Continuous Random Variables

The probability that aontinuous ran-
dom variable X, has a value between
a andb is computed by integrating its
probability density function (p.d.fgver
the intervalla, bJ:

P(a< X <b) — /b fir (X)dx

A p.d.f. must integrate to one:

/_0; fx (x)dx= 1.



Continuous Random Variables (contd.)

The probabillity that the continuous ran-
dom variableX, has any exact valua,
IS O:

P(X=a) = lim P(a<X <a+Ax)
Ax—0
a+Ax

- fim, [ 090

= 0.

In general

P(X =a) # fx(a).



Probabllity Density

The probability density ad multiplied
by € approximately equals the probabil-
ity mass contained within an interval of
€ width centered om:

a+e/2
/ fx (X)dx
a

—€/2
Pla—e/2<X <a+¢g/2)

Q

efx(a)

Q



Cumulative Distribution Function

A continuous random variablé&, can
also be defined by itsumulative distri-
bution function (c.d.f:)

F(a)=P(X<a) = /_1 fx (x)dx

Forany c.d.f.Fx(—o0) =0 andFx (o) =

1. The probability that a continuous ran-
dom variable X, has a value between
a and b is easily computed using the

c.d.f.:

Pla< X <b)

]
91\\

dx/fx dx



Cumulative Distribution Function (contd.)

The p.d.f., fx(x), can be derived from
the c.d.f.,/(x):

fx(X) = %{/_: fx(s)ds
dFx(x)

dx




Joint Probability Densities

Let X andY be continuous random vari-
ables. The probability thah < X <
band c <Y <dis found by integrat-
Ing the joint probability density func-
tion for X andY over the intervala, b|
w.r.t. x and over the intervdkt, d] w.r.t.
Y

a<x<bc<Y<m

—/ / fxyxydydx

Like a one-dimensional p.d.f., a two-
dimensional joint p.d.f. must also in-
tegrate to one:

/ / fxv(X,y)dxdy= 1.



Marginal Probability Densities

fx(x) = /_O; fxv(x,y)dy

fv(y) = /_o:o fxv(x, y)dx

Conditional Probability Densities

fXY(Xa y)

fv(y)
fxy (X, Y)

S Txy(X,y)dx

fxy (X]y) =

fxy(X,y) = fxpv (X]y) fv(y)



Exponential Density

A constant fraction of a radioactive sam-
ple decays per unit time:

dft) 1,

t).

dt T (®

What fraction of the radioactive sample
will remain after timet?

—~|—+

1
=
T



Exponential Density (contd.)

The function, f(t) = e 1, satisfies the
differential equation, but it does not Iin-
tegrate to one:

@ t |
/ e idt = —t1e T
0

So that/”,, fr(t)dt =1, we dividef (t)
by T:



Exponential Density (contd.)

The time,T, at which an atom of a ra-
dioactive element decays Is a continu-
ous random variable with the following
p.d.f.:

e

—|—+
L]

fr(t) =
The corresponding c.d.f. Is:

1
.

al
F(a) = /O —e tdt

t
— —e T

(amd

~
Q

~lO

—1—-er.

The c.d.f. gives the probabillity that an
atom of a radioactive element hat
readydecayed.



Example

The lifetime of a radioactive element
IS a continuous random variable with
the following p.d.f.:

1 ¢

fT (t) — 1—006 100,

The probability that an atom of this el-
ement will decay within 50 years Is:

|
D

=

(@

(@,
o
~—+

P(0 <t < 50) ™
0



Exponential Density (contd.)

The half-life, A, Is defined as the time
required for half of a radioactive sam-
ple to decay:

PO<t<A)=1/2

it follows thatA =100In2 or 69.31 years.
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Figure 1: Exponential p.d.fAe 1!, and c.d.f., 1-e 1o,



Memoryless Property of the Exponential

If X Is an exponentially distributed ran-
dom variable, then

P(X >s+tX>t)=P(X>79).

Proof:
P(X>s+t,X >1t)
P(X >1)
P(X >t|X >s+1t)P(X> s+t)

PX>s+tX>t) =

P(X >1t)
P(X > s+t)
P(X>t)

SinceP(X >t)=1-P(X <),
P(X>s+t) 1—(1—e /)

PX>t)  1—(1—-eVT)
_ e—s/r

= P(X >5).




Memoryless Property of the Exponential

In plain language: Knowing how long
we've already waited doesn’t tells us any-
thing about how much longer we are
going to have to wait.qg, for a bus.



Expected Value

Let X be a continuous random variable.
The expected valuef X, is defined as
follows:

(X) = u:/ X fx (X)dx
Variance

Thevarianceof X is defined as the ex-
pected value of the squared difference
of X and(X):



Gaussian Density

A random variableX with p.d.f.,

_ 1w
fx(X) O_\/Z_[e
Is called aGaussian(or normal ran-
dom variable withexpected valugl, and
variance o2.




Expected Value for Gaussian Density

Let the p.d.f.,fx(X), equal

L o ew?eo?)
V210
The expected valuéx), can be derived
as follows:

1 o 2 /12
X — / e~ (—1?/(20%) 4y
< > \/2T0 J —




Expected Value for Gaussian Density (contd.)

Writing x as(X — ) + L

1 o 2 /1o 2
X — / w— 1)e~ (- 1W%(207) gy
(X) oo (X—W)

1

v
Sy

The first term Is zero, since (after sub-
stitution ofu for x— ) it is the integral
of the product of an odd and even func-
tion. The second term |g since

1 (00) (0.0)
\/ﬁofooe(xmz/(zcz)dx: /_oo fx (X)dx= 1.

Consequently,
(X) =M

—00
(00)

o~ (x—H?/(20%) 4y




C.d.f. for Gaussian Density

Because the Gaussian integrates to one
and IS symmetric about zero, its c.d.f.,
(a), can be written as follows:

/fx X)dx= { fan( x)dx if a <0

+ [5 fx(x)dx otherwise
Equivalently, we can write:

al :
/ fx (X dx{% Jo fx(x)dx if a< 0
>+

Joal £ (x)dx otherwise



C.d.f. for Gaussian Density (contd).

To evaluate[}? fx(x)dx, recall that the

Taylor series foe* is:
00 Xn
4 n!

The Taylor series for a Gaussian is there-
fore:




C.d.f. for Gaussian Density (contd.)

Consequently:
nX2n

2l a] @
/o fy (X dx—\/_n/ ; S 2n
1 00 (_1)n X2n+1
_ﬁnzo n 2"(2n+1)
1 @ (_1)n ‘a‘2n+1

:ﬁnzo nl 2(2n+1)
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Figure 2: Gaussian p.d.f. and c.dfii= 0 ando? = 1, computed
series.
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