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Abstract

Active shape models are a powerful and widely used tool
to interpret complex image data. By building models of
shape variation they enable search algorithms to use a pri-
ori knowledge in an efficient and gainful way. However, due
to the linearity of PCA, non-linearities like rotations or in-
dependently moving subparts in the data can deteriorate the
resulting model considerably.

Although non-linear extensions of active shape models
have been proposed and application specific solutions have
been used, they still need a certain amount of user interac-
tion during model building. In this paper the task of build-
ing/choosing optimal models is tackled in a more generic
information theoretic fashion. In particular, we propose an
algorithm based on the minimum description length princi-
ple to find an optimal subdivision of the data into subparts,
each adequate for linear modeling. This results in an over
all more compact model configuration. Which in turn leads
to a better model in terms of modes of variations. The pro-
posed method is evaluated on synthetic data, medical im-
ages and hand contours.

1 Introduction

Introduced in1992 active shape models (ASMs)[1] have
proven to be very successful in interpreting complex image
data. Due to noise, overlapping structures of varying shape,
and the need to consistently identify instances of anatom-
ical structures in a large number of images of potentially
different patients, the use of a priori knowledge is particu-
larly useful in medical imaging [2]. Furthermore it can be
used to adopt a notion of healthy versus pathologically al-
tered shapes [3]. ASMs use PCA to build a linear model of
shape variation from a set of training examples.

Since non-linearities violate the linearity assumption of
PCA, they degrade the compactness and thus the efficiency
of the model. Non-linearities can occur among other rea-
sons due to rotation of distinct anatomical structures. Var-
ious approaches to deal with specific non-linearities have

Figure 1: Upper row: Aligned set of rotating rectangles,
each with changing aspect ratio, and first 3 modes of vari-
ation. Lower row: first modes for the separate rectangles
(the small lines indicate the modes of variations for each
landmark point).

been proposed. In [4, 5] they were dealt with by polyno-
mial regression or multi-layer perceptrons. However the or-
der of polynomials or the architecture of the network had
to be chosen application specific. In [6] mixture models
were used resulting in more reliable models but becoming
un-feasible for large training set sizes. In [3] snakes were
used to deal with pathological local non-linearities during
the search procedure.

In Fig. 1 a simple example of non-linear shape variation
is depicted. Two rectangles rotate against each other while
independently changing the aspect ratio. In the upper row
the aligned shape set and the first3 modes of variation re-
sulting from the entire shape are depicted. The modes are
visualized by the mean shape and lines indicating the defor-
mation caused by the modes of shape variation. Note that
aspect ratio and rotation changes interact with each other
and deteriorate the compactness of the model considerably.
In the lower row the two rectangles are modeled separately
and the change of aspect ratio is plausibly represented in the
first modes. As an alternative to modeling the non-linear
variations a correct determination of distinct entities in the
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Figure 2: Data vectors in the training set, when the training
set is split into subsets one obtains a mixture model (left
part of figure); when the vectors are split one obtains the
model presented in this paper (right part of figure).

data seems to be a worthwhile and crucial step to build com-
pact and efficient models.

Minimum description length (MDL), a model selection
criterion has been used successfully in different applica-
tions. It gives a criterion to compare likelihoods of models
that describe a given data.

In [7, 8] MDL was used to establish landmark correspon-
dences on a set of shapes defined by continuous contours
before active shape model training was performed. In [9]
MDL was used for group-wise non-rigid registration. A
method proposed in [10] uses MDL to select hypotheses for
robust appearance based object recognition. In [11] multi-
ple eigenspaces were build in order to account for groups of
different objects present in a training set, thereby improv-
ing recognition results, using better and more specialized
models.

The main contribution of this work is a novel method
for obtaining compact shape models. In particular we pro-
pose an efficient MDL based method that identifies in a fully
automatic manner the number of sub-shapes and their lo-
cations in order to represent a given set of training shapes
compactly. As the experiments will show the method is able
to identify the distinct sub parts of a shape automatically.
Overall this results in more compact models which in turn
lead to a better generalization behavior.

This attempt goes along with recent developments in
model based approaches that aim at more autonomous
model generation processes with decreasing amount of user
interaction. In a sense our concept is complementary to the
approach examined in [6, 11], where as illustrated in Fig. 2
not the data vectors but the data set is split.

The application of the method is the more and more un-
supervised model generation, where algorithms have to be
able to identify distinct entities in order to make efficient
modeling possible. The proposed method is able to iden-
tify distinct sub parts of shapes automatically (e.g., the fin-
gers of a hand). Therefore, the tedious, time consuming and

sometimes even sub optimal process of manual splitting can
be avoided.

This paper is structured as follows: in section 2 a crite-
rion based on MDL for the selection of sub-shape models
will be derived, and a search procedure using this criterion
to find an optimal set of models will be explained. Sec-
tion 3 demonstrates results of the algorithm on artificial and
real data and section 4 concludes with a discussion.

2 A criterion for multiple shape
model selection

In order to find an optimal model ensemble describing the
data set the minimum description length principle will be
used [12, 13]. It states that maximizing the likelihood of
a modelM given certain dataD is equivalent to minimiz-
ing the cost of communicating the model itself and the data
encoded with help of the model i.e.

L(D,M) = L(M) + L(D|M). (1)

It is a computationally more feasible formulation of Oc-
cams razor or assuming thatshortest explanations gener-
alize best.

We will use ASMs for modeling the shape data. Subse-
quently an MDL criterion will be used to judge the encod-
ing of the shape data with ensembles of sub-shape ASMs,
to ultimately obtain an optimal sub-division of the data.

Statistical shape models The principle ASM concept is
based on shapes that are represented by a finite set ofn
landmarks. Each shape in the training set can be represented
by a2n dimensional vectorxi generated by concatenation
of thex andy coordinates in 2 dimensional data (extensions
to 3D are straightforward). In order to achieve a compact
representation PCA is used on the set{xi, i = 1, . . . , nT }
and thereby a new coordinate system that represents each of
the vectors

xi = x̄ +
np∑

j=1

ajej , (2)

in an optimal way is created. The modesej are the eigen-
vectors of the covariance matrix sorted according to de-
creasing eigenvalueλj . x̄ is the mean shape andnp can be
chosen to fulfill a given accuracy constraint. The eigenval-
uesλj correspond to the variance of the data in the direction
ej .

2.1 Description length of shape models

If modeling shape data by a multivariate Gaussian in the di-
rections of the eigenvectorsej as described above we can
apply Shannons theorem [14] to each of these 1D distri-
butions. The corresponding coefficientsai

j are quantized

2



by the step size∆Im which is related to the pixel-size,
and are strictly bounded byRj . For each training sample
xi the new discrete coordinatesâi

j = k∆Im, k ∈ Z with
−Rj/2 ≤ âj ≤ Rj/2 are modeled by a Gaussian distri-
bution with coefficient mean valueµj = 0 and standard
deviationσj =

√
λj .

For each dimensionj of the eigenspace used to encode
the data the transmission costs of the modelL(Mej

) are the
quantized eigenvector,̂σj and the quantization parameterδj

for the directionej . L(D|Mej
) is the cost of transmitting

the data i.e. the quantized coefficientsâi
j of the training set

with respect to the directionej .
The description length for the data encoded with annp

dimensional eigenspace is the sum of the transmission costs
for the data encoded using the eigenvectors(ej)j=1,...,np

together with the cost of the residual error

np∑
j=1

(
L(Mej

) + L(D|Mej
)
)

+R. (3)

For a detailed derivation of the description length of 1D
Gaussians please refer to [7].

Multiple models A set of models{M1, . . . ,Mn} each
representing a part of the dataD with every part of the
data covered by at least one model will be called amodel
ensembleM = 〈M1, . . . ,Mn;S〉, whereS holds the in-
formation of the data parts corresponding to the individual
sub-models. The minimization of

C(M) = L(S) +
∑
Mi∈M

L(Mi) + L(Di|Mi) +R, (4)

whereL(S) is the additional cost for transmitting the split-
ting information, then corresponds to the maximization of
the likelihood of the model ensemble.

2.2 The Criterion function

After establishing the general criterion this section will con-
centrate on the application to eigenspace models. First
we will derive the criterion function which will allow for
a search through the possible sub-shape model ensembles
aiming at an optimal data partition in the sense of compact-
ness of the generated over all model. While the primary
thread will refer to shape models the application to any vec-
tor data is straight forward. When Eq. 4 is applied to an en-
sembleM of eigenspace modelsMm the criterion becomes

C(M) = L(S) +
∑

m:Mm∈M

 nm
p∑

j=1

Cm
j +R

 , (5)

wherenm
p = max{j : σj > ∆Im} is the dimension of the

utilized eigenspace.L(S) is the additional cost to transmit

the split information. This term acts as a penalty for addi-
tional splits and prohibits possible trivial solutions. In the
case of shapesL(S) is the cost of identifying the indices of
n landmarks where a split takes place. Assumingl ≥ 2 sub-
models and equal probability for all possible split positions,
the cost is

L(S) = l · log2(n) (6)

Cm
j is the coding cost term for thejth eigendirection of the

eigenspaceMm

Cm
j = 1 + log2(

σmax − σmin

δj
) + | log2 δj | − (7)

−nT log2 ∆Im +
nT

2
log2(2πσ2

j ) +

+
nT

2
+

nT δ2
j

12σ2
j

, (8)

whereσmax = R/2 andσmax = 2∆Im. R is the residual
error that remains after fitting the training set with the model

R = nT

2n∑
j=np+1

λj . (9)

In order to express preferences (e.g., more sub-shape mod-
els) one can introduce a weighting parameter k which de-
creases/increases the splitting costs.

2.3 Search for an optimal set of sub shape
models

The criterion functionC(M) in Eq. 5 has to be integrated
into a search procedure in order to determine an optimal
splitting of the shape data. In Fig. 3 the value of the crite-
rion function is depicted relative to its outcome for a sin-
gle model for all possible splits of a set of bone contours
into two sub-shapes. For better visibility only32 land-
marks were used. x and y coordinates indicate the in-
dices of landmarks where the shape is split. The global
minimum lies at the rotation point between the two bones:
C(〈M1,M2,S〉)/C(Mtotal) = 0.841.

Nevertheless a global search is not feasible for larger
shape vectors and the possibility of multiple splitting po-
sitions. For our experiments we employed a hypothesize
and select procedure.
1. The search is initiated with smallatomsi.e. sub-vectors
of the data vectorsxi. For shapes landmarks can be used,
for images an initial segmentation can be applied to the im-
age data in order to decrease computation costs. Neighbor-
hood relations are established accordingly.
2. In a local growing process the sub-shapes merge guided
by C(M): A randomly chosen sub-shape modelMi merges
with its neighborMj if for the new ensembleM′ =
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Figure 3:C(M)/C(Mtotal) for bone contours as function
of split positions if split into two sub-shapes. Note the deep
minimum (0.841) at the correct split position.

〈. . . ,Mi∪j , . . . ,S ′〉, C(M′) is the minimum for all neigh-
bors of Mi and C(M′) < C(M) holds, whereM =
〈. . . ,Mi,Mj , . . . ,S〉 i.e. the criterion value decreases.
For this comparisonC(M′) only has to be recalculated lo-
cally since the description length of the sub-shape models
and the splitting costs contribute additively to the criterion
function.
3. Then sub-shape ensemblesMk resulting from the grow-
ing processes are treated as hypotheses that are subject to
a final selection procedure yielding the final resultMsel :
C(Msel) = min{C(Mk), k = 1, . . . , n}.

3 Experimental Results
Experiments were performed on three different data sets:
synthetic data consisting of two rectangles independently
changing aspect ratios and rotating against each other, bone
contours of themetacarpal 5andproximal phalange 5and
on hand outlines. With∆im = 1 the hypothesize-select
search was performed and the resulting sub-shape models
were evaluated with respect to their compactness and the
resulting reconstruction error.
Synthetic data The synthetic data already referred to in
the introduction consists of two rectangles with random in-
dependent aspect ratiosr1 ∈ [0.4, 3.6], r2 ∈ [0.5, 4.8] and
rotation angleα ∈ [0, 2π] against each other. Finally land-
mark coordinates were randomly displaced by±1 pixelsize.
The search procedure identifies the rotation point correctly.
In Fig. 1 the aligned training data and the resulting first3
modes from a single model are depicted. In the lower row
the first modes of shape variation after automatic splitting

a.

b.

c.

d.

Figure 4: First modes of variation of the entire bone struc-
ture and of the two separate bones.

uncover the aspect ratio change. To represent95% of the
entire variation a single model needs4 modes while with
sub-shape models2 modes are sufficient. The consequence
will be explained later.

Bone data In a set of40 radiographsmetacarpals 5and
proximal phalanges 5(Fig. 4a) were manually delineated
by a radiologist. Landmark correspondences were estab-
lished by the MDL based approach introduced in [7] and the
search procedure was performed on128 landmarks. Fig. 5
shows16 hypotheses resulting from the growing procedure,
Fig. 4b shows the winning hypothesis, splitting the structure
at the rotation point between the two bones. The resulting
first modes of variation for a single model and 2 sub-shape
models are depicted in Fig. 4c and d, for clarity only32
landmarks are shown. Note that since the radiographs were
acquired during a standard examination procedure, the ro-
tation variance is rather small, still it suffices to detect two
distinct entities in the data. The reconstruction error using
a model with4 modes is3.46 pixel for a single model ver-
sus2.08 pixels with 2 sub-shape models. This allows for a
more efficient search during application. The ratio between
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Figure 5: Set of hypotheses for the partitioning of bone
shapes. Winning hypotheses is denoted with thick lines.

the criterion function of all possible partitions into two sub
shape models and the criterion function for a single model
as a function of the split positions is depicted in Fig. 3.
Hand contours For a set of40 manually annotated hand
contours with varying finger positions [15] our method was
applied. First additional and more accurate correspon-
dences on interpolated outlines were established again us-
ing MDL. A set of16 hypotheses resulting from the grow-
ing on 128 landmarks is shown in Fig. 6, the final selec-
tion yields the winning hypothesis depicted in Fig. 7. The
method nicely identifies the individual fingers as distinct
sub-shape models.

Figure 6: Set of hypotheses for the partitioning of hand
shapes. Winning hypotheses is denoted with thick lines.

Compactness and reconstruction error For both a sin-
gle model (dashed line) and automatically generated sub-
shape models (solid line) in Fig. 8 the fraction of variance
represented by a certain number of eigenvectors is depicted.
In Fig. 9 the reconstruction error for a given number of used

Figure 7: Winning Hypothesis of the hand data set.

eigenvectors is shown. For all experiments sub-shape mod-
els yield lower reconstruction error than single models, and
the variation in the training data is more compactly repre-
sented in the first few eigenvectors. In Table 1 the number
of modes necessary to represent99% of the data variation
are given. With optimal sub-shape models a smaller number
is usually sufficient. These characteristics allow for the use
of less modes during model application. Thus the search be-
comes computationally less expensive, and the generaliza-
tion behavior improves with decreasing possibility of gen-
erating illegal shapes; i.e., the model fits better to the given
data.

Hands Bones Rectangles

sub-shape models: 4 5 4
single model: 8 8 6

Table 1: Number of modes necessary to represent99% of
the data variation.

4 Conclusion

In this paper an approach to automatically find optimal sub-
shape models is proposed. Based on an MDL criterion data
is divided into sub-shapes that allow for more compact mod-
eling. The resulting model ensemble represents the vari-
ation present in the data in a more efficient way and thus
lowers the computational complexity during model search.

Distinct entities are recognized without user interaction.
They correspond fairly well to entities assigned by humans
and pay respect to the capabilities of a certain model where
manual partitioning can lead to sub-optimal results. In par-
ticular the method was evaluated with PCA based statistical
shape models on three data sets where it resulted in more
compact models. Ultimately the work aims at more and
more autonomous model building processes, among others
relevant in medical imaging. Ongoing work deals with ap-
plication of the method to images for appearance based ob-
ject recognition.
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Figure 8: Captured variance for a. rectangle data b. bone
data and c. hand contour data, the x-axis corresponds to
the number of eigenvectors, single model dashed-line sub-
shape model solid line.
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