
Continuous Random Variables

The probability that acontinuous ran-
dom variable, X, has a value between
a andb is computed by integrating its
probability density function (p.d.f.)over
the interval[a,b]:

P(a≤ X ≤ b) =
Z b

a
fX(x)dx.

A p.d.f. must integrate to one:
Z ∞

−∞
fX(x)dx= 1.



Continuous Random Variables (contd.)

The probability that the continuous ran-
dom variable,X, has any exact value,a,
is 0:

P(X = a) = lim
∆x→0

P(a≤ X ≤ a+∆x)

= lim
∆x→0

Z a+∆x

a
fX(x)dx

= 0.

In general

P(X = a) 6= fX(a).



Probability Density

The probability density ata multiplied
by ε approximately equals the probabil-
ity mass contained within an interval of
ε width centered ona:

ε fX(a) ≈
Z a+ε/2

a−ε/2
fX(x)dx

≈ P(a− ε/2≤ X ≤ a+ ε/2)



Cumulative Distribution Function

A continuous random variable,X, can
also be defined by itscumulative distri-
bution function (c.d.f.):

FX(a) = P(X ≤ a) =
Z a

−∞
fX(x)dx.

For any c.d.f.,FX(−∞)= 0 andFX(∞)=
1. The probability that a continuous ran-
dom variable,X, has a value between
a and b is easily computed using the
c.d.f.:

P(a≤ X ≤ b) =

Z b

a
fX(x)dx

=
Z b

−∞
fX(x)dx−

Z a

−∞
fX(x)dx

= FX(b)−FX(a).



Cumulative Distribution Function (contd.)

The p.d.f., fX(x), can be derived from
the c.d.f.,FX(x):

fX(x) =
d
dx

Z x

−∞
fX(s)ds

=
dFX(x)

dx
.



Joint Probability Densities

LetX andY be continuous random vari-
ables. The probability thata ≤ X ≤
b and c ≤ Y ≤ d is found by integrat-
ing the joint probability density func-
tion for X andY over the interval[a,b]
w.r.t. x and over the interval[c,d] w.r.t.
y:

P(a≤ X ≤ b,c≤Y ≤ d)

=
Z b

a

Z d

c
fXY(x,y)dydx.

Like a one-dimensional p.d.f., a two-
dimensional joint p.d.f. must also in-
tegrate to one:

Z ∞

−∞

Z ∞

−∞
fXY(x,y)dxdy= 1.



Marginal Probability Densities

fX(x) =
Z ∞

−∞
fXY(x,y)dy

fY(y) =
Z ∞

−∞
fXY(x,y)dx

Conditional Probability Densities

fX|Y(x|y) =
fXY(x,y)

fY(y)

=
fXY(x,y)

R ∞
−∞ fXY(x,y)dx

fXY(x,y) = fX|Y(x|y) fY(y)



Exponential Density

A constant fraction of a radioactive sam-
ple decays per unit time:

d f(t)
dt

= −1
τ

f (t).

What fraction of the radioactive sample
will remain after timet?

d(e−
t
τ)

dt
= −1

τ
e−

t
τ



Exponential Density (contd.)

The function, f (t) = e−
t
τ, satisfies the

differential equation, but it does not in-
tegrate to one:

Z ∞

0
e−

t
τdt = −τe−

t
τ

∣

∣

∣

∞

0

= τe−
∞
τ + τ

= τ.

So that
R ∞
−∞ fT(t)dt = 1, we divide f (t)

by τ:

fT(t) =
1
τ
e−

t
τ.



Exponential Density (contd.)

The time,T, at which an atom of a ra-
dioactive element decays is a continu-
ous random variable with the following
p.d.f.:

fT(t) =
1
τ
e−

t
τ.

The corresponding c.d.f. is:

FT(a) =
Z a

0

1
τ
e−

t
τdt

= −e−
t
τ

∣

∣

∣

a

0

= 1−e−
a
τ.

The c.d.f. gives the probability that an
atom of a radioactive element hasal-
readydecayed.



Example

The lifetime of a radioactive element
is a continuous random variable with
the following p.d.f.:

fT(t) =
1

100
e−

t
100.

The probability that an atom of this el-
ement will decay within 50 years is:

P(0≤ t ≤ 50) =

Z 50

0

1
100

e−
t

100dt

= 1−e−0.5

= 0.39.



Exponential Density (contd.)

The half-life, λ, is defined as the time
required for half of a radioactive sam-
ple to decay:

P(0≤ t ≤ λ) = 1/2.

Since

P(0≤ t ≤ λ) =
Z λ

0

1
100

e−
t

100dt

= 1−e−
1

100λ

= 1/2,

it follows thatλ = 100ln2 or 69.31 years.
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Figure 1: Exponential p.d.f.,110e−
1
10t , and c.d.f., 1−e−

1
10t .



Memoryless Property of the Exponential

If X is an exponentially distributed ran-
dom variable, then

P(X > s+ t|X > t) = P(X > s).

Proof:

P(X > s+ t|X > t) =
P(X > s+ t,X > t)

P(X > t)

=
P(X > t|X > s+ t)P(x > s+ t)

P(X > t)

=
P(X > s+ t)

P(X > t)
.

SinceP(X > t) = 1−P(X ≤ t),

P(X > s+ t)
P(X > t)

=
1− (1−e−(s+t)/τ)

1− (1−e−t/τ)

= e−s/τ

= P(X > s).



Memoryless Property of the Exponential

In plain language: Knowing how long
we’ve already waited doesn’t tells us any-
thing about how much longer we are
going to have to wait,e.g., for a bus.



Expected Value

Let X be a continuous random variable.
The expected valueof X, is defined as
follows:

〈X〉 = µ=
Z ∞

−∞
x fX(x)dx

Variance

Thevarianceof X is defined as the ex-
pected value of the squared difference
of X and〈X〉:

〈

[X−〈X〉]2
〉

= σ2 =
Z ∞

−∞
[x−〈X〉]2 fX(x)dx



Gaussian Density

A random variableX with p.d.f.,

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

is called aGaussian(or normal) ran-
dom variable withexpected value, µ, and
variance, σ2.



Expected Value for Gaussian Density

Let the p.d.f.,fX(X), equal

1√
2πσ

e−(x−µ)2/(2σ2).

The expected value,〈X〉, can be derived
as follows:

〈X〉 =
1√
2πσ

Z ∞

−∞
xe−(x−µ)2/(2σ2)dx.



Expected Value for Gaussian Density (contd.)

Writing x as(x−µ)+µ:

〈X〉 =
1√
2πσ

Z ∞

−∞
(x−µ)e−(x−µ)2/(2σ2)dx

+ µ
1√
2πσ

Z ∞

−∞
e−(x−µ)2/(2σ2)dx.

The first term is zero, since (after sub-
stitution ofu for x−µ) it is the integral
of the product of an odd and even func-
tion. The second term isµ, since

1√
2πσ

Z ∞

−∞
e−(x−µ)2/(2σ2)dx=

Z ∞

−∞
fX(x)dx= 1.

Consequently,

〈X〉 = µ.



C.d.f. for Gaussian Density

Because the Gaussian integrates to one
and is symmetric about zero, its c.d.f.,
FX(a), can be written as follows:
Z a

−∞
fX(x)dx=

{

1
2−

R 0
a fX(x)dx if a < 0

1
2 +

R a
0 fX(x)dx otherwise.

Equivalently, we can write:
Z a

−∞
fX(x)dx=

{

1
2−

R |a|
0 fX(x)dx if a < 0

1
2 +

R |a|
0 fX(x)dx otherwise.



C.d.f. for Gaussian Density (contd).

To evaluate
R |a|

0 fX(x)dx, recall that the
Taylor series forex is:

ex =
∞

∑
n=0

xn

n!
.

The Taylor series for a Gaussian is there-
fore:

fX(x) =
1√
2π

e−x2/2

=
1√
2π

∞

∑
n=0

(

−x2/2
)n

n!

=
1√
2π

∞

∑
n=0

(−1)n

n!
x2n

2n
.



C.d.f. for Gaussian Density (contd.)

Consequently:
Z |a|

0
fX(x)dx =

1√
2π

Z |a|

0

∞

∑
n=0

(−1)n

n!
x2n

2n
dx

=
1√
2π

∞

∑
n=0

(−1)n

n!
x2n+1

2n(2n+1)

∣

∣

∣

∣

∣

|a|

0

=
1√
2π

∞

∑
n=0

(−1)n

n!
|a|2n+1

2n(2n+1)
.
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Figure 2: Gaussian p.d.f. and c.d.f.,µ = 0 andσ2 = 1, computed using Taylor
series.


