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Abstract Object-oriented combinator chemistry (OOCC) is an artificial
chemistry with composition devices borrowed from object-oriented
and functional programming languages. Actors in OOCC are
embedded in space and subject to diffusion; since they are neither
created nor destroyed, their mass is conserved. Actors use programs
constructed from combinators to asynchronously update their own
states and the states of other actors in their neighborhoods. The fact
that programs and combinators are themselves reified as actors
makes it possible to build programs that build programs from
combinators of a few primitive types using asynchronous spatial
processes that resemble chemistry as much as computation. To
demonstrate this, OOCC is used to define a parallel, asynchronous,
spatially distributed self-replicating system modeled in part on
the living cell. Since interactions among its parts result in the
construction of more of these same parts, the system is strongly
constructive. The systemʼs high normalized complexity is contrasted with
that of a simple composome.

1 Introduction

Much as Turing [36] had done when motivating his abstract computing machine by comparing it to a
human “computer” executing programs with paper and pencil, von Neumann [38] began his study of
self-replication in the abstract, by thinking about a concrete physical machine. As imagined, von Neumannʼs
kinematic automaton assembled copies of itself from a supply of components undergoing random
motion on the surface of a lake. The components consisted of girders, sensors, effectors, logic gates,
and delays, together with tools for welding and cutting. It is unlikely that von Neumann ever intended
to actually build a physical self-replicating machine. More likely, he regarded the kinematic automaton
as a thought experiment, and abandoned it when he understood how the problems of self-reference,
control, and construction that truly interested him could be rigorously formulated in the abstract
domain of cellular automata (CAs).

By abandoning his kinematic automaton, von Neumann became the first “player” of a sometimes
abstruse “game” that many others have played since [30]. This “game” has two parts and two pitfalls.
Roughly speaking, the parts are: define a model of computation, and define a self-replicating object (or system) in the
model. The two pitfalls, which must be avoided if the “game” is to be nontrivial, are: making the
computational model too abstract, and making the primitives too complex. For example, it is trivial for a self-
replicating object defined as a 1 to replicate in an array of 0s if physics is defined to be a Boolean OR

operation in neighborhoods. It is equally trivial for a self-replicator composed of a robotic arm, a
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camera, and a computer to make copies of itself given a supply of robotic arms, cameras, and
computers. Von Neumann himself was very conscious of the parts and pitfalls and discusses at length
the tradeoffs the “game” presents.1 His ingenious solution was (characteristically) a saddle point,
combining a fiendishly simple model of computation and an enormously complex self-replicating
object.

Nearly sixty years after von Neumannʼs death, no one has yet constructed a kinematic automaton
of the kind he imagined [10]. However, because the “game” seems to many of us to still afford the
best prospect by which to address the twin problems of the origin of life on Earth and its evolution
into forms of increasing complexity, there is no shortage of new “players.” Fortunately, current
“players” are the beneficiaries of a wealth of biological science unknown to von Neumann [41],
of significant advances in the science of computing that von Neumann and Turing played seminal
roles in founding, and of a growing body of work in the interdisciplinary fields of artificial life and
complex systems.

Unsurprisingly (given the preceding), this article contains descriptions of both a new model of
computation and a self-replicating system defined using that model. The design of our model is
strongly influenced by the belief that something important was lost when von Neumann adopted
cellular automata as his model. More specifically, we believe that conservation of mass, a law that all
machines that assemble copies of themselves from parts must obey, was (in effect) the baby thrown
out with the bath water.

Our starting point is artificial chemistry [7], the study of the population dynamics of systems of
constructible objects, which Fontana and Buss [9] called constructive dynamical systems. Like them, we
looked to the field of computer science for inspiration, hoping to repurpose elements of modern
object-oriented and functional programming languages as primitives and composition devices in an
artificial chemistry. From object-oriented programming we borrowed the ideas of object compo-
sition and the association of programs with the data they operate on; from functional program-
ming, we borrowed the idea of construction of programs by composition of program fragments,
or combinators.

The first pitfall (excess abstraction) is avoided using a twofold strategy. First, we make our arti-
ficial chemistry concrete by embedding its constructed objects in a 2D space and relying solely on
diffusion for dynamics. Significantly, to make this tractable, aggregates are treated as masses (unlike
Arbib [2], who treated aggregates as areas), and mass is conserved, which makes it a more plausible
host for a kinematic automaton of the sort imagined by von Neumann.2 Second, as a guarantee of a
different kind of realism, we insist that our artificial chemistry must be a bespoke physics as defined by
Ackley [1]. More specifically, it must function as an abstract interface to a physically realizable indefi-
nitely scalable computational substrate. This is consistent with the notion that kinematic automata
defined using such interfaces, and which replicate by assembly of conserved parts, are tantamount
to physical machines.

We avoid the second pitfall (complex primitives) by using (admittedly) complex primitives to
build a self-replicating system composed of parts that are still more complex. However, these more
complex parts are constructed by the system itself! It follows that the system is strongly constructive
in the sense that interactions among its parts result in the construction of more of these same parts
[7]. Our inspiration, the ribosome, allowed us to imagine programs as enzymes and to define a pair
of representations for programs, one spatially distributed and inert, the other compact and meta-
bolically active. The self-replicating system that resulted is a parallel, asynchronous, spatially dis-
tributed computation modeled in part on the living cell. See Figure 1.

The model of computation described in this article has features in common with prior work
on automata and artificial chemistry. The idea of movable aggregates of complex automata has

1 See von Neumann [38, pp. 76–77] and Arbib [2, p. 179].
2 Abstract models can sometimes be improved by adding conservation principles that make them more concrete. For example,
di Fenizio [6] showed how adding conservation of mass eliminates the more contrived elements of the artificial chemistry of Fontana
and Buss [9].
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precedent in Arbib [2]. The idea that kinematic automata can be built in embedded artificial
chemistries has precedent in Laing [18], Smith et al. [31], and Hutton [15]. The use of nested
multisets for object composition in an artificial chemistry has precedent in Paun [27]. The use of
sequences of combinators as molecules and conservation of mass has precedent in di Fenizio [6].
The idea of molecules as programs has precedent in Laing [18], Fontana and Buss [9], di Fenizio [6],
and Hickinbotham et al. [13]. The idea that programs for stack machines are, by virtue of their
high degree of composability, well suited to evolutionary computation has precedent in Spector and
Robinson [33]. Finally, Taylor [35] has argued that embeddedness and competition for matter,
energy, and space are necessary in artificial life systems capable of open-ended evolution.

2 Relative Complexities of Artificial Organisms and Virtual Worlds

Pattee [26] has described the simulation of an organism in a virtual world as an initial-value problem
where organisms are contingent states subject to the non-contingent laws of physics. In the “game”
of inventing both, there is a tradeoff between the non-contingent complexity of models of physical law,
and the purely contingent complexity of artificial organisms defined inside those models. If physical law
is too powerful, self-replication becomes trivial; life is too easy. Conversely, if physical law is not
powerful enough, self-replication becomes impossible; life is too hard. Itʼs possible that the most
interesting “games,” those resulting in a bootstrapping process that culminates in organisms capable
of open-ended evolution, are grounded in physical law “just powerful enough.” Von Neumannʼs
universal replicator RV and its CA virtual world CAV suggest that interesting solutions to the
“game” are saddle points, maximizing the ratio of contingent K(RV | CAV) to noncontingent
complexity K(CAV):

KðRV j CAV Þ
KðCAV Þ ; (1)

Figure 1. Self-replicating system of ribosome and replisome factories built in an object-oriented combinator chemistry
(OOCC) (left). Fundamental dogma of molecular biology (right).
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where K is Kolmogorov complexity [17].3 To explore this idea, letʼs consider a hierarchy of com-
putational models; each model is built using an interface exposed by a more fundamental model.
For example, the problem of simulating a CA with a more fundamental CA is described by Smith
[32]. Among many other things, he showed that any CA with a Moore neighborhood (8 neighbors)
can be simulated by a CA with a von Neumann neighborhood (4 neighbors) with an increase in
space and a slowdown in time by constant factors that depend only on the numbers of states in the
CAs being simulated:

CA8 ℤ2
� �

≤1 CA4 ℤ2
� �

; (2)

where CA8 and CA4 are CAs with Moore and von Neumann neighborhoods, ℤ2 is the integer
lattice, and (≤1) is Smithʼs O(1) reduction.

Asynchronous cellular automata (ACAs) are much like cellular automata except that the local state is
updated asynchronously [8]. It is possible to demonstrate by construction that any CA can be sim-
ulated by an ACA with an increase in space [24, 25] and a slowdown in time [3] by constant factors
that depend only on the number of states and neighborhood size of the CA. Consequently,

CA ℤ2
� �

≤1 ACA ℤ2
� �

; (3)

where (≤1) is Nakamuraʼs O(1) reduction. Our approach is premised on the idea that models in
the object-oriented combinator chemistry (OOCC) defined in this article can be compiled to ACAs of one
higher dimension.4 Objects are instances of a recursive data type grounded in a small number of prim-
itive types and closed under two forms of composition. The extra dimension is used to represent the
internal structure of composed objects, and the size of this representation is defined as an objectʼs mass :

OOCC ℤ2
� �

≤1 ACA ℤ2 �ℕ
� �

; (4)

where (≤1) is the hypothesized compilation process. Unlike Arbib [2], who assumed that arbitrarily large
automata aggregates could be moved O(1) distance in O(1) time, we assume only that objects of mass m
can be moved O(1) distance in O(m) time.

While the significance of our work does not depend on it, the hypothesized compilation process
is intriguing because ACAs of dimension three or less can (in principle) be physically realized in
hardware. Furthermore, this can be done in such a way that the abstract dimensions of space
and time in the ACA (and of all models that have been O(1) reduced to it) are coextensive with
physical dimensions of space and time:

ACA ℤ3
� �

≤1 U; (5)

where U is the physical universe. This is the basis for the claim that our artificial chemistry is a
bespoke physics and that kinematic automata built with it are tantamount to physical machines.5

3 Kolmogorov complexity is correct only if the replicator contains no untranslated information. Indeed, a pure template replicator (e.g.,
[31]) might have very high Kolmogorov complexity, yet its normalized complexity is zero, since it is composed entirely of information that
(apart from being copied) is never used.
4 Because objects are embedded in space and objectsʼ states are updated asynchronously by operations that depend only on the states of
objects in their neighborhoods, ACAs are the natural compilation target.
5 A bespoke physics is a task-specific software interface that defines basic units embedded in space and a set of dynamical laws that
describe how the units move and interact. These dynamic laws are subject to meta-laws, including indefinite scalability and global non-
determinism. It is further stipulated that a bespoke physics must be implementable (at least in principle) in the physical universe. See
Ackley [1, pp. 3–4].
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Given a replicator R defined on top of a hierarchy of models reducible to U by O(1) reduction
R ≤1 MN ≤1 � � � ≤1 M1 ≤1 U, the ratio of the contingent and noncontingent complexities of replicator
R becomes

KðR j MN Þ
KðMN jMN−1Þ þ � � � þ KðM2 j M1Þ þ KðM1Þ : (6)

The meaning of this quantity, which will henceforward be termed a replicatorʼs normalized complexity, is
best illustrated by an example. Codd [4] was able to significantly simplify von Neumannʼs replicator
and its host CA. Although the contingent complexity of the Codd replicator is significantly less than
that of the von Neumann replicator, we speculate that (were they calculated) their normalized com-
plexities would be closer in value.

Langton [20] defined a much simpler loop replicator LL on top of the Codd CA substrate. Its
contingent complexity, K(LL | CAC), is much less than that of the Codd replicator, K(RC |
CAC). Nehaniv [25] showed how the Codd CA substrate could be O(1) reduced to an ACA and
demonstrated the Langton loop running on top of the Codd CA running on top of this ACA. These
results allow us to compare the normalized complexities of the Codd replicator and the Langton
loop defined with respect to the same hierarchy of computational models:

KðLL j CACÞ
KðCAC j ACAN Þ þ KðACAN Þ <

KðRC j CACÞ
KðCAC j ACAN Þ þ KðACAN Þ : (7)

Huttonʼs work on artificial cells provides a second example [15]. In Huttonʼs virtual world, physical
law takes the form of an artificial chemistry defined by a set of 34 graph rewrite rules. Huttonʼs
artificial organism is a cell-like configuration of atoms CH + P1 containing a small (nonfunctional)
information payload P1. Significantly, Hutton demonstrated that both the cell and its payload are
replicated by the reaction rules of the artificial chemistry. Because the payload P1 is untranslated,
the contingent complexity of Huttonʼs cell is K(CH | AC34).

Hutton subsequently extended AC34 by adding six rules for translating the payload P1 into an
enzyme E1 capable of catalyzing an arbitrary reaction and used this enzyme to replace one of the
graph rewrite rules, R1. In doing so, the (nonfunctional) information payload becomes a (functional)
partial genome, and some part of the systemʼs complexity moves from the noncontingent to the
contingent category. However, this exchange is insufficient to offset the increase in noncontingent
complexity that results from the addition of the six rules. Consequently,

KðE1 j P1;AC40 − R1Þ þ KðCH þ P1 j AC40 − R1Þ
KðAC40 − R1Þ <

KðCH j AC34Þ
KðAC34Þ ; (8)

where K(E1 | P1, AC40 − R1) is zero, since P1 encodes E1 using a process defined by the artificial
chemistry AC40 − R1.

3 An Object-Oriented Combinator Chemistry

Superficially, there is a similarity between the sequences of instructions that constitute a machine-
language program and the sequences of nucleotides and amino acids that constitute the biologically
important family of molecules known as biopolymers. It is tempting to view all of these sequences
as “programs,” broadly construed. However, machine language programs and biopolymers differ
in (at least) one significant way, and that is the number of elementary building blocks from which
they are constructed. The nucleotides that make up DNA and RNA are only of four types; the
amino acids that make up polypeptides are only of twenty; and while bits might (like nucleotides)
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serve as representational units, they cannot (like amino acids) act as functional units; this role can
only be played by instructions.

While the instruction set of a simple random access stored program (RASP) computer can be
quite small, the number of distinct operands that (in effect) modify the instructions is a function of
the word size, and is therefore (at a minimum) in the thousands. Although they play many roles in
machine language programs, operands are generally addresses. Some point to data, while others point
to the targets of branch and function-call instructions, which is to say, other instructions. The fact
that addresses play both roles is a consequence of the program–data equivalence that makes self-
replication by reflection trivial for machine language programs in RASPs.

Sadly, even though they make life easy, RASPs (unlike ACAs) are not indefinitely scalable, because
there is no O(1) reduction of a RASP to the physical universe. Happily, self-replication can be achieved
by other means and with greater physical realism. However, we must abandon the thing that makes
self-replication in RASPs so easy, namely, the ability to randomly access the instructions of a program
stored in memory using thousands of distinct addresses. For inspiration, we turn to the living cell.

DNA and RNA are copiable, transcribable, and translatable descriptions of polypeptides. DNA is
(for the most part) chemically inert, while polypeptides are chemically active. Polypeptides cannot
serve as representations of themselves (or for that matter of anything at all), because their enzymatic
functions render this impossible. Information flows in one direction only. Watson and Crick [41]
thought this idea so important that they called it “the fundamental dogma of molecular biology.” It
is the antithesis of program–data equivalence.

In this article we show how programs in a visual programming language can be (1) used to define
the behaviors of actors [12] reified in a virtual world, and (2) compiled into sequences of combinators of
a small number of fixed types. Unlike the instructions of machine-language programs, combinators
possess no additional operands. Where machine language programs would use recursion or iteration,
the combinators we define employ nondeterminism. The fact that combinators are both used to define
behaviors and reified as actors in the virtual world is the key to constructing a self-replicating system
with semantic closure [26], a system where both programs (phenome) and inert descriptions of pro-
grams (genome) are represented by sequences of combinators of a small number of fixed types.

There are three types of actors: objects, methods, and combinators. Objects and methods are like objects
and methods in object-oriented programming. More specifically, objects are containers for actors,
methods are programs that govern actorsʼ behaviors, and combinators are the building blocks used to
construct methods (see Figure 2). Like amino acids, which can be composed to form polypeptides, prim-
itive combinators can be composed to form composite combinators. A method is just a composite combi-
nator that has been repackaged, or unquoted. Prior to unquoting, combinators do not manifest behaviors,
so unquoting might correspond (in this analogy) to the folding of a polypeptide chain into a protein.

Objects are multisets of actors. They are of four immutable types constructed using {}0, {}1, {}2,
and {}3. For example, {x, y, z}2 is an object of type two that contains three actors, x, y, z. Combi-
nators are composed with (>=>), and quoted and unquoted using ( )− and ( )+. More formally, data-
types Actor, Combinator, and Method can be recursively defined as follows:

Actor ¼ Combinator Method Actorf g0 � � � Actorf g3
�������� (9)

Combinator ¼ c1 � � � cN Combinator >¼> Combinator Method −jjjj (10)

Method ¼ Combinator þ; (11)

where c1,� � �, cN are primitive combinators. Primitive combinators and empty objects have unit mass.
The mass of a composite combinator is the sum of the masses of the combinators of which it is
composed. The mass of an object is the sum of its own mass and the masses of the actors it con-
tains. Since actors can neither be created nor be destroyed, mass is conserved.
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Actors are reified by assigning them positions in a 2D virtual world. Computations progress when
actors interact with other actors in their Moore neighborhoods by running methods. All actors are
subject to diffusion. An actorʼs diffusion constant decreases inversely with its mass. This reflects the
real cost of data transport in the (notional) ACA(ℤ2 × ℕ) substrate. Multiple actors can reside at a
single site, but diffusion never moves an actor to an adjacent occupied site if there is an adjacent
empty site.

As with membranes in [27], objects can be nested to any level of depth.6 The object that contains
an actor (with no intervening objects) is termed the actorʼs parent. An actor with no parent is a root.
Root actors (or actors with the same parent) can associate with one another by means of groups and
bonds. Association is useful because it allows working sets of actors to be constructed and the ele-
ments of these working sets to be addressed in different ways.

The first way in which actors can associate is as members of a group. All actors belong to exactly
one group, and this group can contain a single actor. For this reason, the group relation is an equiv-
alence relation on the set of actors. A group of root actors is said to be embedded. All of the actors in an
embedded group diffuse as a unit, and all methods run by actors in an embedded group (or con-
tained inside such actors) share a finite time resource in a zero-sum fashion. Complex computations
formulated in terms of large numbers of actors running methods inside a single object or group will
therefore be correspondingly slow. Furthermore, because of its large net mass, the object or group
that contains them will also be correspondingly immobile.

The second way in which actors can associate is by bonding. Bonds are short relative addresses
that are automatically updated as the actors they link undergo diffusion. Because bonds are short
(L1 distance less than or equal to two), they restrict the diffusion of the actors that possess them.
Undirected bonds are defined by the hand relation H, which is a symmetric relation on the set of
actors, that is, H(x, y) = H( y,x). Directed bonds are defined by the previous and next relations, P and
N, which are inverse relations on the set of actors, that is, P(x, y) = N( y,x). An actor can possess at
most one bond of each type.

If the types of combinators and methods were defined by the sequences of primitive combina-
tors of which they are composed, then determining type equivalence would be relatively expensive.

6 In object-oriented programming, this is termed object composition.

Figure 2. Actors are of three types. Objects are containers for actors, methods are programs that govern actorsʼ behav-
iors, and combinators are the building blocks used to construct methods. Actors can also belong to groups and can form
directed and undirected bonds with other actors.
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For this reason, we chose instead to define type using a simple recursive hash function that assigns
combinators with distinct multisets of components to distinct types: The hash value of a composite
combinator is defined as the product of the hash values of its components; primitive combinators
have hash values equal to prime numbers.7 Type equivalence for methods is defined in the same
way, the types of combinators and methods being distinct due to the use of different constructors.
Although this hash function is (clearly) not collision-free, it is quite good and it has an extremely
useful property, namely, that composite combinators can be broken down (literally decomposed)
into their primitive combinators by prime factorization. Because primitive combinators are of rela-
tively few types, this operation is not prohibitively expensive.8

Apart from composition, containment, groups, and bonds, there is no other mutable persistent
state associated with actors. In particular, there are no integer registers. Primitive combinators exist
for addressing individual actors or sets of actors, using most of these relations. These and other
primitive combinators for modifying actorsʼ persistent states will be described later.

4 Nondeterministic Comprehensions

Monads have been described by Hughes [14] as a standard interface to libraries of “program
fragments.” More specifically, they are an abstract data type that allows programmers to define
rules for composing “functions” that deviate from mathematically pure functions in prescribed
ways [23]. Monads are intimately related to expressions in set-builder notation, which in functional
programming are called comprehensions. Although many programming languages provide list compre-
hensions, set-builder notation can (in fact) be used with any monad [39]. Of particular relevance
here, nondeterministic comprehensions define superpositions (not lists), and can be used when searching for
exactly one set of variable assignments (among many) satisfying a set of constraints, e.g., an un-
specified Pythagorean triple.9 This makes them ideal left-hand sides for rules in a nondeterministic
rule-based system, a description broad enough to encompass many artificial chemistries, including
OOCC.

Sets can be converted to superpositions using McCarthyʼs [22] nondeterministic choice operator,
amb. This operator has type signature {a} → hai and can be defined as follows:

amb fg ¼ hi (12)

amb x; y…f g ¼ x; y…h i: (13)

When amb is applied to a nonempty set, the branch of the nondeterministic computation that called
amb forks, yielding a new branch for each element in the set. Conversely, empty sets cause branches
to fail. When a branch fails, the underlying deterministic implementation backtracks. If all branches
fail, the nondeterministic computation fails. The advantage of the monad interface is that programs
built using it can exhibit complex behaviors (e.g., backtracking) simply by virtue of the type they
return (e.g., superpositions).

The monad interface is defined by two operations called unit and bind. Unit transforms ordinary
values into monadic values, for example, unitA x = hxi, where A is the superposition monad. Functions
that take ordinary values and return monadic values are termed Kleisli morphisms. Bind, the infix operator
(>>=), allows Kleisli morphisms to be applied to monadic values. This permits Kleisli morphisms to be
chained; the output of one provides the input to the next.

7 We could instead use nested objects to label combinators so that they could be compared. This would be like using codons constructed
from nucleotides to label amino acids in transfer RNAs.
8 This is analogous to the function in the cell that is performed by the molecular assemblies called proteasomes and the organelles called
lysosomes.
9 Kiselyov et al. [16] call this donʼt-care nondeterminism.
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Monads and comprehensions are intimately related. By way of illustration, consider the fol-
lowing nondeterministic comprehension that fails if n is prime and returns a factor of n if n is
composite:

x x 2 1 :: n − 1h i; y 2 1 :: xh i; xy ¼ nj i:h (14)

Wadler [39] showed that notation like the above is syntactic sugar for more primitive monadic
expressions and described a process for translating the former into the latter. Comprehension guards
(e.g., xy = n) are translated using the function

guardM True ¼ unitMðÞ (15)

guardM False ¼ zeroM ; (16)

where M is the monad and ( ) is void. Because zeroA is h i, if guardA is applied to False, the branch of
the computation that called guardA fails. Conversely, if guardA is applied to True, the branch con-
tinues. Using this device, the primality comprehension can be desugared as follows

En→ ððunitA � ð− 1ÞÞ n >>¼A amb � L >>¼A Ex→ ð amb � Lð Þ x >>¼A unitA � � xð Þ
>>¼A unitA � ¼ nð Þ >>¼A guardA >>¼A Ez → unitA xÞÞ;

(17)

where (Lx) equals {1 . . x} and the value of z is ignored.

5 From Comprehensions to Dataflow Graphs

Our goal is to create programs composed solely of combinators. To maximize composability, these
combinators should have a single type signature, yet the desugared comprehension above contains
functions with many different types. However, we observe that if sets are used to represent sets,
singleton sets are used to represent scalars, and nonempty and empty sets are used to represent True
and False, then the type signatures

→ f 0 → :: ℤf g → ℤf gh i; (18)

→→ g 0 → :: ℤf g → ℤf g → ℤf gh i (19)

are general enough to describe all functions in the desugared comprehension. To prove this, we first
observe that amb, with type signature {ℤ} → hℤi, can be lifted to a function amb0, with type sig-
nature {ℤ} → h{ℤ}i, as follows:

amb0fg ¼ hi; (20)

amb0 x; y…f g ¼ xf g; yf g…h i: (21)

We then devise a way to lift functions like L with type signature ℤ → {ℤ}. This is accomplished
using the bind operator (>>=s ) for the set monad S. The bind operator behaves like

x; y…f g>>¼S f ¼ f x ∪ f y ∪ � � � (22)
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and can be defined as follows:

ð>>¼S f Þ ¼ joinS � ðmapS f Þ; (23)

where joinS is right fold of (∪ ), and

mapS f x; y…f g ¼ f x; f y…f g: (24)

Bind can then be used with unitA to lift L into a function

L0 ¼ unitA � ð>>¼S LÞ (25)

with type signature matching f 0 as demonstrated below:

L0 x; y…f g ¼ L x ∪ L y ∪…h i: (26)

Next we define two functions with type signatures matching f 0 to replace guard. The first causes a
computation to fail when its argument is empty while the second does the opposite:

some 0fg ¼ hi (27)

some 0 x; y…f g ¼ x; y…f gh i (28)

none 0fg ¼ fgh i (29)

none 0 x; y…f g ¼ hi: (30)

Finally, the desugared comprehension contains functions like (−1), (×), and (=) that map scalars to
scalars, yet we need functions that map sets to superpositions of sets. Fortunately, lifted forms for
these functions with type signatures matching f 0 or g 0 are easily defined:

pred0 ¼ unitA � ðmapSð− 1ÞÞ (31)

times0 x 0 y 0 ¼ unitA x � y x 2 x 0; y 2 y 0j gf (32)

equals 0 x 0 y 0 ¼ unitA x x 2 x 0; y 2 y 0; x ¼ yj g;f (33)

where x 0 and y 0 are of type {ℤ}. Using these lifted functions and those defined previously, the
nondeterministic comprehension for deciding primality can be further translated as follows:

En 0 → ðpred 0 n 0 >>¼A L0 >>¼A amb0 >>¼A Ex 0 → ðL 0 x 0 >>¼A amb0 >>¼A

times 0 x 0 >>¼A equals 0 n 0 >>¼A some 0ÞÞ;
(34)

where n 0 is of type {ℤ}. This was a lot of work, but we have reaped a tangible benefit, namely, all func-
tions now have uniform type. This simplification allows nondeterministic comprehensions to be visual-
ized as dataflow graphs with well-defined semantics. In Figure 3 (top), boxes with one input have type
signatures matching f 0, and boxes with two inputs have type signatures matching g 0. Arrows connecting
pairs of boxes are instances of (>>=A). Junctions correspond to values of common subexpressions
bound to variable names introduced by E-expressions. Lastly, is amb 0 and is some 0.
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6 From Dataflow Graphs to Combinators

The use of dataflow graphs as a visual programming language has a long history beginning with their
introduction by Sutherland [34]. As programs, dataflow graphs have several disadvantages when
compared to textual representations, including the need for specialized drawing tools to construct them,
the complexity of the layout problem that construction presents, and the lack of good persistent data
formats. Yet they also have compelling advantages. For example, because evaluation order is not
completely specified in a dataflow graph, it can be optimized and (potentially) even parallelized by
subsequent compilation processes. Most importantly, they make it possible to see at a glance where
values are computed and the full extent of their use throughout a computation. For these reasons,
we use dataflow graphs as a visual programming language in the remainder of this article, but only after
(1) observing that the computations they specify can be represented by programs written in a small
Haskell subset, and (2) describing a process for compiling programs in that subset into sequences of
primitive combinators.

The programming language Haskell [28] includes a syntactic construct called do that simplifies the
problem of defining monadic computations. The process of translating programs written using do
notation into more primitive programs written using E-expressions and (>>=) is straightforward. It
is possible to define a grammar for a small subset of Haskell that uses do notation to represent
computations specified by dataflow graphs:

d ::¼ ‘E’ x ‘→ do ’ l ‘ ; ’ð Þ* l ‘f g’; (35)

x ::¼ ‘a 0’ …j j ‘z 0’; (36)

l ::¼ x ‘←’s s;j (37)

s ::¼ ð f 0 ‘ ¼<<
A

’ j g 0 x ‘ ¼<<
A

’Þ* f 0 x j g 0 x x
� �

; (38)

where (=<<) is just (>>=) with its arguments reversed. In effect, the grammar defines an embed-
ded domain-specific language with semantics determined by the Haskell host language. The da-
taflow graph for deciding primality (Figure 3) can be represented as a sentence in this language as
follows:

En 0 → do f x 0 ← amb 0 ¼<<
A

L 0 ¼<<
A

pred0 n 0 ;

some 0 ¼<<
A

equals 0 n 0 ¼<<
A

times 0 x 0 ¼<<
A

amb 0 ¼<<
A

L 0 x 0

g:

(39)

Figure 3. Nondeterministic dataflow graph for deciding primality (top). Dataflow graph compiled into a sequence of
nondeterministic combinators (bottom).
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The most significant difference between the above program and the dataflow graph (apart from
the use of names to represent values of common subexpressions) is that data flows right-to-left
within lines of the program, but left-to-right within paths of the graph.

One might assume that evaluation of dataflow graphs containing junctions would require an in-
terpreter with the ability to create and apply anonymous functions, or closures [19]. These would
contain the environments needed to look up the values bound to variable names introduced by
E-expressions. Happily, this turns out to be unnecessary. We now show how dataflow graphs can
be evaluated by a stack machine and define a set of combinators that can be used to construct stack
machine programs.10

In general, combinators apply functions to one (or two) values of type {ℤ} popped from the
front of the stack and then push a result of type {ℤ} back onto the stack. Since dataflow graphs
are nondeterministic, the stack machine is also. This means that each combinator f ″ transforms a
stack of sets into a superposition of stacks of sets:

→ f ″ → :: ℤf g½ � → ℤf g½ �h i: (40)

Unary operations f 0 can be converted to combinators of type f ″ as follows:

f ″ x 0 : s″ð Þ ¼ mapA : s″ð Þ f 0 x 0� �
; (41)

where stack s″ is of type [{ℤ}], mapA maps functions over superpositions, and (: s″ ) is the function
that pushes sets onto the front of s″. Note that f ″ does not change the length of the stack; it
consumes one value and leaves one value behind. Binary operators g 0 can also be converted to
combinators of type f ″ as follows:

g″ x 0 : y 0 : s″ð Þ ¼ mapA : s″ð Þ g 0 x 0 y 0ð Þ: (42)

Note that g″ decreases the length of the stack by one; it consumes two values and leaves one value
behind. The combinator forms of some 0 and none 0 are slightly different; they do not push a result onto
the stack. Instead, they pop the stack when a nondeterministic computation has yielded a satisfactory
intermediate result (whether that is something or nothing) and fail otherwise:

some″ x 0 : s″ð Þ ¼ hi if x 0 ¼ fg
unitA s″ otherwise

�
(43)

none″ x 0 : s″ð Þ ¼ unitA s″ if x 0 ¼ fg
hi otherwise:

(
(44)

A function can be applied to a value within the stack by first pushing a copy of the value onto the
top of the stack and then applying the function to the copy. This preserves the value within the stack
for future use and eliminates the need for closures.

Accordingly, we define a set of combinators that copy and push values located at different
positions within the stack:

x″k s″ð Þ ¼ unitA s″ !! n − kð Þð Þ : s″ð Þ; (45)

10 Other strategies are possible. For example, Kleisli morphisms are instances of an abstract data type more general than monads,
called arrows [14]. Using arrow combinators, dataflow graphs can be directly represented as point-free expressions. Although these
point-free expressions can be evaluated without further translation, they include binary combinators, for example, (&&&), that are non-
associative. It follows that, had this strategy been adopted, methods would be represented by binary trees instead of unparenthesized
sequences, and translation and replication processes implemented by computational ribosomes and replisomes would be correspond-
ingly more complicated.

″
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where k 2 [0 . . 9], ( !! ) returns the element of a list with a given index, and n is the length of
s″. With this last puzzle piece in place, we can finally do what we set out to do, namely, compile the
comprehension into a sequence of combinators that can determine primality by nondeterministically
transforming a compact and reference-free abstract machine state. Parsed representations of dataflow
graphs are compiled using a function φ defined as follows:

φ l1 ‘ ; ’ l2ð Þ ¼ φ l1 >¼>A φ l2 (46)

φ x ‘← ’ sð Þ ¼ φ s (47)

φ ðs2 ‘ ¼<<
A

’ s1Þ ¼ φ s1 >¼>
A

φ s2 (48)

φ f 0 ¼ f ″; (49)

where (>=>) is the compose operation f >=> g = (>>= g ) � f for Kleisli morphisms. Combinator x0″ is
associated with the name introduced by the initial binding (‘E’ x0 ‘ → do’), and combinators xk″ with
increasing indices are associated with names introduced by successive bindings (x ‘ ← ’ s) in the
parsed representation of the dataflow graph:

a ¼ x0; x0″ð Þ : x; xk″ð Þ x ‘← ’ sð Þ 2 l1 :: lN½ � k 2 1 : :9½ �j �;j½ (50)

where [l1 . . lN] are the lines of the parsed representation. Function applications are compiled using a
helper function j, which, given a name, returns the combinator that will copy and push the value
associated with that name onto the stack at run time:

φ f 0 x1ð Þ ¼ j x1 >¼>A f ″ (51)

φ g 0 x1ð Þ ¼ j x1 >¼>A g″ (52)

φ g 0 x1 x2ð Þ ¼ j x2 >¼>A j x1 >¼>A g″; (53)

where j x = xk″ for (x, xk″ ) 2 a. Compiling the parsed representation of the dataflow graph for de-
ciding primality with φ yields a point-free expression with no parentheses:

x0″ >¼>A
pred″ >¼>A L″ >¼>A amb″ >¼>A x1″ >¼>A

L″ >¼>A amb″

>¼>A x1″ >¼>A times″ >¼>A x0″ >¼>A equals″ >¼>A some″ ;

(54)

the “polypeptide” of the articleʼs title. In this expression, x0″ is used to copy and push n
0 and x1″ is used

to copy and push x 0. In Figure 3 (bottom) boxes are functions with type signatures matching f ″.
Arrows connecting pairs of boxes are instances of (>=>A). Lastly, is amb″ and is some″.

Figure 4 illustrates the nondeterministic evaluation process. Although all combinators transform a
stack of sets of integers into a superposition of stacks of sets of integers, only the amb″ combinator
introduces nondeterminism, because only the amb″ combinator returns non-singleton superposi-
tions. On the left, the stack initially contains just the singleton set {4}. The values of the shared
subexpressions n and x in the comprehension are copied and pushed by the x0″ and x1″ combinators.
These are drawn as 0 and 1 in the figure. The computation nondeterministically branches when it
reaches amb″ combinators, drawn as in the figure, which return non-singleton superpositions.
Finally, the guard expression containing the some″ combinator, drawn as in the figure, causes
all branches of the computation except the one corresponding to 2 × 2 = 4 to fail.
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7 Reified Actor Comprehensions

The last two sections of the article demonstrated that: (1) nondeterministic comprehensions can be
represented as dataflow graphs, and (2) dataflow graphs can be compiled into sequences of com-
binators that evaluate comprehensions by transforming the state of an abstract machine. In this
section we describe a visual programming language for defining behaviors manifested by reified
actors in a virtual world. To accomplish this, nondeterminism must be combined with additional
effects to construct a monad more general than A, which we call R (for reified actor). In addition to
representing superpositions, monad R provides mutation of a threaded global state and data log-
ging so that methods composed of combinators can report the time they consume.11 Since the
structure of monadic programs is unchanged by the choice of monad (one of the advantages of
the abstraction), all results from prior sections, for example, the process of compiling data flow
graphs into combinators, apply. The boxes of dataflow graphs with one and two inputs now have
types

→ f 0 → :: Actorf g → Actorf gh iR ; (55)

→→ g 0 → :: Actorf g → Actorf g → Actorf gh iR ; (56)

11 Monad transformers are a device for combining monadic effects [21]. In the present work, nondeterminism, threaded global state, and data
logging are combined with mutation into a single monad by applying the AmbT, ReaderT, and WriterT monad transformers to the IO monad.

Figure 4. Evaluation of hx | x 2 h1 . . n − 1i, y 2 h1 . . xi, xy = ni by a nondeterministic stack machine. The computation
begins at the left with the stack containing the singleton set {4} and nondeterministically forks when it reaches amb″
combinators. Only one branch succeeds, returning the factor 2.
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where hiR is the type constructor of monad R. Arrows connecting boxes are instances of (>>=R).
Dataflow graphs are compiled into combinators of type

→ f ″ → :: Actorf g½ � → Actorf g½ �h iR (57)

and are composed with (>=>R).
Boxes and combinators can be divided into the categories: generators, guards, relations, and actions.

Generators are unary operators that characterize sets of actors using the devices of groups, con-
tainment, bonds, and neighborhood (Table 1). They can be composed to address different sets.
For example, an actorʼs siblings can all be addressed using the subgraph . Generators can also
be composed with guards (Table 2). This can be used either to address single actors or to specify pre-
conditions for actions. For example, the subgraph addresses a single sibling, while the
subgraph fails if the actor has a neighbor.

Relations exist for testing equality and type equivalence (Table 3). They are binary operators and
are generally applied to singleton sets in combination with guards to specify preconditions for actions.
When applied to non-singleton sets, the equality operator and its negation compute set intersection
and difference. The type equivalence operator and its negation also have natural generalizations. In
addition to specifying preconditions for actions, relations can also be combined with generators to
characterize sets.

Table 1. Unary generators.

Name Abbreviation Definition

hands | actor sharing hand with x

prevs < actor with directed bond to x

nexts > actor with directed bond from x

bonds $ union of hands, nexts, and prevs

neighbors # actors in neighborhood of x

parents ^ actor that contains x

contents @ actors contained in x

members & members of group of x

others + other members of group of x

Table 2. Unary guards.

Name Abbreviation Definition

amb A nondeterministic choice

some S Fail if empty.

none N Fail if nonempty.
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Actions for modifying actorsʼ persistent states are the final category of boxes in dataflow graphs.
Actions are rendered as gray boxes and are executed only after all non-actions have been evaluated and
only if no guard has failed. All actions are reversible, but the masses and types of primitive combinators
and empty objects are immutable. The full set of unary and binary actions is shown in Tables 4 and 5.

Although dataflow graphs make data dependences explicit, unlike do syntax they do not
completely determine the order in which the primitive combinators of the compiled program are
executed. Because generators, guards, and relations are purely functional, the order in which sub-
sequences composed solely of combinators from these categories are evaluated does not matter. In
contrast, the result of a sequence of actions that modify actorsʼ persistent states generally depends
on the order in which the component actions are executed. It follows that the visual programming
language must include a device for specifying the order in which actions should be executed where
it is not determined by data dependences.

Where data dependences determine order of execution, this order is followed. Where it would
otherwise be underdetermined, two devices are introduced to specify execution order. First, all
actions return their first (or only) argument if they succeed. This allows one action to provide the
input to a second and (when employed) introduces a data dependence that determines execution
order. Second, execution order can be explicitly specified using control lines [34]. These are rendered

Table 3. Binary relations.

Name Abbreviation Definition

same = set intersection

different != set difference

union ++ set union

similar ∼ all x type equivalent to some y

dissimilar !∼ all x type equivalent to no y

Table 4. Unary actions.

Name Abbreviation Definition

drop ! | Delete hand of x.

deletePrev !< Delete directed bond to x.

deleteNext !> Delete directed bond from x.

remove ! ^ Remove x from its parent object.

empty !@ Remove actors contained in x.

quit !+ Remove x from its group.

decompose > !> Reduce x >=> y to x and y.

quote ’ Suppress behavior.

unquote ! ’ Express behavior.
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as dashed lines and are further distinguished from ordinary inputs and outputs by the fact that they
enter and exit from the tops and bottoms of boxes and not the left or right sides.

In addition to nondeterminism and mutable threaded state, instances of monad R also possess a
data logging ability that is used to instrument combinators so that methods composed of them can
report the time they consume. Because the unit of time is one primitive operation of the abstract
machine, most primitive combinators increase the logged time by one when they are run. Signifi-
cantly, this occurs on all branches of the nondeterministic computation until a branch succeeds, so
that the full cost of simulating nondeterminism on a (presumed) deterministic substrate by means of
backtracking is accounted for. Two kinds of combinators increase the logged time by amounts other
than one. Since the time required to compute set intersections and differences is the product of
the setsʼ lengths, for binary relations the logged time is increased by this value instead (which equals
one in the most common case of singleton sets). Finally, actions that change the position of an actor
(e.g., insert and join) pay an additional time penalty proportional to the product of the actorʼs mass
and the L1 distance moved.

Ideally, the object-oriented combinator chemistry (OOCC) described in this article would be
implemented on top of an ACA(ℤ2 × ℕ ) substrate so that competing self-replicating programs
directly incur the costs of the physical resources they consume. The abstract computational
resources of time and space would be O(1) reducible to concrete physical resources of time and
space in the host substrate. Actors in an embedded group might share a single processor or might
jointly occupy a 2D area of fixed size that collects a fixed amount of light energy per unit time. The
effect would be the same; the number of primitive abstract machine operations executed per unit
time by the processor (or in the area) would be fixed.

For the time being, we implement the combinator chemistry as an event-driven simulation using
a priority queue [11] and carefully account for the time consumed by actors in embedded groups.
Event times are modeled as Poisson processes associated with embedded groups, and event rates
are consistent with the aggregate consumption by actors in groups of finite time resources. Events
are of two types. When a diffusion event is at the front of the queue, the position of the group in
its neighborhood is randomly changed (as previously described). Afterwards, a new diffusion
event associated with the same group is enqueued. The time of the new event is a sample from
a distribution with density fD(t ) = De−Dt/(ms)/(ms), where m is mass, s is distance, and D is the
ratio of the time needed to execute one primitive operation to the time needed to transport a unit
mass a unit distance. As such, D defines the relative cost of computation and data transport in the
ACA(ℤ2 × ℕ ) substrate.

When an action event is at the front of the queue, a method is chosen at random from among all actors
of type method in the group. After the method is run, the time assigned to the new action event is a
sample from a distribution with density fA(t ) = e−t/c/c, where c is the time consumed by the method.

Table 5. Binary actions.

Name Abbreviation Definition

grab | Create hand between x and y.

makePrev < Create directed bond from y to x.

makeNext > Create directed bond from x to y.

join + x joins group of y.

insert @ Place x inside y.

compose >=> Replace x with x >=> y.
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8 Defining Behaviors Using Dataflow Graphs

In this section we illustrate the use of dataflow graphs to define behaviors by constructing a simple
self-replicating entity called a composome. Composomes are quasi-stationary molecular assemblies that
preserve compositional information [29]. As self-replicating entities, they possess very low normalized
complexity, because they do not construct the parts of which they are composed, and individually,
these parts are more complex than the composome itself. Nevertheless, a composome serves as a
good first example, and we can construct one by defining a set of behaviors using dataflow graphs
and reifying them as an embedded group of methods:

X ¼ cmpA; cmpB; cmpCf g; (58)

where cmpA, cmpB, and cmpC are the three dataflow graphs in Figure 5 reified as methods, and {}
denotes an embedded group. The composomeʼs first two methods run in the mother group (the
group being copied), while its third runs in the daughter group (the copy). Because methods con-
tained in different embedded groups run in parallel, they do not compete for cycles; this decreases
the time required for self-replication.

• If cmpA is in a group with others ( ) but no members of its group have bonds
( ), then it finds an unbonded actor ( ) in its neighborhood ( )
similar to itself ( ) with no others in its group ( ) and creates a next bond
with it using the combinator; see Figure 6a.

Figure 5. Three methods defining a composome.

Figure 6. Self-replication by composome. (a) CmpA forms a next bond with another cmpA instance in its neighborhood.
(b) CmpB finds a cmpC instance in its neighborhood and adds it to the daughter group. (c) CmpC (in the daughter
group) deletes the bond joining the mother and daughter groups after cmpB is added.
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• CmpB first uses to verify that it is in the mother group. If it also
has an unbounded ( ) neighbor ( ) similar to a member of its group
( ), and if the neighbor is not already in a group ( ), then
it adds the neighbor to the daughterʼs group using the combinator; see Figure 6b.

• CmpC first checks to see if it is in the daughter group. It does this by verifying that there
is a group member with a prev bond ( ); this group member can only be
of type cmpA. It then verifies that there is also a group member ( ) not similar to
either the cmpA instance or itself ( ). By a process of elimination, this group
member must be of type cmpB. Since the daughter group contains the complete set of
methods, it can delete the prev bond that joins the cmpA instances of the mother and
daughter groups using the combinator; see Figure 6c.

When composome X is placed into the virtual world with a supply of the methods that compose
it, the following reaction occurs:

X þ cmpAþ cmpBþ cmpC → 2 X : (59)

Because cmpB does not check to see whether the composome already possesses a method before
adding it to the daughter group, the fraction of reactants converted to complete composomes (self-
replication efficiency) will be significantly less than 100%.

The goals of the first experiment were to (1) verify that the composome successfully self-replicates,
(2) characterize the composomeʼs self-replication efficiency, and (3) investigate the effect of varying
the diffusion constant D on the rate of composome replication. To achieve these goals, 100 instances
of each of the three methods composing the composome (enough for 100 composomes to be con-
structed ideally) were reified as actors and distributed uniformly on a grid of size 32 × 32. The exper-
iment consisted of five trials in which the value of the diffusion constant was varied. Each trial was
repeated for ten runs, and each run ended when the time exceeded 50 × 103 operations per site.
The results are shown in Figure 7. We observe that the self-replication efficiency is approximately
60% and that the replication rate increases with the diffusion constant, which is consistent with a pro-
cess dominated by the cost of data transport.

Figure 7. Average number of composomes (ten runs) as a function of time (103 operations per site) for diffusion constant
D = 20,…, 2−4. Error bars show ±1 standard deviation.
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9 Genes and Enzymes

Biological enzymes can be reified as chains of nucleotides or amino acids. The first can be read and
copied but are spatially distributed and purely representational; the second are representationally
opaque but compact and metabolically active. Dataflow graphs can be compiled into sequences
of primitive combinators and reified in analogous ways: genes can be read and copied but do not
manifest behaviors; enzymes manifest behaviors but cannot be read or copied. A gene is a spatially
extended chain of actors of type combinator linked with directed bonds:

Gi ¼ >
Gij j
j¼1 ci jð Þ; (60)

where ci ( j ) is combinator j of gene i, and (>) are directed bonds. As in the genomes of living cells,
sets of genes that are expressed together can be grouped together. A plasmid is a sequence of one or
more genes joined with undirected bonds:

P ¼ j Pj j
i¼1 >

Gij j
j¼1 ci jð Þ; (61)

where (|) are undirected bonds. An additional undirected bond c|P|(|G|P||) | c1(1) closes the chain.
While plasmids are spatially distributed chains of multiple actors, enzymes are single actors of type
method:

Ei ¼ ð>¼> jGi j
j¼1 cið jÞÞþ; (62)

where (>=>) is Kleisli composition and ( )+ is the constructor for actors of type method. In addition
to plasmids, composed of genes, a minimum self-replicating system might contain objects of three
types. Ribosomes translate genes into enzymes, and replisomes copy plasmids. Factories are copiers of
compositional information, namely, the sets of enzymes and objects that comprise ribosomes, rep-
lisomes, and factories themselves. A self-replicating system like this would possess semantic closure
[26], because it would construct the parts that compose it (enzymes) from descriptions contained
within itself (genes). Unlike the living cell (where enzymes are sequences of amino acids and genes
are sequences of nucleotides), enzymes and genes are built from the same elementary building
blocks, that is, combinators.

10 Ribosomes

Biological ribosomes are arguably the most important component of the fundamental dogma [41].
They translate descriptions of proteins encoded as sequences of nucleotides into polypeptides—
sequences of amino acids, the building blocks of proteins. A computational ribosome translates a plasmid
into one or more enzymes by traversing genes while composing combinators from the neighbour-
hood, matching those composing the gene. In functional pseudocode, the ribosome evaluates the
following expression:

mapjððÞþ � fold>ð>¼>ð ÞÞÞP; (63)

where map| maps functions over the genes Gi that compose plasmid P, and fold> is right fold over
the combinators ci ( j ) that compose a gene.
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Biological ribosomes translate messenger RNA into polypeptides, using a four-stage process of
association, initiation, elongation, and termination [37]. A computational ribosome can be constructed by
defining four enzymes with analogous functions (Figure 8) and placing them inside an actor of type
object:

R ¼ ribA; ribI; ribE; ribTf g0: (64)

RibA first attaches R to the plasmid by adding it to the group of the initial combinator of some gene,
ci (1). Afterwards, ribA is expelled from the ribosome, and R becomes R0. This is advantageous for
three reasons. First, ribA has mass; expelling it decreases the transport cost of the ribosome as it
traverses the plasmid. Second, ribA consumes time; expelling it prevents it from competing with the
ribosomeʼs other (still necessary) enzymes. Third, as part of a self-replicating system of ribosome

Figure 8. Four methods defining a ribosome.

Figure 9. (a) Ribosome attaches itself to plasmid at gene origin (marked by hand bond) and ejects ribA. (b) Combinator
from neighborhood matching initial combinator is placed inside ribosome. (c) Combinator from neighborhood matching
next combinator of plasmid is composed with combinator inside ribosome, and ribosome advances.
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and replisome factories, the expelled ribA instance can be recycled, that is, used to construct addi-
tional ribosomes; see Figure 9a.

After ribosome attachment, ribI finds an actor in the neighborhood with type matching ci (1)
and places it inside R0; see Figure 9b. When R0 is at position j on the plasmid, ribE finds a neighbor
with type matching ci ( j + 1) and composes it with the combinator contained in R0, that is, with ci (1)
>=> � � � >=> ci ( j ). It then advances the position of R0 to j + 1 by following the next bond; see
Figure 9c. This process continues until R0 reaches the last combinator in the gene, ci (|Gi|), which
possesses a hand bond, at which point ribT promotes the combinator to a method, expels the
method, and moves the ribosome across the bond.

If plasmid P and ribosome R are placed in the virtual world with a supply of primitive combi-
nators �P�Ch ( p, c)c, then the ribosome manufactures the enzymes �PEp described by the plasmid

P þ R þ P
P
P

Ch p; cð Þc → P þ R0 þ ribAþ P
PEp; (65)

where C is the set of 42 primitive combinators, and h( p, c) is the number of combinators of type c in
Gp and Ep, that is, the gene and enzyme reifications of behavior p.

The goals of the second experiment were to (1) demonstrate that ribosomes correctly translate
plasmids into enzymes, and (2) determine the efficiency of parallel translation of a plasmid by
multiple ribosomes. Parallel translation by multiple ribosomes is a well-known phenomenon in living
cells [40]. To achieve these goals, a plasmid containing three genes,

P3 ¼ cmpA j cmpB j cmpC ; (66)

was reified on a grid large enough to contain a circle of radius r = (n/dk)1/2, where n is the plasmid
length and d = 0.75 is the combinator density. As raw material, n combinators with distribution
matching P3 (see Figure 10) were also reified inside the circle. The diffusion constant D = 10−2.
The experiment consisted of five trials in which the number of ribosomes was varied. As combi-
nators were composed by (>=>), they were replaced within the circle so that the combinator density
remained constant for the entire run. Each trial was repeated for ten runs, and each run ended when
time exceeded 105 operations per site. The results are shown in Figure 11. We observe that the rate
of gene expression increases linearly with the number of ribosomes, achieving a speedup of m times
for m ribosomes.

Figure 10. Distribution of primitive combinators constituting a composome.
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11 Replisomes

A quine is a program that prints itself. All quines consist of two parts. Conventionally called program
and data, they may be thought of as phenome and genome. All quines work the same way. Active pro-
gram transforms passive data in two ways, producing new instances of both program and data.
Equivalently, the mother quineʼs genome is translated and replicated, yielding the daughter quineʼs phe-
nome and genome. The forms of the phenome and genome, and the nature of the translation and
replication processes, differ from quine to quine. Living cells are, in effect, reified quines, and the
processes of genome translation and replication are performed by molecular machines called ribo-
somes and replisomes,12 respectively. We have already defined a computational ribosome, that is, an
object that translates inert descriptions of behaviors encoded by a plasmid (genes) into behaviors
reified as methods able to do actual work (enzymes). We now turn our attention to the problem of
defining a computational replisome, an object that will replicate plasmids. In functional pseudocode, the
replisome evaluates the following expression:

ðfoldj ð j Þ � mapj ðfold> ð>ÞÞÞ P; (67)

where ( | ) and (>) are functions that create undirected and directed bonds, fold| is right fold over
the genes Gi that constitute the plasmid P, and fold> is right fold over the combinators ci ( j ) that
constitute a gene.

Biological replisomes copy plasmids in pairs. Replication begins when two replisomes are assem-
bled at the plasmidʼs replication origin. Each replisome manages one replication fork. The replication
forks move away from the replication origin in opposite directions, and replication is finished when
the pair of replisomes reunite at a position on the plasmid opposite the origin. A computational
replisome can be designed that works in a similar way. As in a cell, there are two replication forks.
However, unlike a cell, only one moves; the other is stationary. The replisome manages the

12 We use this term to refer to the set of DNA polymerase enzymes [5] that collectively perform DNA replication in the living cell.

Figure 11. Average number of enzymes (ten runs) synthesized by 20,…, 24 ribosomes as a function of time (104 operations
per site). Error bars show ±1 standard deviation.
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active replication fork. It is initially an object containing five enzymes (three of which are shown in
Figure 12) and an empty object of the same type as itself:

Q ¼ repA; repE; repF; repY; repZ; fg2
� �

2: (68)

A replisome is depicted schematically in Figure 13a. RepA first causes the replisome to attach to
the plasmid. It does this by adding the replisome to the group of one of the plasmidʼs combi-
nators. Note that it can do this at any point, that is, there is no privileged replication origin. After-
wards, the stationary replication fork is marked by attaching the empty object {}2 contained

Figure 12. Three of five methods defining a replisome.

Figure 13. (a) A short segment of a plasmid and a replisome containing five enzymes and an empty object marker of the
same type as itself. (b) Replisome attaches itself to the plasmid by joining the group of one of its combinators; attaches
the marker to the combinator preceding its own attachment site; forms a directed bond with the marker; and ejects
repA. (c) Replisome advances along the plasmid after splicing a combinator of the correct type from the neighborhood
into the directed bond that trails it. This is the first combinator of the daughter plasmid.
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within the replisome to the combinator that precedes the replisomeʼs own attachment site. RepA
creates a directed bond from the marker to the replisome and then ejects itself, since it is no longer
needed; see Figure 13b.

RepE and repF govern the motion of the replication fork. RepE finds a combinator in the
neighborhood matching the combinator attached to replisome Q 0. It moves Q 0 in the increasing
direction (by joining the group of the combinator that follows the replisomeʼs own attachment
site) and splices the neighbor into the growing chain (the incomplete daughter plasmid) that trails it;
see Figure 13c. RepF (not shown in Figure 12) is very similar except that it moves the replication
fork through the hand bonds that mark the boundaries between genes.

Replication is complete when Q 0 encounters a marker, or more precisely, when it finds a marker
attached to the combinator that follows its own attachment site. In the most common case, the
replisome and marker are situated within a single gene. RepY (not shown in Figure 12) recognizes
this situation and creates the final next bond, completing the daughter plasmid. Very infrequently,
the replisome and marker straddle a boundary between two genes. RepZ recognizes this situation
and creates the final hand bond. In both cases, the replisome and marker are detached from the
plasmid.

If plasmid P and replisome Q are placed in the virtual world with a supply of primitive combi-
nators �P �Ch ( p, c ) c, then the replisome copies the plasmid

P þ Qþ P
P
P

Ch p; cð Þ c → 2 P þ Q 0 þ repAþ fg2; (69)

where C is the set of 42 primitive combinators and h( p, c ) is the number of combinators of type c in
Gp and Ep , that is, the gene and enzyme reifications of behavior p.

The goals of the third experiment were to (1) demonstrate that replisomes correctly copy
plasmids, and (2) determine the efficiency of parallel copying of a plasmid by multiple replisomes.
To achieve these goals, the plasmid P3 was reified on a grid large enough to contain a circle of radius
r = (n/dk)1/2, where n is the plasmid length and d is the combinator density. As raw material,
n combinators with distribution matching P3 (see Figure 10) were also reified inside the circle.
The diffusion constant D = 10−2. The experiment consisted of 32 trials of ten runs each in which
the number of replisomes m and the combinator density d were varied. As combinators were
incorporated by bonding into the daughter plasmid, they were replaced within the circle, and r

Figure 14. Average time (105 operations per site) required for plasmid replication (ten runs) as a function of the number
of replisomes for four different combinator densities. Error bars show ±1 standard deviation.
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was increased so that combinator density remained constant for the entire run. Runs were contin-
ued until either (1) all replisomes detached from the mother plasmid, or (2) the number of combi-
nators copied exceeded the plasmid length. In the second case, the run was disregarded and
repeated. This can happen for two reasons, the more common being that the replisome does
not recognize the marker and makes a second circuit of the plasmid, resulting in a daughter plasmid
of twice the length. Less often, one (or more) replisomes attach to the (incomplete) daughter
plasmid instead of the mother, resulting in one (or more) granddaughter plasmids.

The average times required for plasmid replication are shown in Figure 14. We observe that,
unlike plasmid translation by multiple ribosomes, the speedup for plasmid replication by multiple
replisomes is far less than m times for m replisomes. This is not surprising, since the maximum
speedup only happens when all replisomes simultaneously attach to the mother plasmid at points
uniformly far apart. Finally, we observe that the degree of speedup is a function of combinator
density, with larger speedups occurring for lower densities.

12 A Self-Replicating System of Ribosome and Replisome Factories

In prior sections we defined computational ribosomes and replisomes and demonstrated their ability to
translate and copy a plasmid containing descriptions of three methods composing a simple composome.
An arguably more interesting experiment would be to construct a plasmid containing the genes defining
ribosomes and replisomes themselves, so that ribosomes would synthesize the enzymes that compose
both. However, unlike composomes, ribosomes and replisomes do not assemble themselves. To per-
form this function, we need an additional machine to collect the finished enzymes and place them inside
objects of the correct types; we call this machine a factory. Abstractly, factories are copiers of compositional
information, which is heritable information distinct from the genetic information copied by replisomes, and
which ribosomes translate into enzymes. Concretely, factories are objects containing a specific set of

Figure 15. Four of eight methods defining a factory.
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enzymes (four of which are shown in Figure 15) and a model, which can be either a ribosome or a rep-
lisome; see Figure 16a. A factoryʼs enzymes can be grouped into four categories:

• FacP, facN, and facH form prev, next, and hand bonds with empty objects from the
neighborhood. The order in which these three events occur is more or less random.
Because the enzymes are very similar, only facP is shown in Figure 15. The objects
{}k bonded to the mother factory by prev and next bonds will become new instances
of the model. The object {}k+1 bonded to the mother factory by the hand bond will
become the daughter factory; see Figure 16b.

• FacU moves enzymes with types matching contents of the model into the incomplete
model instances. FacV (not shown in Figure 15) moves enzymes with types
matching contents of the mother factory into the incomplete daughter factory.

• FacX uses the generalized set difference operator ( !∼ ) to verify that a new model
instance, that is, product, has all of the enzymes that the old model contains. If so, it
marks the product as complete, using a self-directed hand bond. FacY (not shown in
Figure 15) does the same thing for the daughter factory but uses a self-directed prev bond
to indicate completeness.

• FacZ checks to see that both products have self-directed hand bonds and also that
the daughter factory has a self-directed prev bond. If so, it (1) deletes the prev and next
bonds connecting the mother factory and the products; (2) moves one of the completed
products into the daughter factory (to serve as its model); and (3) deletes the hand
bond connecting the mother and daughter factories; see Figure 16c.

Given the above enzymes, it is now possible to define a self-replicating ribosome factory:

FR ¼ facP; facN; facH; facU; facV; facX; facY; facZ;Rf g1: (70)

When placed in the virtual world with a supply of empty objects {}0 and {}1 and enzymes com-
posing ribosomes �REr and factories �FEf , the ribosome factory constructs a new ribosome factory
and a new ribosome:

FR þ 2fg0 þ fg1 þ 2SREr þ SFEf → 2FR þ R: (71)

Figure 16. (a) Self-replicating ribosome factory contains eight enzymes and a model ribosome. (b) Directed bonds
connect the factory to partially assembled ribosomes while an undirected bond connects it to a partially assembled
daughter factory. (c) One of the product ribosomes becomes the model for the daughter factory while the second is
available to synthesize enzymes for the encompassing self-replicating system.
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A self-replicating replisome factory can be defined similarly:

FQ ¼ facP; facN; facH; facU; facV; facX; facY; facZ; Qf g3: (72)

When placed in the virtual world with a supply of empty objects {}2 and {}3 and enzymes com-
posing replisomes �QEq and factories �FEf , the replisome factory constructs a new replisome fac-
tory and a new replisome:

FQ þ 4fg2 þ fg3 þ 2SQEqþSF Ef → 2FQ þ Q: (73)

Note that the left-hand side of the reaction contains four empty objects {}2 instead of two; the
extras are the markers contained by the new replisome and replisome model.

We now have all of the components needed to build a self-replicating system of ribosome and
replisome factories. Unlike the composome, which copied itself solely by reflection, this self-replicating
system is a quine that translates and replicates a self-description reified as a data structure within the
virtual world itself:

P17 ¼ ribA j ribI j ribE j ribT j repA j repE j repF j repY j repZ

j facP j facN j facH j facU j facV j facX j facY j facZ:

(74)

This genome consists of a single plasmid containing 586 combinators of 31 types composing 17 genes.
The minimum phenome required for bootstrapping the self-replicating system consists of a replisome
factory FQ, a ribosome factory FR, and a ribosome R. When genome P17 and phenome FQ + FR + R
are placed in the world with a supply of empty objects {}k and combinators SP17SCh p; cð Þc, the
system increases the numbers of all of its component parts:

P17 þ FQ þ FR þ R þ 2fg0 þ fg1 þ 4fg2 þ fg3 þ 3SP17SCh p; cð Þc →

2P17 þ 2FQ þ 2FR þ Q 0 þ repAþ fg2 þ R þ R0 þ ribA: ð75Þ

Note that there are three instances of SP17SCh p; cð Þ c on the left side of the equation. The ribosome
R consumes the first two, making two full circuits of the plasmid synthesizing the systemʼs enzymes

P17 þ R þ 2SP17SCh p; cð Þc → P17 þ R0 þ ribAþ 2SQEq þ 2SREr þ 2SFEf ; (76)

while the replisome Q (assembled by FQ) uses the last copying the plasmid.
It is useful to compare the normalized complexity of the self-replicating system of ribosome and

replisome factories with that of the composome defined earlier. Recall that the composome X is
composed of 3 enzymes: cmpA, cmpB, and cmpC; these enzymes are in turn composed of 66 com-
binators of 17 types. Because the enzymes are defined outside the system, their complexity is non-
contingent, and the composomeʼs normalized complexity is quite low:

Kð cmpA; cmpB; cmpCf g j cmpAþ cmpBþ cmpCÞ
KðcmpAþ cmpBþ cmpC j OOCC17Þ þ KðOOCC17 j ACAÞ þ KðACAÞ ; (77)

where K(cmpA + cmpB + cmpC | OOCC17) is the portion of the composomeʼs non-contingent
complexity contained in its three enzymes.

In contrast, the self-replicating system of ribosome and replisome factories is composed of 17
different behaviors reified as both genes and enzymes; these genes and enzymes are in turn com-
posed of 3 × 586 = 1758 combinators of 31 types. However, because the enzymes are defined
within the system itself (by the genes), their complexity (unlike that of the composomeʼs enzymes)
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Figure 17. Distribution of primitive combinators composing a self-replicating system of ribosome and replisome factories.

Figure 18. Average numbers of free enzymes, ribosomes (and ribosome factories), replisomes (and replisome factories),
and complete genome copies (ten runs) as a function of time (106 operations per site) for four different combinator
densities. Error bars show ±1 standard deviation.
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is contingent. Consequently, the self-replicating system of ribosome and replisome factories pos-
sesses significantly higher normalized complexity than the composome:

KðFQ þ FR þ R j SP17EpÞ þ KðSP17Ep j P17;R;OOCC31Þ þ KðP17 j OOCC31Þ
KðOOCC31 j ACAÞ þ K ACAð Þ ; (78)

where KðFQ þ FR þ R j SP17EpÞ and K(P17 | OOCC31) are the compositional and genetically encoded
portions of the self-replicating systemʼs contingent complexity, and KðSP17Ep j P17;R;OOCC31Þ is
zero because the plasmid P17 encodes the enzymes SP17Ep using a process defined by the ribosome R
and the object-oriented combinator chemistry OOCC31.

The goal of the final experiment was to demonstrate a self-replicating system of ribosome and
replisome factories. To achieve this goal, the plasmid P17 was reified on a grid large enough to con-
tain a circle of radius r = (n/dk)1/2, where n is the plasmid length and d is the combinator density. As
raw material, n combinators with distribution matching P17 (see Figure 17) and 2 empty objects of
each of 4 types were also reified inside the circle. The neighborhood was of size 3 × 3, and the
diffusion constant D = 3 × 10−2. The experiment consisted of four trials in which the combinator
density d was varied. When a combinator was composed by (>=>) or incorporated by bonding into a
daughter plasmid, a new combinator of the same type was added to the circle. When a method was
inserted into an empty object, a new empty object of the same type was added to the circle. When a
combinator was incorporated into a daughter plasmid or a method was inserted into an empty ob-
ject, r was increased so as to keep the density of combinators and empty objects constant. Each trial
was repeated for ten runs, and each run ended when the time exceeded 108 operations per site.

The results are shown in Figure 18. We observe that the system robustly replicates all of its com-
ponents many times over. We further observe that (on average) ribosomes are synthesized at a high-
er rate than replisomes and both are synthesized more frequently than the genome. This reflects the
fact that control within the parallel distributed computation is open-loop with no feedback. The
system therefore suffers to some degree from a data race between ribosome and replisome factories;
since ribosomes are shorter, ribosome factories tend to win the competition for the shared resource
of factory enzymes. The fact that there are fewer genome copies than replisomes can be explained
by the fact that multiple replisomes often bind to the same plasmid.

13 Conclusion

Sixty years after von Neumann conceived his self-replicating automaton, it remains a paragon of
non-biological life. The rules governing CAs seem simple and physical, and partly for this reason,
the automaton von Neumann constructed using them is uniquely impressive. Yet, perhaps because
RASPs are (in comparison to CAs) such powerful hosts, self-replicating programs in conventional
programming languages seem somehow less convincing; all self-replicating programs must lift
themselves up by their own bootstraps, yet not all programs lift themselves the same distance. With
respect to models of computation, one might assume that increased expressive power can only come
at the expense of realism. The model of computation introduced in this article demonstrates that this
is not the case. The field of programming languages has made remarkable advances in the years since
von Neumann conceived his automaton. Modern functional programming languages like Haskell
bear little resemblance to the machine languages that are native to RASPs. The concept of combi-
nators as the building blocks of programs is well established in functional programming. This article
has demonstrated that the behaviors of actors in a 2D virtual world can be defined using a visual
programming language and compiled into sequences of combinators with simple, well-defined
semantics. Using programs constructed from combinators, reified actors asynchronously update
the states of actors in their neighborhoods and (in doing so) function as the elements of parallel
distributed computations. Because actors report the time they use to perform these updates, and
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pay for it in the simulation, the object-oriented combinator chemistry described in this article can be
viewed as an abstract interface to an ACA, an indefinitely scalable model of computation with the
affordances of a natural physics. In summary, this article has demonstrated that it is possible to build
programs that build programs from combinators of a small number of predefined types using asyn-
chronous spatial processes that resemble chemistry as much as computation.
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