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Abstract

This paper presents an overview of the acoustic wave equation and the common
time-domain numerical solution strategies in closed environments. First, the wave
equation is presented and its qualities analyzed. Common principles of numerical
approximation of derivatives are then reviewed. Based on them, the finite difference
(FD) and the finite element methods (FEM) for the solution of the wave equation are
presented along with algorithmic and practical considerations.

1 Introduction and Preliminaries

The sensation of sound is due to small variations in air pressure. The variations are go-
verned by the three-dimensionalwave equation, a second-order linear partial differential
equation, which relates the temporal and spatial derivatives of the pressure field. This
paper presents an overview of the wave equation (section 2) and outlines the most com-
mon time-domain1 methods for its numerical solution; namely thefinite differenceand the
finite elementmethods.

Section 3 describes the approximation of continuous functions and their derivatives
by finite differences and presents methods for discretizing the wave equation using these
approximations. Section 4 introduces methods for solving the resulting ordinary differen-
tial equations by time-stepping. We also present the finite element discretization of the
wave equation in section 5, and conclude with some comparisons between the methods in
section 6.

∗Jaakko.Lehtinen@hut.fi
1as opposed to frequency-domain
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2 The Wave Equation

This section presents the wave equation and some of its qualities. We first introduce the
nature of the solutions, then discuss the equation of motion along with boundary and
initial conditions, and conclude with a note on the Helmholtz equation.

2.1 Introduction

When determining the acoustic properties of an environment, we are actually interested
in the “propagation of sound”, given the properties and location of a sound source. Sound
waves themselves are small fluctuations in air pressure. In simple cases (in the absence of
temperature gradients, for instance) these small fluctuations can be treated as small pertur-
bations of an ambient pressure field. The propagation of these fluctuations is governed by
thewave equation, which can be derived from purely mechanical considerations (springs
and masses with certain linearizations, see e.g. Eirola, 2002) or from suitable simpli-
fications of the more general equations of fluid dynamics (Pierce, 1991). Solution of the
complete, non-linear equations of fluid dynamics is generally not required for acoustic
purposes.

The solution of the wave equation is a time-dependent pressure fieldu(t,x), with
x ∈ Ω andt > 0. HereΩ denotes the set of points inside the environment to be simu-
lated; in realistic situationsΩ is three-dimensional, but we shall often resort to lower-
dimensional examples for easier presentation. We stress that the solutionu to the equa-
tion is a scalar function over three spatial dimensions and time; the function describes
the acoustic sound pressure for each pointx in the environment for eacht. This is the
key difference between solutions of “normal” algebraic equations and differential equa-
tions2; roughly speaking, the solutions of differential equations are themselves functions,
while the solutions of normal algebraic equations are points within the domain of some
equation-dependent function.

2.2 The Equation of Motion and Boundary Conditions

The wave equation is a second-order linear partial differential equation

utt = c2∆u + f (1)

with

utt =
∂2u

∂t2
, ∆ = ∇ · ∇ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2)

wheseu is the pressure field (as described above) andc is the speed of sound, which we
assume to be constant in the whole environment. The equation thus relates the second

2Actually, we should be talking aboutoperator equationsinstead of just differential equations.
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time derivative of the pressure to its spatialLaplacian∆u. f = f(t,x) represents time
dependent force terms, which we discuss soon. The equation is called apartial differential
equation because it involves derivatives of the solution functionu with respect to more
than one variable.

Equation (1) is in itself not uniquely solvable. In addition to this equation of motion,
the behaviour of the solution on the boundaries of the environment, which we denote by
∂Ω, needs to be determined. These so-called boundary conditions (BCs) dictate how the
walls of the environment reflect sound waves. Elementary types of boundary conditions
prescribe either the solutions’ values or the values of the solution’s normal derivatives3 on
the boundary. In this paper we leave out most details on boundary conditions. We mention
in passing that it is possible to construct so-calledabsorbingBCs, which do not reflect
any of the waves striking the boundary, and the waves appear to just leave the domain.
Absorbing boundary conditions are useful in analyzing enclosures partly bounded but
connected to a “large” open space.

In addition to boundary conditions,initial conditionsneed to be specified. This means
that fort = 0, an initial pressure distributionu(0,x) and an initial velocityut(0,x) distri-
bution are required.

The force termf(t,x) represents sources of disturbations in air pressure; these are
the sound sources.4 Usually, an acoustics application solves the wave equation withf
describing an initial impulse. The solution of the wave equation then describes the time-
dependent propagation of the impulse in the environment. The solutionu is an univariate
function (in t) for eachx in the environment, and can be used as an impulse response in
an auralization system.

2.3 Dispersion

In the case of wave propagation,dispersionmeans that waves either travelling to different
directions or having different frequencies propagate with different speeds. Dispersion can
occur both naturally (in a dispersive medium) and artificially. The “pure” wave equation
presented above is nondispersive, i.e. in the exact solution all waves, regardless of direc-
tion or frequency, propagate with the speedc. Unwanted artificial dispersion occurs in
all numerical methods. The effects often include waves travelling along coordinate axes
propagating slower than in diagonal directions, and high-frequency waves propagating
slower than lower-frequency waves. It is possible to analyze the dispersion introduced by
a numerical method either directly by substituting certain “test waves” into the discretized
equation (Eirola, 2002) or by frequency domain analysis, see Savioja (1999).

3Normal derivative:∇u · n, wheren is the outward unit normal on the boundary
4Another way of describing sources is to use time-dependent boundary conditions, which we will not

cover.
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2.4 The Helmholtz Equation

We briefly mention that separating variables in the wave equation, that is, searching for
the solutionu in the form

u = Ψ(x)eiωt (3)

leads to the so-calledHelmholtz equation, sometimes called thereduced wave equation

∆Ψk + k2Ψk = 0, (4)

whereω is the frequency of aneigenmodeandk2 = ω2/c2 is thewave number. Mathe-
matically, the problem is about the eigenvalues of the Laplacian operator (Erikssonet al.
, 1996). For closed domains, solutions only exist for a countable set of differentω; the
solutionsΨk for the corresponding wave numbers are thestanding wavesinherent to the
geometry of the domain. The Helmholtz equation is the basis for a large number of nume-
rical methods for computational acoustics; they are calledspectral methodssince they do
not simulate time-dependent pressure fields but the responses of the environment to diffe-
rent frequencies instead. Since the focus on this paper is in explicit time-domain methods,
we do not discuss this further.

3 Finite Differences

The exact solutions to the wave equation discussed in the previous section are infinite di-
mensional, that is, no finite number of parameters can fully describe the solution, except
in a very limited set of special cases. Since computers work with finite memories and
perform only finite calculations, approximations must be made in order to solve the wave
equation numerically. Here we stress that the complete, correct solution is generally una-
vailable to us in closed form.Numerical analysisdeals, among other problems, with
issues concerning discrete approximations to continuous problems; these include the met-
hods used to discretize the solutions domains in both time and space, methods of solving
the discretized versions of the equations, and error analysis.

3.1 Discretized derivatives

In this section we describe the simplest possible ways of discretizing derivatives of func-
tions. We work in one dimension for simplicity.

As an example we look at continuous, bounded, real-valued functions defined on the
interval [0, 1]. In order to represent general functions, we might scatter a large but finite
numberN of equidistant pointsxi, with i = 1, . . . , N , inside the interval and store the
value of the function in those points only. Even though this representation does obviously
not correspond to a continuous function (generally speaking), we do have some idea of
what the function is like. We denote the distance between two node points byh. Now,
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suppose that we are interested in the derivatives of the function which we have represented
by point samples. Since we only know the function’s values at the node pointsxi, we
must somehow combine those values to obtain an estimate for the derivative. The simplest
methods are suggested by the usual difference quotient that is used to define the derivative
in the continuous case. This yields the approximations

f ′(xi) ≈
f(xi+1)− f(xi)

h
, (5)

f ′(xi) ≈
f(xi)− f(xi−1)

h
, and (6)

f ′(xi) ≈
f(xi+1)− f(xi−1)

2h
, (7)

which are calledforward difference, backward differenceandcentral difference, respecti-
vely (Atkinson & Han, 2001).

The Taylor series provides us an elegant approximation for the second derivative. The
expansion gives us

f(x + h) = f(x) +
h1

1!
f ′(x) +

h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + O(h4), (8)

f(x− h) = f(x)− h1

1!
f ′(x) +

h2

2!
f ′′(x)− h3

3!
f ′′′(x) + O(h4), (9)

from where adding the approximations side by side and dividing through withh2 we get

f ′′(x) =
f(x− h)− 2f(x) + f(x + h)

h2
+ O(h2). (10)

This is an accurate approximation; for smooth functions the error drops according toh2.
We also note that the central difference scheme in eq. (7) follows from neglecting also the
second order terms and subtracting the equations from each other.

Figure 1 shows a comparison of the first order difference approximations of the func-
tion sin(1/x), plotted in blue, on the interval[−0.2,−0.1]. The example is arbitrary, with
the function and range chosen so that the function is smooth (infinitely differentiable) on
the interval. The figure illustrates the derivative approximations’ nature as linear combi-
nations of samples from the original function, and that the central difference scheme is
more accurate than the other two. The original function has been artificially scaled up to
show its form.

3.2 Discrete differential operators

By writing values of the point samples of a functionu as anN -dimensional vectoruh,
the difference approximations of the last section can be written in a matrix form so that
multiplication of the vectoruh of function values with the matrix produces a new vector
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Figure 1: Comparison of several difference approximations ofsin(1/x) on the interval
[−0.2,−0.1].

approximating the values of the derivative (or second derivative) at the node points. These
matrices have banded structure; on each row, nonzero elements are only found on the
diagonal and/or its immediate neighbors. As an example, the central difference and the
second derivative approximations result in the matrices

Dh =
1

2h



1
−1 1

−1 1

. . .
. . .

−1 1
−1


and ∆h =

1

h2



−2 1
1 −2 1

1 −2 1

. . .
. . .

1 −2 1
1 −2


,

so thatDh uh is a central difference approximation to the first derivative of the functionu
with samples placedh units apart and∆huh is the approximation of the second derivative
in a similar fashion. Here the zero elements of the matrices have been left blank. The
values for the ends of the interval are dependent on the initial and boundary conditions of
the differential equation at hand, and some special care needs to be taken in order to get
the boundary values right. We not discuss this further.

This point of view clearly demonstrates the fact that differentiation can be seen as an
operator that acts on a function and produces another function, that is, the derivative of the
original “input” function. When we deal with functions discretized as described earlier,
the discretized differentiation operator is represented by a matrix. This is a consequence
of differentiation being a linear operation in the continuous case5.

5Functional analysisdeals with properties of general linear operators – such as differentiation – which
may be defined on infinite-dimensional spaces of functions.
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3.3 Spatial discretization of the wave equation by finite differences

Here we show how finite difference approximations can be used for discretizing the wave
equation. We work in one dimension, but we keep in mind that the development is essen-
tially the same for higher dimensions.

By using the discretized representation∆h for the second derivative we derive ase-
midiscreteversion of the one-dimensional wave equation; by substitutinguh for u and
∆huh for ∆u and noting thatuxx = ∆u in one dimension we obtain

u
′′

h = c2∆huh + fh, (11)

wherefh denotes the values of the functionf in the node points, and primes denote dif-
ferentiation with respect to time. Remarkably, this semidiscretized form of the wave
equation is no longer a partial differential equation, since the spatial Laplacian has been
“reduced” into a matrix multiply; it is an ordinary differential equation inN unknowns
with the unknown vectoruh, whose elements are the values of the solution functionu at
the node pointsxi. This equation can be solved with any standard method for integrating
differential equations with respect to time. These methods are discussed in the following
section.

We also mention thedigital waveguide methodsfor the solution of the wave equa-
tion. These methods are finite difference schemes with a digital signal processing point
of view. The signal processing approach has many favorable qualities; these include e.g.
the possiblity of using frequency-dependent boundary conditions implemented by digital
filters. The interpolated waveguide mesh of Saviojaet al. bears some resemblance to the
finite element method. See (Savioja, 1999) for an in-depth treatment of digital waveguide
methods.

3.4 Two- and three-dimensional problems

The one-dimensional difference approximations discussed in the previous sections are
easily extended to two or more dimensions. For instance, the gradient operator, defi-

ned as∇ =
(

∂
∂x

∂
∂y

)
in 2D and∇ =

(
∂
∂x

∂
∂y

∂
∂z

)
in 3D, is easily implemented with

one-dimensional finite differences along each coordinate axis. In a similar fashion, the
Laplacian operator – see equation (2) – takes the form

∆u|(ih,jh) ≈
uh(i + 1, j)− 2uh(i, j) + uh(i− 1, j)

h2

+
uh(i, j + 1)− 2uh(i, j) + uh(i, j − 1)

h2

=
uh(i + 1, j) + uh(i− 1, j) + uh(i, j + 1) + uh(i, j − 1)− 4uh(i, j)

h2
(12)
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in two dimensions, where we have assumed that the two-dimensional domain has been
discretized into a regular grid of points, so that the values of the functionu are now stored
in a matrix (in stead of a vector)uh, so thatuh(ih, jh) ≈ u(i, j). For simplicity, we have
assumed the same discretization parameterh for both dimensions. The three-dimensional
case is analoguous.

Writing the difference approximation from equation (12) into a matrix form (as above)
presents some difficulty due touh now being a matrix in stead of a vector as in the one-
dimensional case. Still, as the approximation is again a linear combination of the elements
of uh, a similar matrix representation does exist (Eirola, 2002). This is achieved by first
stacking the columns ofuh into a long column vector, after which it is straightforward
to derive the required matrix expressions. After this modification the semidiscretized
wave equation in two or more dimensions is exactly the same as equation (11), the one-
dimensional case.

4 Time Integration

This section presents the necessary tools for obtaining a fully discrete solution of the wave
equation by time stepping. The process is calledintegratingthe differential equation. To
this end, we first write the semidiscretized equation as a first-order system of differential
equations, and after that present different time-stepping methods for solving the first-order
system. We conclude by some remarks on stability of the numerical solutions.

We first recall the semidiscretized equation
u′′

h = c2∆huh + fh, x ∈ Ω (equation of motion)

uh(0,x) = u0
h(x), (initial condition foruh)

u′
h(0,x) = v0

h(x), (initial condition foru′
h),

whereu0
h andv0

h are predefined functions defined over the spatial discretization. In addi-
tion, the problem-dependent boundary conditions need to be specified. This is a second-
order system of ordinary differential equations inN unknowns.

Most integration methods work on first-order differential equations. This poses no
problems, since all higher-order problems can be transformed into first-order ones by
introducing new variables. To transform the semidiscretized wave equation into a first-
order system, we define a new variablevh = duh

dt
so that equation (11) takes the form{

dvh

dt
= c2∆huh + fh

duh

dt
= vh.

(13)

This has the effect of doubling the number of unknowns, since we are now left withtwo
vectors of lengthN to solve for. We can further simplify the system (13) by concatenating
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the vectorsuh andvh into a new vectorw so that we get

dw

dt
= Aw + g, with (14)

w =

[
uh

vh

]
, g =

[
0
fh

]
, A =

[
0 I

c2∆h 0

]
, andw(0) =

[
u0

h

v0
h

]
,

where each element ofA, printed in bold, denotes aN × N submatrix, andI denotes
the identity matrix. This is the simplest possible form for a first-order, linear system of
differential equations.

The numerical solution of the above system is a discrete sequencewk, k ∈ N, of
vectors corresponding to values of the solutionw at different timesteps. We choose to
use a constant timestepδ for simplicity, so that we havewk ≈ w(tk), wheretk = δk.
Similarly, we denoteg(δk) by gk.

To make description of the integration methods in the next subsections still simpler, we
make use of a more abstract formulation. In general, any first-order system of differential
equations6 can be written as

w′(t) = d(t,w(t)). (15)

Equation (14) maps to this representation by

d(t,w(t)) = Aw(t) + g(t). (16)

This more abstract form (15) is most suitable for describing integration methods.

4.1 Explicit methods

The most obvious integration method for the system (15) is theEuler method. It follows
from substituting the forward difference scheme from section 3.1 into (15), yielding

wk+1 −wk

δ
= d(tk,w

k)

⇔ wk+1 = δ d(tk,w
k) + wk.

Substituting ford from (16) we have

wk+1 = δ
(
Awk + gk

)
+ wk = (δA + I)wk + δgk. (17)

This method has the advantage of simplicity, but in practice it is not used much, because
it is highly unstable. We come back to stability issues in the end of the section.

The Euler method is the simplest one in the class of methods generally referred to
as explicit Runge-Kutta methods. The classical Runge-Kutta method, often referred to
as the Runge-Kutta method, is one of them. All the higher-order R-K methods work
by subdividing the time interval into smaller sub-timesteps, achieving variable orders of
accuracy. The Euler method performs worst of these methods.

6also non-linear systems
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4.2 Implicit methods

So-called implicit methods help overcome stability problems often associated with explicit
schemes. The difference between explicit and implicit methods is best illustrated by the
implicit Euler method, which follows from substituting the bacward difference approxi-
mation into (15):

wk −wk−1

δ
= d(tk,w

k) ⇔ wk = δ d(tk,w
k) + wk−1,

and after manipulating the indices we have

wk+1 = δ d(tk+1,w
k+1) + wk, (18)

and substituting ford we finally get

wk+1 = δ
(
Awk+1 + gk+1

)
+ wk

⇔ (I− δA) wk+1 = wk + δgk+1

⇔ wk+1 = (I− δA)−1 (
wk + δgk+1

)
. (19)

The scheme works by “borrowing” the future value forw in the evaluation of the function
d. The seemingly innocent switching from forward to backward differences has yielded a
significantly different difference scheme; one that requires a matrix inversion. (Note that
when the timestepδ is constant, the inversion only has to be done once.) The implicit
Euler method is still simple, and has the virtue of unconditional stability.

The most accurate first-order implicit scheme is the Crank-Nicolson method7. It is an
application of the central difference scheme, and its idea is to evaluate the functiond in
the middle of the timestep, with respect to both time and the solutionw. The scheme is
defined as

wk+1 −wk

h
= d(1

2
(tk + tk+1),

1
2
(wk + wk+1)).

Substitutingd from (16) as before we have

wk+1 = wk + 1
2
δA

(
wk + wk+1

)
+ δg(tk + δ

2
)

⇔
(
I− 1

2
δA

)
wk+1 =

(
I + 1

2
δA

)
wk + δg(tk + δ

2
)

⇔ wk+1 =
(
I− 1

2
δA

)−1 [(
I + 1

2
δA

)
wk + δg(tk + δ

2
)
]
. (20)

As is obvious, the increased accuracy over the implicit Euler method comes at the price of
a more laborious timestep, since one additional matrix multiply now has to be performed.
Again, if δ is constant, the matrices have to be formed (and the other inverted) only once.

7Finnish “implisiittinen keskipistes̈aänẗo”
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4.3 Stability

The continuous, exact solutions of the wave equation have the property of energy con-
servation. That is, if the boundaries of the environment are fully reflecting, the solution
oscillates infinitely, with its energy content8 staying constant, if we letf ≡ 0. This is an
important property, and numerical methods perform differently with respect to it.

If a numerical method allows the energy of the discretized solution to grow without
bound as time passes, the method is calledunstable. We only state briefly that the magni-
tudes of the eigenvalues of the matrices used in the explicit iteration schemes determine
constraints on the maximum possible timestep size. The eigenvalues’ magnitudes have a
dependence onh, so that these constraints usually dictate the maximum allowable times-
tep for a given level of discretization. With larger timesteps the solution is soon ruined by
high-magnitude noise as calculation errors build up in an uncontrollable fashion. Implicit
methods are unconditionally stable. See (Eirola, 2002) for a treatment.

In practice, the timestep restrictions imposed on explicit methods are so stringent that
the additional computation per time step required by implicit methods is outweighed by
the gains from using larger timesteps.

5 The Finite Element Method

The Finite Element Method (FEM) is a general method for solving both ordinary and
partial differential equations. In this section we show how it can used for solving the
wave equation. Our approach is not the only possible one, since our derivation ends up
(again) in a system of ordinary differential equations, which we solve by the methods
presented earlier – another approach would be to use a FEM formulation also for the
time-dependent ordinary differential equation.

The general ideas behind the FE method rely heavily on concepts of so-called Hilbert
and Sobolev spaces. We develop the method from bottom up and do not present these
more advanced concepts.

5.1 Introduction

FEM takes a fundamentally different approach from the point-evaluation based finite dif-
ference methods described earlier. The idea is to seek for the solution as a finite linear
combination ofbasis functions, so that the linear combination is, in a sense, the “best
approximation” to the real solution from this finite-dimensional set of functions.

Basis functions are best described by an example, again in univariate functions on the
interval [0, 1]. Suppose that we have scatteredN node pointsxi onto the interval, just as
before. Now, we define a “hat” functionφi(x) corresponding to eachxi; the hat function

8We skip the details of defining the energy content in a formal way.
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(from Eirola, 2002)

Figure 2: Illustration of piecewise linear “hat” functions on the interval[0, 1] and their
linear combinations. The hat functions themselves are nonzero only at their corresponding
nodes and between the adjacent nodes to both directions. Their linear combinations (in
red), on the other hand, define piecewise linear functions on the whole interval.

takes the value1 at xi and ramps linearly to0 towardsxi−1 andxi+1. Now, define an
N-vectorξ, with its components denotedξi, and let

u(x) =
N∑

i=1

ξi φi(x). (21)

Figure 2 shows an example with eleven nodes, the corresponding piecewise linear basis
functions, and an example linear combination of the basis functions. Thelinear spanof
the basis functions is a vector space in the sense that the sum of any two such functions is
again a function which can be represented in the same way.

By the supportof a function we mean the smallest set outside which the function
is identically zero. The functions in the previous example are defined piecewise, and
they have small supports. This has computational advantages, as will become obvious
after we have formulated the full finite element method in the next sections. However,
the development itself does not rule out use of functions with global supports, meaning
functions that are nonzero on the whole domain. For instance, all polynomials on the
whole interval[0, 1] have global supports, as well as the usual trigonometric polynomials
sin(2πkx), with k ∈ N. Also, piecewise polynomialfunctions find common use in FEM
applications; the “hat” functions of the example are 1st order piecewise polynomials. To
be completely precise, the namefinite element methodis used only if locally supported
basis functions are used; the more general case is theGalerkin method.

The two- and three-dimensional analogue to our hat function example is to scatter
points inside the domainΩ and construct a triangulation of them in 2D or a tetrahedraliza-
tion in 3D. The piecewise linear functions now take a form where the functions have value
1 at the corresponding node and ramp to zero linearly inside the triangles (or tetraedra) as-
sociated with the node. Also higher-order piecewise polynomials can be used. (Globally
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supported basis functions cannot be used in non-simple higher-dimensional geometries
because of incompatibilities with the boundary conditions. This is a more advanced topic,
and will not be pursued here.)

We also mention that triangles or tetraedrae are not the only possible geometrical pri-
mitives that can be used for constructing the basis functions. For instance, quadrilaterals
and parallelepipedon may be used with piecewise bilinear or bicubic functions, respecti-
vely.

5.2 Variational Formulation of the Wave Equation

In this section we will show how to search for the solution to the wave equation as a linear
combination of basis functions. Since the solutions are time-dependent, we will make the
coefficient vectorξ time-dependent also, so that the spatially discretized solution has the
form

uh(t,x) =
N∑

i=1

ξi(t) φi(x) ≈ u. (22)

To start off, we move all the terms of the wave equation onto the other side and get

utt −∆u− f = 0. (23)

Now, letV denote the set of bounded, continuous functions defined onΩ having piecewise
continuous first derivatives (gradients in higher dimensions) and fulfilling the spatial
boundary conditions of the problem. (We note that the “hat” functions, used as examples
in the previous section, are members ofV , whenΩ = [0, 1], neglecting boundary con-
ditions.) V is obviously infinite-dimensional, and the exact solutionu to (23) is also a
member of this space9. The fundamental theorem of calculus of variations (Guenther &
Lee, 1996) states that if we multiply equation (23) byany function inV and integrate the
product overΩ, we must still get0:∫

Ω

(utt −∆u− f) v dx = 0, ∀ v ∈ V. (24)

The goal of the following development is to simplify this equation in this general case,
and then in the end to switch focus to a finite-dimensional subspaceVh of V spanned by
the basis functionsφi(x). This will allow us to write out a linear system of equations for
the unknown coefficientsξ(t).

It is easy to verify by Gauss’ divergence theorem10 that∫
Ω

v∆u dx = −
∫

Ω

∇v · ∇u dx +

∫
∂Ω

v∇u · n dσ, (25)

9In addition, its first derivative along with its Laplacian are continuous.
10

∫
Ω
∇ · F dx =

∫
∂Ω

F · n dσ, whereF is a vector field overΩ; just substituteF = v∇u to get (25).
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wheredσ is an area element on∂Ω. Applying this result to equation (24) we have∫
Ω

(uttv +∇u · ∇v − fv) dx−
∫

∂Ω

v∇u · n dσ = 0, ∀ v ∈ V, (26)

which is called thevariational formulationof the wave equation. The solutions to (26)
are calledweak solutionsto the wave equation. Classical theory of partial differential
equations shows that any sufficiently smoothu that solves (26) is also a classical solution
of the wave equation (Eirola, 2002).

Now we approach the heart of the matter. Substituting the approximation (22) into
(26) and requiring that (26)only holds for the membersφk of Vh (and not the “full”V )
yields

N∑
i=1

ξ′′i

∫
Ω

φi(x) φk(x) dx +
N∑

i=1

ξi

∫
Ω

∇φk(x) · ∇φi(x) dx− (27)

N∑
i=1

ξi

∫
∂Ω

φk(x)∇φi(x) · n dσ =

∫
Ω

f(x) φk(x) dx, ∀φk ∈ Vh, (28)

where we have used

u′′
h =

N∑
i=1

ξi(t)
′′φi(x), ∇uh =

N∑
i=1

ξi(t)∇φi(x),

with primes denoting differentiation with respect to time. We have also switched the
order of summation and integration in the terms. BecauseVh is finite dimensional, (27)
is actually a set ofN linear equations (one for eachφk, with k = 1, . . . , N ) for the
coefficient vectorξ. Hence it can be written in a matrix form as

ξ′′A + ξS− ξB = f , (29)

with

Aij =

∫
Ω

φi(x) φj(x) dx, Sij =

∫
Ω

∇φi(x) · ∇φj(x) dx, (30)

Bij =

∫
∂Ω

φi(x)∇φj(x) · n dσ, and fj =

∫
Ω

f(x) φj(x) dx. (31)

Again, we are left with a linear system of ordinary differential equations, for which all the
time integration methods described in section 4 apply directly.

As mentioned before, the sizes of the supports of the basis functions affect the compu-
tational load associated with FEM. The cost of evaluating the integrals in the expressions
for the above matrices’ elements benefits from locally supported functions, since small
supports mean small nonzero regions in the integrands.
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5.3 A Teaser

In the previous section we derived a spatial discretization of the wave equation as a linear
combination of a finite number of prescribed basis functions. We have left out most of
the mathematical structure that helps to understand the FE method from a more geomet-
rical viewpoint because of lack of space. We do still mention a remarkable property; the
finite element solution to the wave equation isoptimal in the sense of a certain squared
difference between the real solution and the approximate one, which means that no other
linear combination of the basis functions could achieve a smaller error in this least squares
-sense. This is quite surprising, considering that we do not have knowledge of the exact
solution! This fact is best explained by stating (albeit cryptically) that the finite element
solution is anorthogonal projectionof the exact solution onto the finite dimensional linear
span of the basis functions. For more information on vector spaces of functions, see for
instance (Kreyszig, 1989).

6 Discussion

The previous sections have shown how the wave equation can be reduced into a system of
ordinary differential equations either by finite difference approximations or by the finite
element method. This section discusses some practical aspects of the methods presented
above and outlines some differences between them.

6.1 Solution of large linear systems

In general, time integration requires solution of linear systems at each timestep. These
systems are generally very large, routinely in the order of several millions of unknowns11.
It is clear that direct solution, e.g. by Gaussian elimination, of the resulting equations is
not feasible. The rescue lies initerative methods, which do not manipulate the matrix
(as Gaussian elimination does), but instead work by starting from an initial guess vec-
tor for the solution and then improving upon it in a successive series of iterations, until
some degree of convergence is reached. Classical iterative methods include the Jacobi
and Gauss-Seidel iterations. So-calledKrylov subspacemethods, such as theconjugate
gradient method, search for the solution in the span of{x, Ax,A2x, . . .}, wherex is the
initial guess andA is the matrix in the problem. See Golub and van Loan (1996) for an
in-depth review of iterative methods.

11Happily, the matrices obtained from the finite difference and FEM approximations aresparse, so that
only a small fraction of the matrices’ elements are nonzero.

15



6.2 Differences between the methods

The key difference between the finite difference method and FEM lies in the composition
of the matrices. Once the matrices have been formed, the time stepping solution to the
wave equation proceeds similarly.

Generally, the matrices inherent to the finite difference method have regular coef-
ficients for nodes inside the domain; that is, all the nodes behave numerically in the same
way. The matrices of FEM are more irregular, since their elements are integrals of the ba-
sis functions’ products, and in general domains the basis functions do not form a regular
structure. This makes construction of the FEM matrices much more involved than that of
finite difference matrices.

Boundary conditions need special treatment in the finite difference method; detailed
calculations on how to discretize different types of BCs are required. As stated earlier in
the FEM section, the spaceV , from where the solutions are being searched for, is defined
such that the basis functions “fulfill the boundary conditions” in a certain way; the rest
of the BCs are enforcedweaklyin the form of the boundary integral in equation (27). In
other words, FEM incorporates boundary conditions into its formulation in a unified way
that alleviates some of the need for their special treatment.

Also, generation of the triangulations and tetraedralizations used frequently in FEM
applications is far from trivial, and a wealth of research on the construction and quality of
the subdivisions exists. Finite difference methods rely on structured grids, and hence are
not dependent on such algorithms.

6.3 Practical considerations

The methods presented above solve for the sound field inside an enclosure in a rigorous
way, i.e. the error in the solution can be made arbitrarily small (bound, of course, by mac-
hine precision) by adding more discretization nodes, using higher-order basis functions
(FEM) or higher-order derivative approximations (FD) and using better time integrators.

Despite the correctness of the algorithms, direct application of these methods does
not yield a practical system for solving for the impulse responses, at least if the whole
frequency range of human hearing is to be simulated. This is obvious from geometry
alone; depending on the particular method used, the spatial discretization needs 6-10 no-
des per wavelength in order to resolve the frequencies faithfully (Svensson & Kristiansen,
2002). At 22 kHz one wavelength is approx. 1.5 cm, and thus the spacing between the
nodes needs to be 1.5-2.5 mm. Thus, one cubic meter of space needs to be filled with
64-300 million nodes, and this translates directly to the same number of unknowns to
solve for in the simulator. Herefrom it is obvious that full frequency range simulation
of spaces of realistic size is as of yet completely unfeasible, and some hybrid methods
combining direct numerical simulation by wavefield decomposition techniques (such as
the image source method) must be utilized. For reference, modern scientific computing
uses meshes with up to ten million elements. If a rectangular room with a 45m3 volume

16



was discretized with ten million elements, the average density of mesh points would be
approx. 15 cm, corresponding to a maximum frequency of 220-370 Hz only. Clearly,
direct numerical simulation of acoustic phenomena in the whole frequency range remains
out of our grasp at present. This is perhaps not too unfortunate, since for instance the
image source method augmented by edge diffraction sources produces an exact solution
for planar geometries12.
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