
Two Channel Subband Coding
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Figure 1: Two channel subband coding.

In two channel subband coding

• A signal is convolved with a highpass filter
~h1 and a lowpass filter~h0.

• The two halfband signals are then downsam-
pled.

• These operations trade one bit of resolution
in time for one bit of resolution in frequency.

The process can be inverted by

• Upsampling each halfband signal

• Convolving each halfband signal with a time
reversed filter

• Adding the results.



Discrete Orthogonal Wavelet Design

• Given a highpass filter,~h1, of length,N = 8,
with four non-zero taps,a, b, c, andd.

• If the inner product of

~h1 =
[

c d 0 0 0 0 a b
]T

and samples of a constant function,f (t) = 1,
is zero:

a·1+b·1+c ·1+d ·1= 0

then~h1 hasone vanishing moment.

• If (additionally) the inner product of~h1 and
samples of a linear ramp function,f (t) = t,
is zero:

a· (−2)+b· (−1)+c ·0+d ·1= 0

then~h1 hastwo vanishing moments.
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Figure 2: (a) Recursive application of two channel subband coding to the lower halfband signal
results indiadicsampling of time and frequency. This process is called thefast wavelet transform.
(b) The process can be inverted to recover the original signal.



Discrete Orthogonal Wavelet Design (contd.)

We also require that~h1 be orthogonal to all of
its even shifts.
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This means that the taps must satisfy two addi-
tional constraints:

a·a+b·b+c ·c+d ·d = 1

and
a·c+b·d = 0.



Alternating Flip with Odd Shift

The lowpass filter,~h0, is created from the high-
pass filter,~h1, as follows:

~h0(n) = (−1)n~h1(K −n)

This combines the following three operations:

• Reflect.

• Shift by an odd amount.

• Alternate signs.

~h0 and~h1 are termedconjugate mirror filters.



Example

Given a highpass filter~h1 of lengthN = 8:

~h1 =
[

c d 0 0 0 0 a b
]T
.

1. Reflect~h1 about the origin to get:

~h1(−n) =
[

c b a 0 0 0 0 d
]T
.

2. Shift it byK = 1 to get:

~h1(1−n) =
[

b a 0 0 0 0 d c
]T
.

3. Alternate the signs to get the taps of the low-
pass filter~h0:

~h0 = (−1)n~h1(1−n)

=
[

b −a 0 0 0 0 d −c
]T
.



Two Channel Subband Coding (contd.)

The two channel subband coding matrix looks
like this:
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We observe that

•~h0 is orthogonal to all even shifts of~h0

•~h0 is orthogonal to all even shifts of~h1

•~h1 is orthogonal to all even shifts of~h1.



The Daubechies 4 Wavelet
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satisfy the following constraints:

• a·a+b·b+c ·c+d ·d = 1

• a·c+b·d = 0

• a·1+b·1+c ·1+d ·1= 0

• a· (−2)+b· (−1)+c ·0+d ·1= 0

It follows that the Daubechies 4 highpass filter
has two vanishing moments.



Orthonormal Wavelet Series

Recall that the daughter wavelets and the mother
wavelet in a dyadic wavelet series transform are
related as follows:

Ψ j ,k(x) =
1√
2 j

Ψ
(

x−k2 j

2 j

)

.

We seek a mother waveletΨ where the daugh-
ter waveletsΨ j ,k for −∞≤ j ≤∞ and−∞≤ k≤
∞ form an orthonormal basis for the space of
square integrable functions (“The Holy Grail”):

• Analysis

< f ,Ψ j ,k >=
∫ ∞

−∞
f (x)Ψ j ,k(x)dx

• Synthesis

f (x) =
∞

∑
j=−∞

∞

∑
k=−∞

< f ,Ψ j ,k > Ψ j ,k(x).



Orthonormal Wavelet Series

A discrete signal can be represented by a vec-
tor,~h. However, it can also be represented by
a continuous signal,h(.), equal to a weighted
sum of shifted impulses:

h(t) =
∞

∑
i=−∞

~h(i) δ(t − i).

We can model convolution and downsampling
of discrete signals using continuous representa-
tions. By the sifting property, the convolution
of a continuous signal,g(.), and a continuous
representation of a discrete filter,h(.), is:

{g∗h}(t) =
∞

∑
i=−∞

~h(i) g(t − i).



Orthonormal Wavelet Series (contd.)

The effect of downsampling a discrete signal is
modeled by dilating its continuous representa-
tion, g(.), by a factor of one-half:

g(t)→ g(2t).

The combined effects of convolving a continu-
ous signal,g(.), with a continuous representa-
tion of a discrete filter,h(.), and downsampling
is then:

{g∗h}(2t) =
∞

∑
i=−∞

~h(i) g(2t − i).



Orthonormal Wavelet Series (contd.)

The scaling function(or “father”) is thefixed
pointof the lowpass filtering and downsampling
operations:

Φ(t) =
∞

∑
i=−∞

~h0(i) Φ(2t − i).

The wavelet(or “mother”) is derived from the
scaling function by a single highpass filtering
and downsampling operation:

Ψ(t) =
∞

∑
i=−∞

~h1(i) Φ(2t − i).



Orthonormal Wavelet Series (contd.)

The daughter wavelets

Ψ j ,k(x) =
1√
2 j

Ψ
(

x−k2 j

2 j

)

where−∞ ≤ j ≤ ∞ and−∞ ≤ k ≤ ∞ form an
orthonormal basis for the space of square inte-
grable functions!



The Daubechies 4 Wavelet (contd.)
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Figure 3: Daubechies 4 scaling function,Φ.
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Figure 4: Daubechies 4 wavelet,Ψ.



Conjugate Mirror Filters

We have seen that the alternating flip with odd
shift can be used to find an orthogonalh0. But
how do we know thath0 is lowpass? We want
the amplitudes of the transfer functions to be
equal except for a shift byN/2:

|H0(m)|= |H1(m+N/2)|
This will guarantee thath0 is lowpass ifh1 high-
pass.



Conjugate Mirror Filters (contd.)

Shifting and reflection (conjugation) havenoef-
fect on theamplitudeof H1 (they affect only its
phase):

|F {h1(n)}| = |H1(m)|
=

∣

∣

∣e− j2πmK
NH1(m)

∣

∣

∣

= |F {h1(K −n)}|.
We conclude thath1(n) andh1(K −n) have the
same power spectrum.



Conjugate Mirror Filters (contd.)

What effect does theN/2 shift have on the im-
pulse response function?

F −1{H1(m+N/2)} = e− j2πnN/2
N h1(n)

= e− jπnh1(n)
= (−1)nh1(n)



Figure 5: The Haar lowpass filter,h0, and highpass filter,h1, and their Fourier transform ampli-
tudes.



Conjugate Mirror Filters (contd.)

We now see where each of the three steps came
from:

• Conjugation in frequency domain is reflec-
tion in space domain.

• Shift byN/2 in frequency domain is achieved
by changing signs of odd coefficients in space
domain.

• Multiplication bye− j2πmK/N in frequency do-
main is shift byK in space domain.

Comment: The fact that one can simultaneously
achieve orthogonality and complementarity (in
the lowpass/highpass sense) by such a simple
manipulation is pretty amazing!



Conjugate Mirror Filters (contd.)

Let’s look at what two channel subband coding
looks like in the frequency domain:

• Analysis

F0(m) = H0(m)F(m)

F1(m) = H1(m)F(m)

• Synthesis

F(m) = F0(m)H0(m)+F1(m)H1(m)



Conjugate Mirror Filters (contd.)

Substituting the analysis expressions forF0 and
F1 into the synthesis expression yields:

F(m)=F(m)H0(m)H0(m)+F(m)H1(m)H1(m)

which means that

F(m) = F(m)
[

|H0(m)|2+ |H1(m)|2
]

,

so that

|H0(m)|2+ |H1(m)|2 = 1

which can be solved for the transfer function of
the lowpass filter:

|H0(m)|2 = 1−|H1(m)|2.
Thus, an appropriate highpass filter,i.e.,a filter
with the desired number of vanishing moments,
is all that is required to design a discrete orthog-
onal wavelet transform.


