously unidentified source
of constraints in image contour grouping—that the grouped contours must form the
boundaries of topologically valid surfaces. The usefulness of the labeling scheme
in limiting search in computer vision application areas such as visual recognition
is independent of whether or not the computational theory outlined here correctly

models human vision.

6.2 Future Directions

Several topics for future research were introduced in previous chapters. Some of
these topics involved extending or modifying the computational theory while others
involved formulating a complementary theory of figural completion phenomena at the

level of algorithm and representation:

e Demonstrating that labeled knot diagrams, as defined in Chapter 2, can be used

to represent the anterior surfaces of scenes composed of smooth manifold-solids.
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e In the surface organization model, integrating figure-ground and other depth
preference criteria with unit preference criteria in a single objective function
without introducing a bias for (or against) organizations containing larger num-

bers of completions.

e Determining whether or not topological validity can be ensured without com-
mitting to a specific depth ordering of the completed boundaries. This addresses

the issue raised by the example of the Fhrenstein figure in Chapter 4.

o ldentifying additional unit preference criteria which might account for the in-
ability of the experimental implementation of the unit-depth organization model

to correctly organize the Kanizsa Plusses figure.

e Determining whether or not there exists some approximation of the depth la-
beling subproblem of the unit/depth organization model (i.e. L Pjeps) which

is totally unimodular.

o Investigating how the labeled knot diagram and other graphs central to our
formulation of the figural completion problem might be computed using bio-
logically plausible representations (e.g. the discrete tangent/curvature field of

Parent and Zucker[41]) and algorithms (e.g. relaxation labeling).

Some directions for future work have not been previously discussed. For example,
probably the most important “unspoken” assumption of this thesis is the issue of
scale. Implicit in the computational theory, as formulated, is the assumption that
tangent and curvature have unique values at boundary fragment endpoints. The
theory also assumes that the boundary fragments which the figural completion pro-
cess organizes are the result of segmenting image luminance boundaries at points of

high curvature. Unfortunately, unlike mathematically ideal curves, the tangent and
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curvature of image contours are functions of the scale at which they are measured.
The problem of segmenting a set of image contours into piecewise smooth segments,
or even identifying criterion by which alternate segmentations can be compared, is
difficult and largely unsolved.!

In all of the examples considered in this thesis, the tangents and curvatures
have been stable in “scale-space,” that is, they remain constant across an order-of-
magnitude range of scales which happens to overlap the size of gaps due to occlusion.
Yet, in the real world, the backs of cats with fur standing on end are perceptually
completed behind scratching posts covered with shag carpet. As Marr[38] and others
have pointed out, image contours originate in physical processes operating at multi-
ple natural scales. Therefore, it is essential that any comprehensive theory of figural
completion address the issue of scale.

In conclusion, we note that there are many places where the scope of the existing
theory is simply too narrow, and is insufficient to account for human competence. For
example, the human ability to understand line-drawings of smooth surfaces embedded
in ways which violate the definition of anterior scene (e.g. Figures 2.1- 2.3) suggests
that the representation computed by the figural completion process is more general
than (and probably subsumes) the labeled knot-diagrams developed here.

Towards this end, it is worth re-examining Huffman’s[26] influential paper “Im-
possible Objects as Nonsense Sentences.” While this paper is widely cited as one
source of the Huffman-Clowes junction catalog for trihedral scenes, the last few pages
are actually devoted to a labeling scheme for line-drawings of smooth surfaces. We
optimistically predict that the methods developed in this thesis can be generalized
to the full Huffman labeling scheme, leading to a computational theory sufficient to

explain the full range of perceptual completion phenomena at work in human vision.

1See the recent paper by Saund[52] for a review of the literature on this topic.



APPENDIX
GLOSSARY

This appendix is a glossary of general and specific terms used in Chapter 2.

General Terms

e boundary The set of points of a surface with boundary with neighborhoods

homeomorphic to half-discs.

e boundary edge In a paneling representing a surface with boundary, an edge

which is not identified, and consequently forms part of the boundary.

e boundary vertex A point where two boundary edges are incident, and with

a neighborhood homeomorphic to a half-disc.

e contour generator The locus of points on the surface of a smooth manifold-

solid which are tangent to the viewing direction.
e crossing In a knot diagram, a point where one contour passes over another.

e cusp The image of a point on the surface of a smooth manifold-solid where the

direction of the contour generator coincides with the viewing direction.

e embedding A homeomorphism between one topological space and a subspace

of another. For example, between a set of orientable surfaces with boundary
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and three-space. Because an embedding is a homeomorphism, there are no

singularities, and embedded surfaces can not intersect.

genus For orientable surfaces without boundary, the number of handles which

must be added to a sphere to create a topologically equivalent surface.

handle A tube whose two open ends are added to a surface to increase its genus

by one.
homeomorphism A continuous, one-to-one mapping with continuous inverse.

identification In a paneling, an explicit indication that two edges of equal

length are to be glued together and in which way.

immersion A locally homeomorphic mapping between one topological space

and a subspace of another.

interior edge In a paneling representing a surface, an edge which is identi-
fied with exactly one other edge, and consequently forms part of the surface’s

interior.

interior vertex A point in a paneling where two or more interior edges are

incident, and with a neighborhood homeomorphic to a disc.
Jordan curve A closed non-self-intersecting path on any surface.
knot An embedding of a circle in three-space.

knot diagram The generic projection of a knot onto a plane.

manifold-solid an object whose boundary is an orientable surface which di-

vides three-space into an interior and an exterior.
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multiplicity The number of points in the domain of a function which map to

a single point in the range.

neighborhood A subset of a topological space is a neighborhood of a point
p if and only if it contains every other point of that space which lies within a

sufficiently small ball centered on p.
network A graph representing a system of difference equations.

occluding contour The projection onto the image plane of the points on a

surface which are tangent to the lines of sight.

oriented knot diagram A knot diagram where each contour is assigned one

of two orientations.

panel A surface cutout from a flat sheet of paper. The boundary of a panel is

formed by an ordered cycle of edges separated by vertices.

paneling A set of panels together with a set of edge identifications which deter-
mine which panel edges are glued together and in which ways. A paneling where
every neighborhood is homeomorphic to either a disc or half-disc represents a

surface with boundary.

punctured torus A surface with boundary of genus one formed by subtracting

a disc from a torus.
singularity A point with multiplicity greater than one under some mapping.

writhe For a crossing in an oriented knot diagram, the sign of the cross product

of the upper and lower strands.
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Specific Terms

e anterior scene A set of orientable surfaces with boundary embedded in three-
space such that the surface normals everywhere are defined and have a positive

component in the viewing direction.

e anterior surfaces The locus of environmental surface points where the surface

normal is defined and has a positive component in the viewing direction.

e boundary depth The number of surfaces which lie between a surface boundary

and the eye.

e depth order requirement The requirement that the depth of the occluding
surface boundary be less than or equal to the depth of the occluded surface

boundary.

e identification scheme An implicitly defined set of edge identifications. In
this case, the identification scheme specifies which panel edges should be glued

together to construct a paneling from a labeled knot diagram.

e generic view An image of an anterior scene where: 1) the multiplicity of the
image of the boundary is one everywhere except at a finite number of points
where it is two; and 2) the number of multiplicity two points is invariant to

small changes in viewing direction.

e labeled knot diagram A representation of an anterior scene consisting of an
oriented knot diagram annotated with boundary depths satisfying the labeling

scheme depicted in Figure 2.5.

e planar region One of a set of regions into which a knot diagram divides the

plane.
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e visible surfaces The locus of environmental surface points first incident along

the lines of sight.
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