CS 530: Geometric and Probabilistic Methods in Computer Science Homework 4 (Fall '13)

1. Write a function in MATLAB which, given an $N \times 1$ vector, \mathbf{x}, will return an $N \times N$ circulant matrix:

$$
\mathbf{A}=\left[\begin{array}{l|l|l|l}
\mathbf{S}^{0} \mathbf{x} & \mathbf{S}^{1} \mathbf{x} & \cdots & \mathbf{S}^{N-1} \mathbf{x}
\end{array}\right]
$$

where $S_{i j}^{n}=\delta(i-j-n \bmod N)$ and δ is the Kronecker delta function.
2. Using MATLAB compute the following:
(a) A 4×4 circulant matrix \mathbf{A}, where the first column of \mathbf{A} is $\mathbf{x}=\left[\begin{array}{llll}-1 & 2 & -3 & 4\end{array}\right]^{\mathrm{T}}$.
(b) \mathbf{W}, the matrix of right eigenvectors of \mathbf{A}, and Λ, the diagonal matrix of eigenvalues.
(c) \mathbf{W}^{-1} and $\left(\mathbf{W}^{*}\right)^{\mathbf{T}}$.
(d) $\mathbf{A y}$ where $\mathbf{y}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]^{\mathrm{T}}$.
(e) $\mathbf{W} \Lambda\left(\mathbf{W}^{*}\right)^{\mathrm{T}} \mathbf{y}$ where $\mathbf{y}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]^{\mathrm{T}}$.
(f) A 100×100 circulant matrix \mathbf{B} where the first column of \mathbf{B} is $\mathbf{x}=$ $\left[\begin{array}{ccccc}-1 & 2 & -3 & \cdots & 100\end{array}\right]^{\mathrm{T}}$. There is no need to print it out.
(g) Let λ be the eigenvalue of \mathbf{B} with twelfth smallest magnitude. Plot the left and right eigenvectors of \mathbf{B} with eigenvalue equal to λ. Note: The eigenvectors are complex. The real and imaginary parts should be plotted as functions of time.
3. Prove that $\sin (x)=\frac{e^{j x}-e^{-j x}}{2 j}$.
4. The impulse response function of a linear shift-invariant system is:

$$
h(t)=\frac{\sin (\pi t)}{\pi t}
$$

and its input is:

$$
x(t)=\cos (4 \pi t)+\cos (\pi t / 2) .
$$

What is its output?
5. The impulse response function of a linear shift-invariant system is:

$$
h(t)=e^{-\frac{\pi t^{2}}{2}}
$$

and its input is:

$$
x(t)=e^{j 2 \pi s_{0} t} .
$$

What is its output?
6. The sine Gabor function is the product of a sine and a Gaussian, $f(t)=$ $e^{-\pi t^{2}} \sin \left(2 \pi s_{0} t\right)$. Give an expression for $F(s)$, the Fourier transform of $f(t)$.
7. Prove that the sum of two independent Gaussian random variables with zero mean and variances σ_{1}^{2} and σ_{2}^{2} is a Gaussian random variable with zero mean and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$.
8. The function, $f(t)$, is defined as:

$$
f(t)= \begin{cases}1 & \text { if }|a t-b| \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Give an expression for $F(s)$, the Fourier transform of $f(t)$.
9. The transfer function of a linear shift invariant system is $H(s)=1 / s$. The impulse response function, $h(t)$, is $\mathcal{F}^{-1}\{H(s)\}$. Give an expression for $g(t)$ where:

$$
g(t)=\int_{-\infty}^{\infty} e^{j 2 \pi s_{0} \tau} h(t-\tau) d \tau
$$

10. Compute the Fourier transform of $f(t)=-2 \pi t e^{-\pi t^{2}} \cos \left(2 \pi s_{0} t\right)$. Hint: What is $\frac{d\left(e^{-\pi t^{2}}\right)}{d t}$?
11. Prove the following statement: If $\mathcal{F}\{f\}(s)=F(s)$ then $\mathcal{F}\{F\}(s)=f(-s)$. Hint: If $\mathcal{F}\{f\}(s)=F(s)$ then $\mathcal{F}^{-1}\{F\}(t)=f(t)$.
12. Prove that $\mathcal{F}^{-1}\{\mathcal{F}\{f\}\}=f$
13. Write a MATLAB function which takes an integer argument, N, and computes the truncated Fourier series:

$$
f_{N}(t)=\pi+\sum_{\substack{\omega=-N}} \frac{j}{\omega} e^{j \omega t}
$$

Plot the real and imaginary parts of $f_{N}(t)$ for $N=1,3,6,12,24$ and 48. Plot the functions on the interval, $-4 \pi \leq t \leq 4 \pi$.

