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Abstract

A recent neural model of illusory contour formation is baseda dis-
tribution of natural shapes traced by particles moving withstant speed
in directions given by Brownian motions. The input to thatdabconsists
of pairs of position and direction constraints and the ougmnsists of the
distribution of contours joining all such pairs. In genethése contours will
not be closed and their distribution will not be scale-ifaat. In this paper,
we show how to compute a scale-invariant distribution osetbcontours
given position constraints alone and use this result toadx@ well known
illusory contour effect.

1 Introduction

It has been proposed by Mumford that the distribution ofitiy contour shapes
can be modeled by particles travelling with constant speedirections given
by Brownian motions (Mumford, 1994). More recently, Withia and Jacobs in-
troduced the notion of atochastic completion fieldhe distribution of particle
trajectories joining pairs of position and direction coasits, and showed how
it could be computed in a local parallel network (Williamsialacobs, 1997a,b).
They argued that the mode, magnitude and variance of the letompfield are
related to the observed shape, salience, and sharpnelsofylcontours.



Unfortunately, the Williams and Jacobs model, as describasl some short-
comings. Recent psychophysics suggests that contounsalis greatly en-
hanced by closure (Kovacs, 1993). Yet, in general, theidigton computed
by the Williams and Jacobs model does not consist of closatbaos. Nor is it
scale-invariant—doubling the distances between the caingt does not produce
a comparable completion field of double the size without aesponding dou-
bling of the particle’s speeds. However, the Williams ancblis model contains
no intrinsic mechanism for speed selection. The speedstfid directions) must
be specified priori.

In this paper, we show how to compute a scale-invariantidigion of closed
contours given position constraints alone. The signifieaotcthis is twofold.
First, it provides insight into how the output of neuronshwpiurely isotropic re-
ceptive fields like those of LGN might be combined to produgerdation depen-
dent responses like those exhibited by neurons in V1 and ¥@orgl, it suggests
that the responses of these neurons are not just input fgsreomge contour group-
ing processes, but instead, are emergent properties otsucputations.

2 A Discrete State, Continuous Time Random Pro-
cess

2.1 Shape Distribution

Mumford observed that the probability distribution of bdany completion shapes
could be modeled by Bokker-Planclequation of the following form:
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This partial differential equation can be viewed as a seh@dépendenadvection
equations irk = [x,y]T (the first and second terms) coupled in hdimension by
the diffusionequation (the third term). The advection equations traegieoba-
bility mass in direction@, with constant speed, while the diffusion term models
the Brownian motion in direction, witkliffusion parameterc. The combined
effect of these three terms is that particles tend to trawstraight lines, but over
time they drift to the left or right by an amount proportiotialo?. Finally, the
effect of the fourth term is that particles decay over timéhva half-life given



by the decay constant, This represents our prior expectation on the lengths of
gaps—most are quite short.

The Green's functionGy(X,0; t1|U,®; to) gives the probability that a parti-
cle (travelling with speedy) observed at positiorj, and direction,, at time,
to, will later be observed at positioR, and directiong, at time,t;. It is the so-
lution, P(X,0; t1), of the Fokker-Planck initial value problem with initial lue,
P(X,0;tp) = 0(X—U)d(6 — @). The symmetries of the Green’s function are sum-
marized by the following equation:

Gy(%.8; ta] U, ¢; to) = Ga(Ry(X— 1)/, 6 — §; t1 — 1] 0,0; 0) 2
where the functionRy(.) rotates its argument by about the origin[0,0]T. Two

of these symmetries are especially relevant to this paperfiist of these iscale
invariance

In plain language, scale invariance requires that the mibtyaof a particle fol-
lowing a path between two edges be invariant under a tramsftton which scales
both the speed of the particle and the distance between thedges by the same
factor. The second symmetry which concerns us hetieis-reversasymmetry:

Gy(X,0; 1] U, @; to) = Gy(U, 9+ T t1|X, 6+ T, o). 4)

In plain language, time-reversal symmetry requires thaptiobability of a parti-
cle following a path between two edges be invariant undearastormation which
reverses the order and directions of the two edges.

2.2 Particles visiting edges.

Consider an input pattern consistinghfedges. Each edgg,has a positiony,
and an orientatiorfj. Now construct a set of\ states,S. For each edgsa, in
the input pattern, there are two stateandi, in S. The two states associated with
an edge have the same position, but are opposite in direclibat is,X = X;
but = 0;+ 1. These two states represent the two possible directiongialpa
undergoing a random motion can visit an edge of the inpuépatHenceforward,
we will refer to states simply as edges. See Figure 1.

Assuming that the shape of contours in the world can be mddedehe tra-
jectories of particles undergoing random motions, we seskvars to questions
like these:



e What is the probability that a contour begins at edgand ends at edg¢?

e What is the probability that a contour begins at edgand reaches edgeg,
and contains — 1 other edges from the s&?

To begin, we use the Green’s function to define an expreseioiné conditional
probability,

P(j|i;ti—to) = G1(Xj,0;; t1|%,6i; to), (5)

that a particle (travelling with unit speed) observed ategdgat some unspec-
ified time, will subsequently be observed at edgeafter time,t1, has elapsed.
Integrating over all possible visitation times for edgeyields:

P<J|i)=/0°°dtlp(j|i;t1>. ®)

This expression gives the probability that a particle obsgiat edgei, will later

be observed at edg¢, Because there are no intermediate edges, we term this a
path of lengthn = 1, joiningi andj. In contrast, a path of length,= 2, joiningi

andj is a path which begins at edgenext visits some unspecified intermediate
edge,k, and then ends at edgg, In addition to integrating over all possible
visitation timest;, for edge,j, the expression faP(?)(j |i) requires summing the
probabilities of paths through all possible intermediatges k;, and integrating
over all possible visitation times,, for edgeki:

PG = [t [ du S P -l O

where the limits of integration reflect the fact thais constrained to be greater
thant;. By extending the pattern, we can define a path of lengtjoiningi andj

to be a path which begins at edgenext visitsn — 1 unspecified edges, and then
ends at edgej. The expression foP(" requiresn sums over the set of possible
intermediate edges, amd+ 1 integrals over visitation times:

P(n)(j|i):/OOOqu.../Otzdtlg...;P(j|kn;tn—tn_1)...P(k1|i;t1) 8)

where the limits of integration reflect the fact thatis constrained to be greater
thant,,_1 for 1 < m < n. By reversing the order in which the integrals are evalu-
ated, so that the first integral evaluated is ayeand the last evaluated is ougr
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and making the necessary changes in the limits of integratre get the following
expression:

P(n)(j|i):/Owdtl.../:ldm%...gP(JIkn;tn—tn1)...P(k1 ijt1). (9

We now substituten, for t,, —t,_1, for 1 < m < n, and move the integrals inside
the expression, so that each integral is immediately todfteof the conditional
probability involving its variable of integration:

PO(ji) = /Owdtn.../omdtlg...ZP(iIkn;Tn)---P(k1|iiT1) (10)

— %...g/omdtnP(j|kn;tn).../ooodT1P(k1\i;T1) (11)
= %.,.ZP(Hkn)...P(kﬂi). (12)

The result is an expression 8" (j |i), the probability of a length path joining

i and j, purely in terms of probabilities of length one paths. Lemnosv define

a N x 2N matrix, P, whereP;; = P(j|i), i.e., Pj is the probability of a length
one path between edgesand j. BecauseP(j|i) # P(i| j), the matrix,P, is not
symmetric. However, by time-reversal symmetpy,j |i) = P(i| j) whereB;=

Bi + mandd ;= 6; + 1. See Figure 2. From the above expression, it follows that:

PO (j]i) = (P"); (13)

This result is significant because it shows that the prolmlf a particle with
motion governed by a continuous time random process wsitiadges ah real
valued times can be computed simply by taking ki power of a matrix. The
implication is that our analysis from this point on need mebive the continuous
time random process, i.e., we need not write expressiomdvimg integrals over
continuous times. Rather, our analysis can be based gninehe discrete time
random process with transition probabilities specifiedhsy/ matrix,P. Further-
more, any expressions we derive based on the discrete tonegs will also apply
to the underlying continuous time process.
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Figure 1: Left: An input pattern consisting df edges. Each edgg, has a po-
sition, X;, and an orientatior)j. Right: A set of N states,S. For each edgsd,

in the input pattern, there are two stateandi, in S The two states associated
with an edge have the same position, but are opposite intaired hat is X = Xj-
but®, = 8;+ 1t These two states represent the two possible directionsgtialpa
undergoing a random motion can visit an edge of the inpuepatt
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Figure 2: The matrixP, represents the transition probabilities between pairs of
edges. Ingenerdl(i | j) #P(j|i), i.e.,Pis notsymmetric. HoweveP, possesses

another form of symmetry2(i | j) =P(j | i) andP(j |i)=P(i| j). Thisis termed
time-reversabymmetry.

3 A Discrete State, Discrete Time Random Process

3.1 Edge Saliency

In the last section, we derived an expression for the prdibakinat a particle
moving with constant speed in a direction given by a Browmation will travel
from edge,i, to edge,j and visitn — 1 intermediate edges. Significantly, this
expression involved only the probabilities of length onthpa

P(I1i) = [ PG listet (1)

In effect, we reduced the problem of computing visitatioolabilities for a con-
tinuous time random process to the more tractable problecomiputing visita-
tion probabilities for a discrete time random process. indiscrete time process,
the probability of a path of lengthhbetween edgesand j can be computed using
the following recurrence equation:

PO (] i) = Zp(j | k)P (k[i). (15)



This equation allows us to define an expression for the velatumber of contours
which visit edgej, and eventually return to edge,

_ POii)
i = | PR e ——— 16
T T e PO ) 4o

This quantity, which we term thedge saliencyis the relative number of closed
contours through edge To evaluate the above expression, we first dividey

its largest real positive eigenvaluk, allowing us to distribute the limit over the
numerator and denominator. This yields:

')m : 17)
ji
To evaluate the numerator and denominator, we observe iba positive matrix,

and therefore, by Perron’s Theorem (see Golub and Van Ld#86)1there is a
largest positive real eigenvalue,i.e.,A > |y, for all eigenvaluegy, excepu=A.

It follows that:
. P\" ssT
in(7) =5 (9

wheres ands are the right and left eigenvectors Bfwith largest positive real
eigenvalue, i.eAs= PsandAs= P's. Because of the time-reversal symmetry of
P, the right and left eigenvectors are related by a permutatibich exchanges
values associated with the same edge but opposite dirsctiens = si: Apply-

ing this result to the denominator of the expressiorcfgiields:

R\ (S
| ) = b1, 19
e <A)n‘ 2°5s -

Consequently, the saliency of edigs given by the numerator:

_ (i _ s§
s's  3jsi§)

(20)



3.2 Link Saliency and Markov Chains

Generalizing the notion of edge saliency, it is possibledmpute the relative
number of contours which begin at edgeimmediately visit edgej, and then
eventually return ta:

ne1) /s oy
Ci = lim Pr G LDPG )
n—eo 5P KIK)
This quantity, which we term think saliency is the relative number of closed
contours which visit edgeand j in succession. To solve this expression, we first
divide the numerator and denominator Xy and then take separate limits in the
numerator and the denominator, yielding:

. p\n-1,/p
I'mFHW(X)ij (X)ji
Ciji = — B (22)
liMm—co Sk (%) ik
After evaluating the limits as before, we get the followingpeession for link
saliency:

(21)

SiP( [1)s
Ci="58s

It easy to verify that the number of closed contours enteddgei equals the
number of closed contours leaving edge

Zcij:Ci:ZCki- (24)
]

(23)

This establishes that closed contours are conserved as.e&gace closed con-
tours are conserved, it is possible to treat them as MarkainshBy dividing the
joint probability of a closed contour visiting edgeand j in succession by the
probability of a closed contour visitingwe get a conditional probability,
... Ci siP(j i)
M(jli)=L=22_221"7
(1)="g="55"
equal to the probability that a closed contour will visit edgiven that it has just
visitedi. Unlike the matrix,P, the matrix,M, is stochastic, i.ey ; Mji = 1, andc
is the eigenvector d¥1 with eigenvalue equal to one:

(25)

c=Mc. (26)



This is consistent with our claim that is the probability of a closed contour
through edge.

3.3 Saliency of Closed Contours

In our approach, the magnitude of the largest positive ngg@nwalue ofP is re-
lated to the saliency of the most salient closed contour.el@lbp some intuition
for the meaning of the eigenvalue and its relationship ta@mansaliency, it will
be useful to consider an idealized situation. We know framedr algebra that
the eigenvalues d? are solutions to the equation det- Al) = 0. Now, consider
a closed contout;, threadingn edges. The probability that a contour will visit
edge, N (i+1)modns given that has just visited edgg;, equalsP(T" ;1) modn| i)
Assuming that the probability of a contour joining edigandr j is is negligible
for non-adjacent andj (i.e.,Pjj = P(I"j|T) whenj = (i +1)modn andPj; =0
otherwise) then:

n

AI) = (ﬁp(r(m)modnl ri)) (27)

satisfies déP — Al ) = 0. This is thegeometric meanf the transition probabilities
in the closed path. Equivalently, minus one times the lalgariof the eigenvalue
equals thewverage transition energy

—InA(T) = __Zilnp(r(i+l)modn| ri)/n. (28)

Because maximiziny minimizes the average transition energy, there is a clese re
lationship between the most salient closed contour and themam mean weight
cycle of the directed graph with weight matrixnP.

Using psychophysical methods, (Elder and Zucker, 1994ptified the ef-
fect that the distribution and size of boundary gaps has atoco closure. They
measured reaction-time in a pre-attentive search task@nutfthat it was well
modeled by the square root of the sum of the squares of theegagphls. They
assumed that reaction-time is inversely related to theedegf contour closure.
We note that for stimuli consisting of relatively few edgdsnegligible length
separated by large gaps thas maximized when the edges are equidistant. Also,
the decrease in saliency due to one large gap is much grbatetite decrease due
to many small gaps. Both of these properties are consistéimtive observations
in (Elder and Zucker '94).
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3.4 Stochastic Completion Fields

Finally, givens ands, it is possible to compute the relative number of closed
contours at ararbitrary position and direction in the plane, i.e., to compute the
stochastic completion field. Let= (U, @) be an arbitrary position and direction
in the plane, then

PY(i|)P(i n)P(n]i)

&= AI“WIZ 2 5P (k|K) 29)

represents the probability that a contour first visits eggben passes through
position,U, in direction,@, next visits edgg, then visits anothen— 1 edges, and
finally returns ta. Dividing numerator and denominator A yields:

w3y |(sign) ()] e

Taking separate limits in the numerator and the denomimaguits in

33l(E) )

which can be re-arranged to yield

0= 53 PIDS T RIS, (32

source field sink field

This expression gives the relative probability that a allcs@ntour will pass through
n, an arbitrary position and direction in the plane. Note thitis a natural gener-
alization of the factorization of the stochastic completi@ld into the product of
source and sink fields described in (Williams and Jacobs/dP%or this reason,
we call the components sfands, theeigensourceandeigensink®f the stochas-
tic completion field. The crucial difference is that we nowoknhow to weight
the contribution of each edge to the stochastic completed. fi

11



4 A Continuous State, Discrete Time Random Pro-
cess

The approach which has just been outlined suffers from aélmaritations. First,
it assumes that we have perfect knowledge of the positiodslaactions of the
edges which serve as the input to the problem. This is unadlyseestrictive.
Second, because the vectors and matrices &agdP) are specific to the config-
uration of input edges, it is not obvious how the computatiame have described
can be translated into brain-like representations andrigthgas, i.e., parallel op-
erations in a finite basis.

In order to address both of these limitations, we can geiaeraur approach
by considering the distribution of closed contow;sto be a function of position
and direction in the plane(U, ). While previously, the input took the form of a
set of edges, with exact knowledge of the edge’s positiodsoaientations, now
the input takes the form of a probability density functib(X, 8), which represents
the probability that an edge exists at positioand orientatior®. We refer to this
p.d.f., as thanput bias function Instead of a discrete state and discrete time
random process with transition probabilities represebied matrix,P, we have
a continuous state and discrete time random process withiti@ probabilities
represented by a linear operate(il, ¢ | X, 0). The expression for the eigensources
of the stochastic completion field then becomes

AS(%,68) — / / /R .., 41 QX 8/t 9)s(T.¢ (33)

where

Q(%,6/0,¢) = b(X,8)2P(%,8 | T, @)b(T, )2 (34)

ands(X, 0) is the eigenfunction of with largest positive real eigenvalde The
input bias functionp(.), is distributed equally between the left and right sides of
P(.) to preserve the time-reversal symmetryQif). Consequently, left and right
eigenfunctions of)(.) with equal eigenvalue are related through a reversal sym-
metry,s(X,0) = s(X, 0+ 1). Finally, the expression for the stochastic completion
field itself can be generalized in the same way:

12



1 1
C(U#P)Z@///szsldideP(U,(mX,e)b(i,e)zs(i,e)><

/ / / dx'de’ P(X',6' | 0, @)b(X,8)35(%,6)  (35)
R2x St

wheres(X,08) = s(X,8+ 1), R? x S is the space of positions in the plane and
directions on the circle, and s,s>= [ [ [z, dXd6 s(X,0)S(X,0).

Given the above expression for the stochastic completidah ftds clear that
the key problem is computing the eigenfunction with largesditive real eigen-
value. To accomplish this, we can use the well known powehote{see Golub
and Van Loan, 1996). In this case, the power method invok@sated application
of the linear operatoR)(.), to the functiong(.), followed by normalization:

S(n+1) (K e) _ f f fR2><Sl dUd(p Q(K 0 ‘ U7 (p)s(n) (U7 (p) . (36)

I [ Jre s dUides™ (U, @)
In the limit, asn gets very larges™ (%, 8) converges to the eigenfunction of
Q(.), with largest positive real eigenvalue. We observe thaabieve computation
can be considered a continuous state, discrete time, ezttureural network.

5 Scale Invariance

Ideally, we would like our computation to be scale invariaAtcomputation is
scale invariant if scaling the input by a constant facgpproduces a correspond-
ing scaling of the output. This property is best summarizgd ltommutative
diagram:
C
b(X,0) — ¢(X0)
1S 1S (37)

b(%/y,8) S c(%/y,8)

whereb(.) is the input,c(.), is the output,£> is the computation, an is the
scaling operator. The diagram shows that the output is ieniégnt of the order in
which the operators are applied.

The only scale dependent parameter in the computation gpieed of the par-
ticles. The lack of scale-invariance is due to the fact thiat parameter has been

13



arbitrarily set to one. In order to achieve a scale-invdaremputation, we need
to eliminate this bias. To accomplish this, all speeds mastdated uniformly.
Previously,Q(.) was indexed by four arguments, i.e., the initial and fina} par

ticle positions and directions. In the scale-invariant paiation,Q(.) will be
indexed by six arguments, i.e., the initial and final pagtigbsitions, directions,
and speeds. Because particles have constant sRégds block diagonal. This
property ofQ(.), together with the scale invariance of the Green’s funci@&n),
allowsQ(.) to be defined as follows:

1 1 . -
Q(x,e,vlm,cp,vO):{ D* (R O)P(R/11.8 |00 907 (E9) Yo =1 (3

The Q(.) operator now includes an integral over all positive speggls, This
eliminates the scale dependency in the computation:

}\S(X,e,yl) = ///szsldUd(p/I;>O dyO Q(X767yl | U7 o, VO)S(EL (P,VO)- (39)

The eigenfunction of)(.) with largest positive real eigenvalue represents the lim-
iting distribution for particles of all speeds. Becau3g) is block diagonal, its
eigenfunctions are zero everywhere outside of a singl®negi constant speed.
Consequently, the eigenfunction with largest positivé eggenvalue ofQ(.) can

be identified in two steps. First, we find the largest posite@ eigenvalue for
each constant speed sub-matrix:

Ay) = mas) | Jrexst RAOS%,0) [ [ e dUAP Q(X. 6,/ 0, 9,Y)S(0, @)
I J Jrex s dXdO S(X, 8)s(%, )
where the eigenvalue is written as a Rayleigh quotient, hadrtaximum is taken

over all eigenfunctionss(.), of the sub-matrix ofQ(.) with constant speed;.
Next, we find the speegnax, Which maximizesA(y):

(40)

Ymax = argmax(y). (42)
y

The eigenfunctiors(X, 8), with eigenvaluel (ymax), gives the limiting distribution
for particles of all speeds:

Momads(%8) = [ [ [ didpQ(X.6.ymax| 0. 0. yradS(0.0).  (42)
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6 Orientation Selectivity in Primary Visual Cortex

A long standing problem in visual neuroscience is the enmerg@f orientation
selective responses in simple cells of primary visual sogteen input from cells
in lateral geniculate which exhibit little or no orientatigelectivity. In contrast
with the classical pure feedforward model for the emergericgientation selec-
tivity proposed by (Hubel and Wiesel, 1962), the authorsreicgnt review article
(Sompolinksy and Shapley, 1997) and two computer simulattadies (Somers
et al, 1995) and (Ben-Yishaet al, 1995), argue for a model with three defin-
ing features: 1) a weak orientation bias provided by examitatnput from the
lateral geniculate; 2) intra-cortical excitatory connees between simple cells
with similar orientation preferences; and 3) intra-catimhibitory connections
between simple cells without regard to orientation prefeee These authors sug-
gest that the weak orientation bias provided by excitatoput from the lateral
geniculate is amplified by intra-cortical excitatory cootiens between simple
cells with similar orientation preference. The role of thga-cortical inhibition
is to prevent the level of activity due to the intra-cortieatitation from growing
unbounded.

The principal contribution of these recent studies is a edi@éxplanation of
the many different (and sometimes contradictory) expemtadefindings related
to the emergence of orientation selectivity in primary aiscortex. However,
none of these authors considers the functional significahogentation selectiv-
ity, i.e., what purpose it serves in the larger context of aamisual information
processing. Stated differently, is orientation seletgtian end in itself? Or can it
only be understood as an emergent property of a higher\¥eughl computation,
such as contour completion?

To our knowledge, the first model of orientation selectivityvisual cor-
tex which differed significantly from the original Hubel akdesel feedforward
model was described in (Parent and Zucker, 1989). Like theem&cent and
detailed integrate-and-fire models described in (Soreee., 1995) and (Ben-
Yishaiet al, 1995), Parent and Zucker considered orientation selctorbe an
end in itself. Unlike these recent models, Parent and Ziggemary motivations
were computational. In the relaxation labeling networkyttlescribe, crude local
estimates of tangent and curvature (i.e., the initial stafesimple cells with and
without end-stopping) are sharpened by the activity of mesu excitatory con-
nections representing geometric constraints betweetigogiangent, and curva-
ture. The magnitude of the network state vector is normdlaesvery time step
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by dividing by the sum of its componentdt can be seen that this divisive normal-
ization plays the same role as the non-specific inhibitiotheéxmodel of (Somers
et al, 1995). Consequently, we see that there is a strong retdtiprbetween
Parent and Zucker's model and more recent models of orientatlectivity in
primary visual cortex.

In this paper, we do not consider orientation selectivithecan end in itself,
rather, we consider it to be an emergent property of a hitgvat-visual com-
putation devoted to contour completion. Unlike (Parent Zndker, 1989), we
did not specifically intend to model the emergence of origoraselectivity in
primary visual cortex. Instead, our intention was to foratela computational
theory level (Marr, 1980) account of contour completionentation selectivity is
simply a side-effect. Our specific hypothesis is that ondethajor goals of early
visual processing is to compute a scale invariant distiobubdf closed contours,
c(.), consistent with weak constraints on position and directierived by linear
filtering, b(.). We termed this distribution, the stochastic completiotdfiand,
in the previous section, described a continuous stateradestme neural network
for computing it. We have demonstrated experimentally ¢(beenext section)
that the distribution o§(.), the eigensources af.), can be highly non-isotropic,
even for isotropicp(.). We now show that the neural network which computes
s(.) is consistent with recent hypotheses concerning the emeegef orientation
selectivity in primary visual cortex.

The state of the neural network at tirnis given byst)(.), which is a function
of R? x Sl, the continuous space of positions and directions. In thjgep we
do not address the problem of haf/(.) can be represented as a weighted sum
of a fixed set of basis functions, i.e., receptive fields. ©bsily, this needs to
be done before we can claim to have a complete account of theuwation at
the algorithm and representation level (Marr '80)evertheless, we believe that
it is often best to first describe the computation in the ¢canim (e.g., Williams
and Jacobs, 1997a), and by doing so, to (temporarily) aha@dsssue of sampling

For an introduction to relaxation labeling, see (Rosenétlal, 1976).

2Although beyond the scope of the current paper, the probfeepoesenting continuous (but
band-limited) functions of position and direction using rité set of basis functions is one we
are actively working on. For example, in (Zweck and Williaid8), we consider the problem of
computing the stochastic completion field using paralleragions in a finite basis subject to the
constraint that the result be invariant under rotationsteanaslations of the input pattern. This is
accomplished, in part, by generalizing the notions of stieiity and shiftability of basis functions
introduced in (Simoncelkt al., 1993).
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altogetheP

Recall that the fixed-point of the neural network we desdrisehe eigenfunc-
tion with largest positive real eigenvalue of the linearmaper, Q(.). The linear
operator,Q(.), is the composition of the input independent linear oper&Q),
and the input dependent linear operaRBjr,). The dynamics of the neural network
are derived from the update equation for the standard poweénad for comput-
ing eigenvectors. It is useful to draw an analogy betweemeural network for
contour completion and the models for the emergence of tatiem selectivity
in primary visual cortex described by (Somettsal, 1995) and (Ben-Yishagt
al., 1995). See Figure 3. First, we can identfy) with simple cells in V1 and
the input bias functiory(.), which modulates(.) in the numerator of the update
equation, with the feedforward excitatory connectionsftbe lateral geniculate.
Second, we can identifiy(.) with the intra-cortical excitatory connections which
Somerset al. hypothesize are primarily responsible for the emergenagieh-
tation selectivity in V1. As in the model of Somess al, these connections are
highly specific and mainly target cells of similar orientetipreference (See Fig-
ures 4 and 5). Third, we identify the denominator of the up@afuation with the
non-specific intra-cortical inhibitory connections whisbmerset al. hypothesize
keep the level of activity within bounds. Because the puepafeshe denominator
is to normalizes(.), it plays the same role as the denominator in the relaxagion |
beling update equation (Rosenfedtlal., 1976) and might be implemented using
a mechanism similiar to the divisive inhibition mechanisroposed by (Heeger,
1992). Finally, we identifyc(.), the stochastic completion field, with the popula-
tion of cells in V2 described by (von der Heyeltal.,, 1985).

There is obviously a huge gap in level-of-detail betweencth@inuous state,
discrete time neural network we describe and the integnatkfire simulations of
(Somerset al, 1995) and (Ben-Yishaet al, 1995). For this reason, the above
discussion must be regarded as highly speculative. Howexgevould like to
stress that, unlike these recent theoretical studies,@unahnetwork implements
a well-defined (and non-trivial) computation in the sens@Mxrr, 1980). For this
reason, we believe our top-down approach complements tientaip approach
pursued by others.

3In this respect, the model of (Parent and Zucker, 1989) istintve. Although their model
was a major source of inspiration for our own, we believe th@innecessarily) confounds the
computational theory level goal of estimating tangent amdvature everywhere with algorithm
and representation level details related to discrete sampl
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V2

Vi

LGN

Figure 3:Thin solid lines indicate feedforward connections from L@Hich provide a
weak orientation bias, i.ely(i), to simple cells in V1, i.e.5(i). Solid lines with arrows
indicate orientation specific intra-cortical excitatorgnoections, i.e.P(i | j). Dashed
lines with arrows indicate orientation non-specific int@tical inhibitory connections.
Thick solid lines indicate feedforward connections betwgé and V2, i.e.c(i).

7 EXxperiments

7.1 Analytic Solution of Conditional Probabilities

The conditional probabilityP(i| j), is the probability that a particle, moving with
constant speed in a direction given by a Brownian motion, tnalel from edge

i to edgej. In order to test the computational theory described in tfewipus
sections, we need a fast and efficient method for computiegetiprobabilities.
In prior work, these probabilities were computed using Mo@arlo simulation
(Williams and Jacobs, 1997a), and by numerical solutiorhefFokker-Planck
equation (Williams and Jacobs, 1997b). Although thereréely) is no analytic
solution for the Fokker-Planck equation described by (Monahf 1994), there
is a similiar equation for which an exact analytic solutiotisés (Thornber and
Williams, 1996). This equation governs the motion of pdesavith position and
velocity (instead of position and direction). The basgettory of these parti-
cles are straight-lines. Their velocities are modified byd@n impulses with a
zero mean distribution, and varianu—’gf, acting at Poisson distributed times, with
rate,Rg. If the initial and final velocities are conditioned to be afjuhis random
process can be used to compute stochastic completion fiddath \are virtually
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Figure 4:Visualization of [ dBP(x,y,6 | 0,0,0) computed using the analytic expression
from (Thornber and Williams, 1996). This is a rendering & kernel of the hypothesized
intra-cortical excitatory connections, integrated ovexr @ dimension. Displayed values
are scaled by a factor of 0

indistinguishable from those computed using the Mumfordican process. The
analytic expression foP(i| j), based on the process described in (Thornber and
Williams, 1996), is given in the appendix.

7.2 Eight Dot Circle

Given eight dots spaced uniformly around the perimeter dfadecof diameter,
d = 16, we would like to find the relative number of closed consoarhich visit
each dot and in each direction. We would also like to compwecbrresponding
completion field (Figure 6 (top-left)). Neither the ordertadversal, directions,
0, or speedy, are specifiea@ priori. Accordingly, the position and direction bias,
byot, is purely isotropic:

baot(X.8) = 3 8(% ). (43)

The isotropy ofbgqt(X,0) can be verified by noting the lack 6fdependence on
the right side of the equation. In our neural model, thisespnts the assumption
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Figure 5:Visualization of [ dxP(x,y, 6 | 0,0,0) computed using the analytic expression
from (Thornber and Williams, 1996). This is a rendering @ kernel of the hypothesized
intra-cortical excitatory connections, integrated overx dimension. Displayed values
are scaled by a factor of 10

that the LGN provides no information about orientation togie cells in V1.

So that all computations can be performed using ordinaryore@nd matri-
ces, the functionss(.), P(.) andb(.), are sampled at the locations of the eight
dots,¥%;, and atN discrete directions in thé dimension, to form a vectos, and
matricesP andB:

S = S(X%,mAg) (44)
Pa = P(Xi,mAg|X;j,nAg) (45)
Ba = O (46)

wherek =iN +m andl = jN + n, for dots,i and j, and sampling directionsn
andn. Sinceb(.) is isotropic and unweighted, after sampligy= 1. In all of
our experiments, we sample tBelimension at 5intervals. Consequently, there
areN = 72 discrete directions and 576 position-direction paies, P is of size
576x 576% To achieve scale-invariance, we maandP functions ofy and solve

A(Y)S(y) = BEP(y)B2s(y) = P(y)s(y). (47)

4The parameters defining the distribution of completion ssagre:T = 0.0005 andr = 9.5.
See Thornber and Williams, 1996.
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Figure 6: Top-left: The eight position constraints (i.@qt9 which define the
test configuration. Neither the order of traversal, dimts, or speed are spec-
ified a priori. Top-right: The right eigenvectog(Ymax) [where ymax = 0.149]
represents the limiting distribution of the random proaegsr all spatial scales.
Bottom-left: The left eigenvectos(ymax), represents the time-reversed distribu-
tion. Bottom-right: The vectors(ymax) S(Ymax), represents the magnitude of the
stochastic completion field at the locations of the dots.
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Eight Poirnt Circle (two sizes)

0.14701

Eigenvalue (10e—-6)
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Figure 7: Plot of magnitude of maximum positive real eigémgaA, vs. X =
log, 1(1/y) for eight point test configuration wittd = 16.0 (thin) andd = 32.0
(thick). Note that speed increases right to left.
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Figure 8: Stochastic completion field dues{gmax) for eight point circle.
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In the first experiment, we evaluatady) over the speed interval.1=1 1.1-30
using standard numerical routines and plotted the magmitdidhe largest, real
positive eigenvaluey, vs. log ;(1/y) (Figure 7). The function reaches its maxi-
mum value a¥max~ 1.1720. Consequently, the eigenvectsfl.1~2%) represents
the limiting distribution over all spatial scales (Figurdt@p-right)). The direction
reversed permutation of this eigenvecst, 1-29), is shown in Figure 6 (bottom-
left). This is the eigenvector &' with eigenvalue} (Ymax) - The component-wise
product ofs ands is shown in Figure 6 (bottom-right). This vector represents
the magnitude of the stochastic completion field at the lonatof the dots. As
one would expect, orientations tangent to the circle hagegtieatest magnitude.
The magnitude of the stochastic completion field at all offwesitions in the plane
(summed over all directions) is shown in Figure 8.

Next, we scaled the test figure by a factor of two, it~ 32.0 and plotted
N (logy 1(1/y) over the same interval (Figure 7). We observe Mat.17%+7) ~
A(1.17%), i.e., when plotted using a logarithmieaxis, the functions are identical
except for a translation. It follows th,,,~ 1001 1 7 X Ymax= 2.0 X Ymax This
confirms the scale-invariance of the system—doubling theeaifithe figure results
in a doubling of the selected speed.

(@) (b)

Figure 9: Amodal completion of a partially occluded circledasquare (redrawn
from Kanizsa, 1979).
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Figure 10: An array of Koffka Crosses with arms of varying thid Observers
report that as the width of the arms increases, the shapesdfidBory contour
changes from a circle to a square.

(-0.5w,0.5d) (0.5w,0.5d)
@) (b)

(-0.5d , 0.5w) (0.5d, 0.5w)
W'
Yy |
(-0.5d , —0.5w ) (0.5d ,-0.5w)

(-0.5w, -0.5d ) (0.5w, -0.5d )

Figure 11:(a) Koffka Cross.(b) Orientation and position constraints in terms of
d andw. The normal orientation at each endpoint is indicated bythinek line
while the thin lines represent plus or minus one standarchten (i.e., 128°) of

the Gaussian weighting function.
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(@) (b)

Figure 12:(a) Typically perceived as circle(b) Typically perceived as square.
The positions of the ends of the line segments are the sanathrchses.

7.3 Contours with Corners

The distribution of shapes considered by (Mumford, 1994) @rhornber and
Williams, 1996) consists of smooth, short contours. Yetdhsre many exam-
ples in human vision where completion shapes perceived mahs contain dis-
continuities in orientation (i.e., corners). Figure 9 skavdisplay by Kanizsa
(Kanizsa, 1979). This display illustrates the completidracircle and square
under a square occluder. The completion of the square i#fisamt because it
includes a discontinuity in orientation. Figure 10 showsatmuum of “Koffka
Crosses.” When the width of the arms of the Koffka Cross isdased, observers
report that the percept changes from an illusory circle tdlasory square (Sam-
bin, 1974).

In the experiments described in the next section, we did eo¢ralize the dis-
tribution described in (Mumford, 1994) to include contowigh corners (e.g., by
randomizing the direction of the particle’s motion at Porsglistributed times).
Instead, consistent with the experiments in the last secti@ assumed a distri-
bution of completion shapes consisting of straight-lineeharajectories modified
by random impulses drawn from a mixture of two limiting distitions. The
first distribution consists of weak but frequently actingoutses (we call this the
Gaussian-limit). The distribution of these weak impulsas kero mean and vari-
ance equal t(oré. The weak impulses act at Poisson times with RjfeThe sec-
ond distribution consists of strong but infrequently agtimpulses (we call this
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the Poisson-limit). Here, the magnitude of the random ire@siis Gaussian dis-
tributed with zero mean. However, the variance is equattovherea? >> o3).
The strong impulses act at Poisson times with Re<< Ry. Particles decay
with half-life equal to a parametar. The effect is that particles tend to travel
in smooth, short paths punctuated by occasional oriemtatigcontinuities. The
interested reader is encouraged to consult (Thornber alichi\g, 2000).

7.4 Koffka Cross

The Koffka Cross stimulus (Figure 10) has two basic degrégs@dom which we
call diameter (i.e.d) and arm width (i.e.w) (Figure 11 (a)). We are interested
in how the stochastic completion field changes as these gheasnare varied
(recall that observers report that as the width of the armeeases, the shape
of the illusory contour changes from a circle to a square (8an1974)). The
endpoints of the lines comprising the Koffka Cross can bel tis@lefine a set of
position and orientation constraints (Figure 11 (b)). Thsifion constraints are
specified in terms of the parametedsandw. The orientation constraints take
the form of a Gaussian weighting function which assigns @igirobabilities to
contours passing through the endpoints with orientationsial to the lines. The
corresponding input bias function is

1
V2102

whereo = 12.8° is the standard deviation of the Gaussian weighting functio
As before, so that all computations can be performed usidopary vectors and
matrices, the functions(.), P(.), andb(.) are sampled at the locations of the eight
line endpointsy;, and atN discrete directions in theé dimension. The vectos,
and matrix P, are defined as before. However, sil¢g is not isotropicB is now

a diagonal matrix

bend(x 9) =

25(2_%)8—(9—9&5)/202 (48)

Bk = Pend(Xi, nlg) (49)
wherek = iN + n, for line endpoint,i, and sampling directiom). To achieve
scale-invariance, we malsandP functions ofy and solve

SObserve that Figure 12 (a) is perceived as a square whiledidi2 (b) is perceived as a
circle. Yet the positions of the line endpoints is the santdollows that the orientations of the
lines affect the percept. We have chosen to model this demeedhrough the use of a Gaussian
weighting function which favors contours passing throdghéndpoints of the lines in the normal
direction.
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A(y)s(y) = BEP(y)B2s(y) = Q(Y)s(y) (50)

whereP(y) is the edge-to-edge transition probability matrix for shaeA(y) is
an eigenvalue of)(y), ands(y) is the corresponding eigenvector. Lety) be
the largest positive real eigenvalue@fy) and letymax be the scale wherg(y) is
maximized. Thers(Ymax), i-€., the eigenvector @ (ymax) associated with (Ymax),
is the limiting distribution over all spatial scales.

First, we used a Koffka Cross whede= 2.0 andw = 0.5 and evaluated(y)
over the speed intervé8.0 x 1.1, 8.0 x 1.1789 using standard numerical rou-
tines® The function reaches its maximum valueyatx ~ 8.0 x 1.1-%2 (Figure
13). Observe that the completion field due to the eigenvesi®0 x 1.17%?), is
dominated by contours of a predominantly circular shapguile@ 14 (right)). We
then uniformly scaled the Koffka Cross Figure by a factorwb ti.e.,d’ = 4.0
andw = 1.0 and plotted\’(log; 1 1/y) over the same interval (Figure 13). Ob-
serve thah’(8.0 x 1.17%*7) ~ A(8.0 x 1.17%). As before, this confirms the scale-
invariance of the system.

Next, we studied how the relative magnitudes of the localimaxof A(y)
change as the parameteis varied. We begin with a Koffka Cross whetde= 2.0
andw = 0.5 and observe that(y) has two local maxima (Figure 15). We refer to
the larger of these maxima @gce. AS previously noted, this maximum is located
at approximately ® x 1.1-%2, The second maximum is located at approximately
8.0 x 1.1732, When the completion field due to the eigenvecs(8,0 x 1.1-3?),
is rendered, we observe that the distribution is dominateddntours of pre-
dominantly square shape (Figure 16(a)). For this reasorrefee to this local
maximum as/square NOW consider a Koffka Cross where the widths of the arms
are doubled but the diameter remains the same,d.e-, 2.0 andw = 1.0. We
observe thad/'(y) still has two local maxima, one at approximately & 1.1-63
and a second at approximately0& 1.1-2° (Figure 15). When we render the
completion fields due to the eigenvectas$8.0 x 1.175%) and</(8.0 x 1.1-29),
we find that the completion fields have the same general dearas before—
the contours associated with the smaller spatial scalg lpwer speed) are ap-
proximately circular and those associated with the largatial scale (i.e., higher
speed) are approximately square (Figure 16 (d) and (c))owaagly, we refer

5The parameters defining the distribution of completion sisagre T = 0.00051 = 95¢,=
1000 andR;, = 1.0 x 10-8. See Thornber and Williams, 2000. As an anti-aliasing meashe
transition probabilitiesP(j|i), were averaged over initial conditions modeled as Gauss&n
varianceo? = 05 = 0.00024 ands = 0.0019.

28



Kofflka Crosses (two sizes)
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Figure 13: Plot of magnitude of maximum positive real eigdag,A, vs. X =
log, 1(1/y) for Koffka Crosses withd = 2.0 andw = 0.5 (thin) andd = 4.0 and
w = 1.0 (thick).
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Figure 14: Stochastic completion field due to the eigenves(8.0 x 1.1762).
This is the eigenvector with maximum positive real eigenedbr a Koffka Cross
with d = 2.0 andw = 0.5.
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Kofflka Crosses (two widths)

O0.195

envalue (10e—-5)
0.150
!

g
00

Real EIi
0.050 0.1
| |

Pos.

Max .
0.000

o] 20 40 60 80
>

Figure 15: Plot of magnitude of maximum positive real eigdag,A, vs. X =
log; 1(1/y) for Koffka Crosses withd = 2.0 andw = 0.5 (thin) andd = 2.0 and
w = 1.0 (thick).
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Figure 16: Stochastic completion fields for Koffka Cross tluéa) s(ysquare) is
a local optimum fow = 0.5 (b) S(Ycircle) is the global optimum fow = 0.5 (c)

S (Ysquare is the global optimum fow = 1.0 (d) S (Ysquare is @ local optimum for
w=1.0. These results are consistent with the circle-to-squansition perceived

by human subjects when the width of the arms of the Koffka €rre increased.
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to the locations of the respective local maximaygge andYsquare HOwever,
what is most interesting is that the relative magnitudeefiocal maxima have
reversed. Whereas we previously observed Nigdircie) > A(Ysquare), W€ NOW
observe thal'(Vsquard > A (Yeirre)- Therefore, the completion field due to the
eigenvectors (Ysquare [NOt S'(V,iee)!] represents the limiting distribution over
all spatial scales. This is consistent with the transitia@mf circle to square re-
ported by human observers when the widths of the arms of tHi&&Cross are
increased.

8 Conclusion

We have improved upon a previous model of illusory contoumtation by show-
ing how to compute a scale-invariant distribution of closedtours given position
constraints alone. We also used our model to explain a prsljiainexplained
perceptual effect.

Appendix

In this Appendix, we give the analytic expression for thedibanal probabilities
in the pure Gaussian caé&\e define the affinitypj;, between two directed edges,
i andj, to be:

Py =PUili) = | dtP(j[i:t) ~ FP(jistop (51)

whereP( | |i;t) is the probability that a particle which begins its stocttasiption

at (X, 6;) at time 0 will be at(Xj, 8;) at timet. The affinity between two edges is
the value of this expression integrated over stochasticam®tof all durations,
P(j|i). This integral is approximated analytically using the noetlof steepest
descent. The approximation is the producPavaluated at the time at which the
integral is maximized (i.etopt), and a weighting factof. The expression foP

at timet is: 6 L
3exg—sz(at®—bt+c)]-exp(+)

P(jlist) = T

(52)

’For a derivation of a related affinity function, see (Sha&nandt, and Basri, 1997).
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where

a = [2+cog06j—6)]/3 (53)
b = [xji(cosBj+cosh) +y;ji(sinB;+sing;)] /y (54)
c = (Gi+yi/Y (55)

for xj = xj —x andyj =y —Vyi. The parameter§, 1, andy determine the
distribution of shapes (wheiie= OS is the diffusion coefficients is particle half-
life andy is speed). The expression fBrshould be evaluated &t= ty, Where
topt is real, positive, and satisfies the following cubic equatio

—7t3/4+3(at?—2bt+3c)/T =0 (56)

If more than one real, positive root exists, then the rootiméing P(j|i;t) is
choser? Finally, the weighting factoF is:

F = /2M55/[12(3¢ — 2btopy) /T + 7t31/2) (57)

For our purposes here, we ignore the Exp/'t) factor in the steepest descent
approximation fottopt. We note that by increasing the distribution of contours
can be uniformly scaled.
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