

Solving an Easy Problem

● What are the input types? What is the output
type? Give example input/output pairs.

● Which input represents the domain of the
recursion, i.e., which input becomes smaller?
How is problem size defined?

● What function is used to produce smaller
problem instances?

● What is the output value when the problem is
smallest?

Solving an Easy Problem (contd.)

● How can a problem instance be reduced to one
or more smaller problem instances? What
function creates the output value?

● Is your case analysis correct and complete?
● If an input can be of more than one type, e.g.,

sometimes an atom, sometimes a pair, then you
will need to provide a case for each type.

Solving a Hard Problem

● Identify one (or more) sub problems that would
make the hard problem into an easy problem if
solved.

● Give example input/output pairs for helper
functions which would solve the sub problems.

● Define the helper functions and test your
solutions.

● If any of the sub problems are hard themselves
then identify additional helper functions which
would permit you to solve them.

Debugging Imperative Programs

● An imperative program is understood by the
programmer as a process which transforms the
state of an abstract machine.

● The state of the abstract machine is comprised
of the values of variables and the contents of
the stack and heap.

● By observing how the values of variables
change over time, the programmer verifies that
the process is defined correctly.

Debugging Functional Programs

● A functional program is understood by the
programmer as the definition of the solution to a
problem.

● A functional programmer fixes errors by
reformulating this definition using new terms.

● These terms are the solutions of sub problems
each of which can be independently verified by
testing.

● A functional program is debugged by rewriting it
using simpler and simpler pieces until each
piece is demonstrably correct.

 40

Solving an Easy Problem

● What are the input types? What is the output
type? Give example input/output pairs.

● Which input represents the domain of the
recursion, i.e., which input becomes smaller?
How is problem size defined?

● What function is used to produce smaller
problem instances?

● What is the output value when the problem is
smallest?

 41

Solving an Easy Problem (contd.)

● How can a problem instance be reduced to one
or more smaller problem instances? What
function creates the output value?

● Is your case analysis correct and complete?
● If an input can be of more than one type, e.g.,

sometimes an atom, sometimes a pair, then you
will need to provide a case for each type.

 42

Solving a Hard Problem

● Identify one (or more) sub problems that would
make the hard problem into an easy problem if
solved.

● Give example input/output pairs for helper
functions which would solve the sub problems.

● Define the helper functions and test your
solutions.

● If any of the sub problems are hard themselves
then identify additional helper functions which
would permit you to solve them.

 43

Debugging Imperative Programs

● An imperative program is understood by the
programmer as a process which transforms the
state of an abstract machine.

● The state of the abstract machine is comprised
of the values of variables and the contents of
the stack and heap.

● By observing how the values of variables
change over time, the programmer verifies that
the process is defined correctly.

 44

Debugging Functional Programs

● A functional program is understood by the
programmer as the definition of the solution to a
problem.

● A functional programmer fixes errors by
reformulating this definition using new terms.

● These terms are the solutions of sub problems
each of which can be independently verified by
testing.

● A functional program is debugged by rewriting it
using simpler and simpler pieces until each
piece is demonstrably correct.

	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

