The 2D Fourier Transform

The analysis and synthesis formulas for the 2D continuous Fourier transform are as follows:

- **Analysis**
 \[F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(ux+vy)} \, dx \, dy \]

- **Synthesis**
 \[f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j2\pi(ux+vy)} \, du \, dv \]
Separability of 2D Fourier Transform

The 2D analysis formula can be written as a 1D analysis in the x direction followed by a 1D analysis in the y direction:

$$F(u, v) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x, y) e^{-j2\pi ux} \, dx \right] e^{-j2\pi vy} \, dy.$$

The 2D synthesis formula can be written as a 1D synthesis in the x direction followed by a 1D synthesis in y direction:

$$f(x, y) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} F(u, v) e^{j2\pi ux} \, du \right] e^{j2\pi vy} \, dv.$$
Separability Theorem

\[f(x, y) = f(x)g(y) \xrightarrow{\mathcal{F}} F(u, v) = F(u)G(v) \]

Proof:

\[
F(u, v)
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(ux+vy)} \, dx \, dy
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y) e^{-j2\pi ux} e^{-j2\pi vy} \, dx \, dy
= \int_{-\infty}^{\infty} f(x) e^{-j2\pi ux} \, dx \int_{-\infty}^{\infty} g(y) e^{-j2\pi vy} \, dy
= F(u)G(v)
\]
The 2D Discrete Fourier Transform

The analysis and synthesis formulas for the 2D discrete Fourier transform are as follows:

- **Analysis**

 \[
 \hat{F}(k, \ell) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F(m, n) e^{-j2\pi \left(\frac{km}{M} + \frac{\ell n}{N}\right)}
 \]

- **Synthesis**

 \[
 F(m, n) = \frac{1}{\sqrt{MN}} \sum_{k=0}^{M-1} \sum_{\ell=0}^{N-1} \hat{F}(k, \ell) e^{j2\pi \left(\frac{km}{M} + \frac{\ell n}{N}\right)}
 \]
Separability of the 2D DFT

\[\hat{F}(k, \ell) = \]
\[\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[\frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} F(m, n) e^{-j2\pi \frac{k m}{M}} \right] e^{-j2\pi \frac{\ell n}{N}} \]

The 2D forward DFT can be written in matrix notation:

\[\hat{F} = (W^* F) W^* \]

where

\[W^*_{mn} = \frac{1}{\sqrt{N}} e^{-j2\pi m n} \]

and

\[F(m, n) = \]
\[\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} \left[\frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} \hat{F}(k, \ell) e^{j2\pi \frac{k m}{M}} \right] e^{j2\pi \frac{\ell n}{N}}. \]
Separability of the 2D DFT (contd.)

The 2D inverse DFT can be written in matrix notation:

\[F = (W\hat{F})W \]

where

\[W_{mn} = \frac{1}{\sqrt{N}} e^{j2\pi m\frac{n}{N}}. \]