

Lisp
● Lisp was invented in 1958 at

MIT by John McCarthy.

● Lisp stands for list processing.

● Its intended use was research
in artificial intelligence.

● It is based on the λ calculus
which was invented by Alonzo
Church in the 1930's.

● Many features of modern
programming languages such
as garbage collection, first
class functions and compiling
to virtual machine bytecode
first appeared in Lisp.

Scheme
● Scheme is a dialect of Lisp invented

at MIT in 1975 by Guy Steele and
Gerald Sussman.

● It corrected some design flaws in Lisp

– Single name space for functions
and data

– Lexically (not dynamically) scoped
variables

– Optimization of tail calls

● No programming language matches
Scheme in ratio of expressive power
to implementation size.

expressions

pairs

lists

symbols

numbers functions

booleans

atoms

Scheme Datatypes

Expressions

● In Scheme all values are expressions.
● Expressions are either pairs or non-pairs.
● Pairs are the building blocks of lists.
● Non-pairs are also called atoms.
● Atomic types include symbols, numbers,

booleans and functions.
● Lists can be nested and can contain

expressions of different types.

Programs

● Both programs and data are expressions.
● Programs are represented as nested lists.
● For example,

(/ (+ (- b) (sqrt (- (* b b) (* 4 (* a c))))) (* 2 a)).
● Function calls in Scheme are written in prefix

notation.
● Operators appear before operands in the list

representing the function call, e.g., (+ 1 2).

Programs

● Expressions representing programs are
evaluated by recursively evaluating
subexpressions.

● All atomic types except symbols evaluate to
themselves.

● Recursive evaluation bottoms out on these self-
evaluating types.

eval 0.0

number? (f a b)?
no

error
no

yes

return x

x

yes

return apply f
to

eval(a) and eval(b)

Evaluating an Expression

(/ (+ 7 (- 3 2)) 2) → (/ (+ 7 1) 2) → (/ 8 2) → 4

Referential Transparency

● When a function is called second and
subsequent times on given values, the result is
always the same.

● Referential transparency simplifies analysis of
program behavior.

● When a programming language is referentially
transparent, code can be transformed
algebraically without breaking it.

● These transformations can result in significant
gains in efficiency and parallelism.

No Referential Transparency

● Consider the following C expression
((x++) * y) + (x * (y++))

● Now let x = 1 and y = 2.
● If the left subexpression is evaluated first

((x++) * y) + (x * (y++)) → 2 + (x * (y++)) → 2 + 4 → 6

● However, if the right is evaluated first
((x++) * y) + (x * (y++)) → ((x++) * y) + 2 → 3 + 2 → 5

● The program's behavior depends on the order
of evaluation of its subexpressions!

First Class Datatypes

● A datatype is first class if functions can take
values of that type as arguments and return
values of that type as results.

● If a datatype is first class then new values of
that type can be created at run time.

First Class Functions

● In Scheme, functions are first class.
● Functions which take functions as arguments

and return functions as results are called
higher-order functions.

● Higher-order functions can be used to
abstractly represent sets of similar functions.

● The use of higher-order functions as a method
of abstraction leads to increased program
modularity.

Symbols

● Symbols are the only atomic type that is not
self-evaluating.

● Symbols serve as names for other values.
● They are different from variables in imperative

programming because the values they
represent never change.

● Functional programming languages are
sometimes called single-assignment languages
because once defined, a symbol's value never
changes.

Symbols with Function Values

● In the expression (+ 1 2), the plus sign is not
the function that adds two numbers, it is a
symbol.

● The symbol's value is the function that adds two
numbers.

eval 1.0

number? function? symbol? (f a b)?
no no

yes

yes

yes

no

return x

defined?

return
 value(x)

error

x

return apply eval(f)
to

eval(a) and eval(b)

error
no

yes

return x
no

Program Data Equivalence

● If programs and data are both expressions, how
does the evaluator know which is which?

● How does it know what expressions represent
programs and should be evaluated and what
expressions represent data and should be left
alone?

● Expressions which are data are quoted.
● For example

 '(+ 1 2) → (+ 1 2)

eval 2.0

quote? number? function? symbol? (f a b)?
no no no

yes

yes

yes

yes

no

return x

return x return x

defined?

return
 value(x)

no
error

x

return apply eval(f)
to

eval(a) and eval(b)

error
no

yes

yes

True and False

● Boolean true and false are typed #t and #f.
● However, #t is sort of useless, because any

value that is not #f is considered true in
Scheme.

Special-Forms

● A special-form is an exception to the normal
rules of evaluation.

● Normally, all of a function's arguments are
evaluated before the function is applied to
them.

● Expressions can be conditionally evaluated in
Scheme using the if special-form.

if special-form

● The if special-form evaluates its first argument.
● If the first argument is not #f, it evaluates and

returns the value of its second argument.
● Otherwise, it evaluates and returns the value of

its third argument.
● For example,

(if (= 1 1) 0 1) → 0

eval 3.0

quote? boolean? number? function? symbol? (if a b c)? (f a b)?
no no no no no

yes yes

yes

yes

yes

yes

no

return x

return xreturn x return x

defined?

return
 value(x)

eval(a)
no

error

return
eval(b)

otherwise

#f
return
eval(c)

x

return apply eval(f)
to

eval(a) and eval(b)

error
no

yes

yes

“If ever the time should come, when vain and
aspiring men shall possess the highest seats

 in government, our country will stand in need
 of its experienced patriots to prevent its ruin.”

Samuel Adams

MASSACHUSETTS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

