Solving an Easy Problem

* What are the input types”? What is the output
type? Give example input/output pairs.

 Which input represents the domain of the
recursion, i.e., which input becomes smaller?
How is problem size defined?

 What function is used to produce smaller
problem instances?

 What is the output value when the problem is
smallest?



Solving an Easy Problem (contd.)

« How can a problem instance be reduced to one
or more smaller problem instances”? What
function creates the output value?

* |s your case analysis correct and complete?

 |f an input can be of more than one type, e.g.,
sometimes an atom, sometimes a pair, then you
will need to provide a case for each type.




Solving a Hard Problem

* |dentify one (or more) sub problems that would
make the hard problem into an easy problem if
solved.

* Give example input/output pairs for helper
functions which would solve the sub problems.

* Define the helper functions and test your
solutions.

* If any of the sub problems are hard themselves
then identify additional helper functions which
would permit you to solve them.



Debugging Imperative Programs

 An imperative program is understood by the
programmer as a process which transforms the
state of an abstract machine.

* The state of the abstract machine is comprised
of the values of variables and the contents of

the stack and heap.

* By observing how the values of variables
change over time, the programmer verifies that
the process is defined correctly.



Debugging Functional Programs

* A functional program is understood by the
programmer as the definition of the solution to a
problem.

» A functional programmer fixes errors by
reformulating this definition using new terms.

 These terms are the solutions of sub problems
each of which can be independently verified by
testing.

* A functional program is debugged by rewriting it
using simpler and simpler pieces until each
piece is demonstrably correct.



Solving an Easy Problem

* What are the input types? What is the output
type? Give example input/output pairs.

* Which input represents the domain of the
recursion, i.e., which input becomes smaller?
How is problem size defined?

* What function is used to produce smaller
problem instances?

* What is the output value when the problem is
smallest?

40



Solving an Easy Problem (contd.)

* How can a problem instance be reduced to one
or more smaller problem instances? What
function creates the output value?

* Is your case analysis correct and complete?

« If an input can be of more than one type, e.q.,
sometimes an atom, sometimes a pair, then you
will need to provide a case for each type.

41



Solving a Hard Problem

* Identify one (or more) sub problems that would
make the hard problem into an easy problem if
solved.

» Give example input/output pairs for helper
functions which would solve the sub problems.

» Define the helper functions and test your
solutions.

« If any of the sub problems are hard themselves
then identify additional helper functions which
would permit you to solve them.

42



Debugging Imperative Programs

* An imperative program is understood by the
programmer as a process which transforms the
state of an abstract machine.

» The state of the abstract machine is comprised
of the values of variables and the contents of
the stack and heap.

» By observing how the values of variables
change over time, the programmer verifies that
the process is defined correctly.

43



Debugging Functional Programs

« A functional program is understood by the
programmer as the definition of the solution to a
problem.

A functional programmer fixes errors by
reformulating this definition using new terms.

» These terms are the solutions of sub problems
each of which can be independently verified by
testing.

» Afunctional program is debugged by rewriting it
using simpler and simpler pieces until each
piece is demonstrably correct. "



	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

