CS 530: Geometric and Probabilistic Methods in Computer Science Homework 6 (Fall '13)

1. Let $f(t)=e^{-\pi t^{2}}, f^{\prime \prime}(t)=2 \pi e^{-\pi t^{2}}\left(2 \pi t^{2}-1\right)$, and $g(t)=a t+b$. Prove or disprove the following:

$$
\left\langle f^{\prime \prime}, g\right\rangle=0
$$

for all a and b.
2. Let $\Psi(t)=e^{-\pi t^{2}} \cos \left(2 \pi s_{0} t\right)$ and $f(t)=e^{j 2 \pi s_{1} t}$. Give an expression for $F(a, b)$, the continuous wavelet transform of $f(t)$.
3. The n-th moment of Ψ is defined to be $M_{n}\{\Psi\}=\int_{-\infty}^{\infty} t^{n} \Psi(t) d t$. Let $f(t)=$ $e^{-\pi t^{2}}, f^{\prime}(t)=-2 \pi t e^{-\pi t^{2}}$, and $f^{\prime \prime}(t)=2 \pi e^{-\pi t^{2}}\left(2 \pi t^{2}-1\right)$. Prove the following:
(a) $M_{0}\left\{f^{\prime}\right\}=0$.
(b) $M_{0}\left\{f^{\prime \prime}\right\}=M_{1}\left\{f^{\prime \prime}\right\}=0$.
4. The six vectors, $\mathbf{f}_{1}=\left[\begin{array}{ll}\cos (\pi / 3) & \sin (\pi / 3)\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{2}=[\cos (\pi / 3)-\sin (\pi / 3)]^{\mathrm{T}}$, $\mathbf{f}_{3}=\left[\begin{array}{ll}-1 & 0\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{4}=\left[\begin{array}{ll}-\cos (\pi / 3) & -\sin (\pi / 3)\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{5}=[-\cos (\pi / 3) \sin (\pi / 3)]^{\mathrm{T}}$, and $\mathbf{f}_{6}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$ form a frame \mathcal{F} for \mathbb{R}^{2}. Draw the frame.
(a) Give two representations for the vector, $\mathbf{x}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$, in \mathcal{F}
(b) Prove that \mathbf{x} has an infinite number of representations in \mathcal{F}.
(c) Give a matrix which transforms any representation of a vector in \mathcal{F} into its representation in the standard basis for \mathbb{R}^{2}.
(d) Give a matrix which transforms a representation of any vector in the standard basis for \mathbb{R}^{2} into its representation in \mathcal{F}.
5. The continuous representation of the Haar highpass filter is

$$
h_{1}(t)=\frac{1}{2}[\delta(t+\Delta t)-\delta(t-\Delta t)] .
$$

The continuous representation of the Haar lowpass filter is

$$
h_{0}(t)=\frac{1}{2}[\delta(t+\Delta t)+\delta(t-\Delta t)] .
$$

Prove that

$$
H_{0}(s) H_{0}^{*}(s)+H_{1}(s) H_{1}^{*}(s)=1
$$

where $H_{0}(s)$ and $H_{1}(s)$ are the Fourier transforms of $h_{0}(t)$ and $h_{1}(t)$.
6. The $N+1$ channel Haar transform matrix can be recursively defined as follows:

$$
\mathbf{H}_{N}=\frac{1}{\sqrt{2}}\left[\begin{array}{c|c}
\mathbf{I}_{N-1} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{H}_{N-1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}_{N} \\
\hline \mathbf{L}_{N}
\end{array}\right]
$$

where \mathbf{U}_{N} convolves a length 2^{N} signal with the Haar highpass filter followed by downsampling, \mathbf{L}_{N} convolves a length 2^{N} signal with the Haar lowpass filter followed by downsampling, \mathbf{I}_{N} is the identity matrix of size $2^{N} \times 2^{N}$ and

$$
\mathbf{H}_{1}=\frac{1}{\sqrt{2}}\left[\frac{\mathbf{U}_{1}}{\mathbf{L}_{1}}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

(a) Using the above definitions, derive expressions for \mathbf{H}_{3} and \mathbf{H}_{3}^{-1}.
(b) Compute the Haar transform of the vector $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right]^{\mathrm{T}}$.

