Autocorrelation Function

= {/ (1) ( £)}(T)
/ f (t+7)dt
—|-’C)>

Power Spectrum

Pf() FAf)x f(=1))(s)
F(s)F(=s)
F(s)F(s)

F(s)]°




Cross-correlation Function

Ryo(t) = {f(2) ( £)}(7)
—/ f(t)g(t+r)dt

Cross Power Spectrum
Pre(s) = F{f(t)=g(—1)}(s)
= F(s)G(—s)
= F(s)G"(s)




Mean Squared Error

The input x of a linear shift invariant system
with 1mpulse response g i1s the sum of signal
s and noise n:

5(r) = / g(D)x(t —)d
_/ D) +n(t—1)] dt.

The error signal resulting from the use of g 1s
the difference between s and S

e{g}(t) = s(t) —5(r)
The mean squared error 1s
<ez{g}> — <52 — 258+ §2>
where (f) = [~ f(t)dt which is just
<ez{g}> — <sz> —2(s8)+ <§2>

because (.) is linear.



Mean Squared Error (contd.)

The expected values in the expression for MSE
can be defined in terms of correlation functions:

(s2) = / O;S(t)s(t—l—O) dt = R,(0)

8

( g(u)x(t —u) du /:og(v)x(t —v)dv ) dt
— /_oo /oo g(u)gv) /_o:ox(t —u)x(t —v) dt dudy

— /_oo/_ g(u)g(V)R(u—v) dudv.



Mean Squared Error (contd.)

Substituting these expressions into the expres-
sion for (e*{g}) yields

e}y = R(0)-2 [ gl

+/ / 2(T)g(t)R(t —T)dtdr.

Minimization

To show that x 1s a local minimum of f it suf-
fices to show that f(x) < f(x+ Ax) for all Ax.

Functional Minimization

To show that f is a local minimum of (e?) it

suffices to show that (e*{f}) < (e*{f+0f})
for all of.



Minimization of Mean Squared Error

We will show that there exists an 4 such that

geZ{h}Z < gez{hju 6h}2

MSE, MSE

for all oh. Letting g=h+0oh yields

MSE = R 2/ h(T)Ry( dr+/ / h(t (t—71)dtdr
MSE .

+2// ttdtd*c
—2/ Sh(T)R.( dr+//8h V8h(1)R,(t — ) d1 d.

where the first three terms are MSE,,.




Minimization of Mean Squared Error (contd.)

Combining the fourth and fifth terms yields

MSE = MSE, +2/ Sh(t [/ h(R(t — ) dif — Ryy(7) | d

+/ / Sh(T)Sh(1)Ry(t — ) dt dr.

It 1s possible to show that

/_O:o /:o Oh(T)0h(t)R,(t —T)dtdt =
/:o [/ZBh(T)x(t —t)dfcr dt > 0

for all 0h. Consequently

MSE > MSE, +2 /_ " h(t) [ /_ T R(ORW(t — 1) dt — Ry(7)| d.



Wiener-Hopt Equation

We now observe that when the Wiener-Hopf equa-

tion N
R (T) = / h()R(t —7)
1s satisfied that

MSE > MSE,+2 / " h(t) [ / T ROR(t — 1) dt — Ryg(t) | dn

\ = -/
~~

0

> MSE,.

It follows that & satistying the Wiener-Hopt
equation 1s the optimal linear filter.



Uncorrelated Signal and Noise

Assuming that s and n are uncorrelated:

Ro(t) = /_ ix(ﬂ:)s(fﬂ)dt
_ / " 1s(t) 4+ n(t)] s(t+1)d
_ /_ s(R)s(z+ )T+ /_ O:On(’c)s(1:+t)d’c

J/




Wiener Filter Transfer Function

Substituting the above expressions into the Wiener-
Hopt equation results in

Ry(1) = / h(r — 1) [Ry(T) + R, (7)) dr.
Taking the Fourier transform of both sides yields
Py(s) = H(s)- [Ps(s) + Pu(s)]

where P;(s) and P,(s) are the power spectra of
signal and noise. This equation can be solved
for the transfer function of the optimal linear
filter:




Wiener Filter Impulse Response Function
- Py(s)
h(t) = F ! t
=7 )

Wiener Filter Mean Square Error

MSE, — /_ ZPn(s)h(s) ds



