1. Characterize the following as linear, or non-linear, and as even, odd, or neither, and prove your characterization. In these functions, \(x \) is real, and \(z \) is complex.

(a) \(f(x) = 7x + 1 \)
(b) \(f(x) = x^2 - x \)
(c) \(f(x) = e^{-x^2} \)
(d) \(f(z) = 3z - 2 \)
(e) \(f(z) = z - z^* \)
(f) \(f(z) = \text{Im}(z) \)
(g) \(f(z) = z^{1/2} \)

2. The \(\int \) operator takes a function, \(f \), as its argument and returns the antiderivative of the function: \(f \rightarrow \int f(t) \, dt \). Prove that the \(\int \) operator is:

(a) Linear.
(b) Shift-invariant.

3. Prove that \(\sin(x) = \frac{e^{jx} - e^{-jx}}{2j} \).

4. The impulse response function of a linear, shift-invariant system is:

\[
 h(t) = \frac{\sin(\pi t)}{\pi t}
\]

and its input is:

\[
 x(t) = \cos(4\pi t) + \cos(\pi t/2).
\]

What is its output?

5. The impulse response function of a linear, shift-invariant system is:

\[
 h(t) = e^{-\frac{\pi t^2}{2}}
\]

and its input is:

\[
 x(t) = e^{j2\pi s_0 t}.
\]

What is its output?
6. The sine Gabor function is the product of a sine and a Gaussian, \(f(t) = e^{-\pi t^2} \sin(2\pi s_0 t) \). Give an expression for \(F(s) \), the Fourier transform of \(f(t) \).

7. Prove that the sum of two Gaussian random variables with variances \(\sigma_1^2 \) and \(\sigma_2^2 \) is a Gaussian random variable with variance \(\sigma_1^2 + \sigma_2^2 \).

8. The function, \(f(t) \), is defined as:

\[
\begin{align*}
 f(t) &= \begin{cases}
 1 & \text{if } |at - b| \leq \frac{1}{2} \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

Give an expression for \(F(s) \), the Fourier transform of \(f(t) \).

9. The transfer function of a linear shift invariant system is \(H(s) = 1/s \). The impulse response function, \(h(t) \), is \(\mathcal{F}^{-1}\{H(s)\} \). Give an expression for \(g(t) \) where:

\[
g(t) = \int_{-\infty}^{\infty} e^{j2\pi s_0 \tau} h(t - \tau) \, d\tau.
\]

10. Compute the Fourier transform of \(f(t) = -2\pi t \, e^{-\pi t^2} \cos(2\pi s_0 t) \). Hint: What is \(\frac{d(e^{-\pi t^2})}{dt} \)?

11. Prove the following statement: If \(\mathcal{F}\{f\}(s) = F(s) \) then \(\mathcal{F}\{F\}(s) = f(-s) \). Hint: If \(\mathcal{F}\{f\}(s) = F(s) \) then \(\mathcal{F}^{-1}\{F\}(t) = f(t) \).

12. Prove that \(\mathcal{F}^{-1}\{\mathcal{F}\{f\}\} = f \)