1. Consider the following advection-diffusion partial differential equation:
\[\frac{\partial P}{\partial t} = -C \frac{\partial P}{\partial x} + D \frac{\partial^2 P}{\partial x^2}. \]

(a) Give finite difference approximations for \(\frac{\partial P}{\partial t} |_{x,t} \), \(\frac{\partial P}{\partial x} |_{x,t} \), and \(\frac{\partial^2 P}{\partial x^2} |_{x,t} \).
(b) Give an expression for \(P(x, t + \Delta t) \) in terms of \(P(x, t) \), \(P(x + \Delta x, t) \), and \(P(x - \Delta x, t) \).

2. A bivariate Gaussian random variable, \(x = [x_0 \ x_1]^T \), has the following p.d.f.:
\[f(x_0, x_1) = \left(\frac{a^2 - b^2}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2} [ax_0x_0 + 2bx_0x_1 + ax_1x_1]\right). \]

(a) Give the matrix \(W \) which will decorrelate the components of \(x \).
(b) Let \(u = Wx \). Give an expression for \(g(u_0, u_1) \), the p.d.f. for the bivariate Gaussian random variable, \(u = [u_0 \ u_1]^T \).

3. Let \(S_r(\lambda), S_g(\lambda), \) and \(S_b(\lambda) \) be the spectral sensitivity functions of the red, green, and blue cones of the human retina. Let \(C(\lambda) \) be the spectral distribution of a sunlit daffodil. Define a system of linear equations, which when solved, gives the amounts, \(V_r(C), V_g(C), \) and \(V_b(C) \), of the three CIE standard primary sources, \(\delta(\lambda - 700), \delta(\lambda - 546), \) and \(\delta(\lambda - 436) \), necessary to reproduce the color of the sunlit daffodil.

4. The \(n \)-th moment of \(\Psi \) is defined to be \(M_n\{\Psi\} = \int_{-\infty}^{\infty} t^n \Psi(t) dt \). Let \(f(t) = e^{-\pi t^2}, f'(t) = -2\pi t e^{-\pi t^2}, \) and \(f''(t) = 2\pi e^{-\pi t^2}(2\pi t^2 - 1) \). Prove the following:

(a) \(M_0\{f'\} = 0 \).
(b) \(M_0\{f''\} = M_1\{f''\} = 0 \).

5. The six vectors, \(f_1 = [\cos(\pi/3) \ \sin(\pi/3)]^T, f_2 = [\cos(\pi/3) \ -\sin(\pi/3)]^T, f_3 = [-1 \ 0]^T, f_4 = [-\cos(\pi/3) \ -\sin(\pi/3)]^T, f_5 = [-\cos(\pi/3) \ \sin(\pi/3)]^T, \) and \(f_6 = [1 \ 0]^T \) form a frame \(\mathcal{F} \) for \(\mathbb{R}^2 \). Draw the frame.
(a) Give two representations for the vector, \(x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \), in \(F \).

(b) Prove that \(x \) has an infinite number of representations in \(F \).

(c) Give a matrix which transforms any representation of a vector in \(F \) into its representation in the standard basis for \(\mathbb{R}^2 \).

(d) Give a matrix which transforms a representation of any vector in the standard basis for \(\mathbb{R}^2 \) into its representation in \(F \).