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Abstract

A recent neural model of illusory contour formation is basedon a dis-
tribution of natural shapes traced by particles moving withconstant speed
in directions given by Brownian motions. The input to that model consists
of pairs of position and direction constraints and the output consists of the
distribution of contours joining all such pairs. In general, these contours will
not be closed and their distribution will not be scale-invariant. In this paper,
we show how to compute a scale-invariant distribution of closed contours
given position constraints alone and use this result to explain a well known
illusory contour effect.

1 Introduction

It has been proposed by Mumford that the distribution of illusory contour shapes
can be modeled by particles travelling with constant speed in directions given
by Brownian motions (Mumford, 1994). More recently, Williams and Jacobs in-
troduced the notion of astochastic completion field, the distribution of particle
trajectories joining pairs of position and direction constraints, and showed how
it could be computed in a local parallel network (Williams and Jacobs, 1997a,b).
They argued that the mode, magnitude and variance of the completion field are
related to the observed shape, salience, and sharpness of illusory contours.
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Unfortunately, the Williams and Jacobs model, as described, has some short-
comings. Recent psychophysics suggests that contour salience is greatly en-
hanced by closure (Kovacs, 1993). Yet, in general, the distribution computed
by the Williams and Jacobs model does not consist of closed contours. Nor is it
scale-invariant—doubling the distances between the constraints does not produce
a comparable completion field of double the size without a corresponding dou-
bling of the particle’s speeds. However, the Williams and Jacobs model contains
no intrinsic mechanism for speed selection. The speeds (like the directions) must
be specifieda priori.

In this paper, we show how to compute a scale-invariant distribution of closed
contours given position constraints alone. The significance of this is twofold.
First, it provides insight into how the output of neurons with purely isotropic re-
ceptive fields like those of LGN might be combined to produce orientation depen-
dent responses like those exhibited by neurons in V1 and V2. Second, it suggests
that the responses of these neurons are not just input for long-range contour group-
ing processes, but instead, are emergent properties of suchcomputations.

2 A Discrete State, Continuous Time Random Pro-
cess

2.1 Shape Distribution

Mumford observed that the probability distribution of boundary completion shapes
could be modeled by aFokker-Planckequation of the following form:

∂P
∂t

= −γcosθ
∂P
∂x

− γsinθ
∂P
∂y

+
σ2

2
∂2P
∂θ2 − 1

τ
P. (1)

This partial differential equation can be viewed as a set of independentadvection
equations in~x = [x,y]T (the first and second terms) coupled in theθ dimension by
thediffusionequation (the third term). The advection equations translate proba-
bility mass in direction,θ, with constant speed,γ, while the diffusion term models
the Brownian motion in direction, withdiffusion parameter, σ. The combined
effect of these three terms is that particles tend to travel in straight lines, but over
time they drift to the left or right by an amount proportionalto σ2. Finally, the
effect of the fourth term is that particles decay over time, with a half-life given
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by the decay constant,τ. This represents our prior expectation on the lengths of
gaps–most are quite short.

The Green’s function,Gγ(~x,θ ; t1 |~u,φ ; t0) gives the probability that a parti-
cle (travelling with speed,γ) observed at position,~u, and direction,φ, at time,
t0, will later be observed at position,~x, and direction,θ, at time,t1. It is the so-
lution, P(~x,θ ; t1), of the Fokker-Planck initial value problem with initial value,
P(~x,θ ; t0) = δ(~x−~u)δ(θ−φ). The symmetries of the Green’s function are sum-
marized by the following equation:

Gγ(~x,θ ; t1|~u,φ ; t0) = G1(Rφ(~x−~u)/γ,θ−φ ; t1− t0|0,0; 0) (2)

where the function,Rφ(.) rotates its argument byφ about the origin,[0,0]T. Two
of these symmetries are especially relevant to this paper. The first of these isscale
invariance:

Gγ(~x,θ ; t1|~u,φ ; t0) = G1(~x/γ,θ ; t1|~u/γ,φ ; t0). (3)

In plain language, scale invariance requires that the probability of a particle fol-
lowing a path between two edges be invariant under a transformation which scales
both the speed of the particle and the distance between the two edges by the same
factor. The second symmetry which concerns us here istime-reversalsymmetry:

Gγ(~x,θ ; t1|~u,φ ; t0) = Gγ(~u,φ+π; t1|~x,θ+π ; t0). (4)

In plain language, time-reversal symmetry requires that the probability of a parti-
cle following a path between two edges be invariant under a transformation which
reverses the order and directions of the two edges.

2.2 Particles visiting edges.

Consider an input pattern consisting ofN edges. Each edge,i, has a position,~xi ,
and an orientation,θi . Now construct a set of 2N states,S. For each edge,i, in
the input pattern, there are two states,i andī, in S. The two states associated with
an edge have the same position, but are opposite in direction. That is,~xi = ~x ī
but θi = θ ī +π. These two states represent the two possible directions a particle
undergoing a random motion can visit an edge of the input pattern. Henceforward,
we will refer to states simply as edges. See Figure 1.

Assuming that the shape of contours in the world can be modeled as the tra-
jectories of particles undergoing random motions, we seek answers to questions
like these:
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• What is the probability that a contour begins at edge,i, and ends at edge,j?

• What is the probability that a contour begins at edge,i, and reaches edge,j,
and containsn−1 other edges from the set,S?

To begin, we use the Green’s function to define an expression for the conditional
probability,

P( j | i ; t1− t0) = G1(~x j ,θ j ; t1 |~xi ,θi ; t0), (5)

that a particle (travelling with unit speed) observed at edge, i, at some unspec-
ified time, will subsequently be observed at edge,j, after time,t1, has elapsed.
Integrating over all possible visitation times for edge,j, yields:

P( j | i) =

Z ∞

0
dt1P( j | i ; t1). (6)

This expression gives the probability that a particle observed at edge,i, will later
be observed at edge,j. Because there are no intermediate edges, we term this a
path of length,n = 1, joining i and j. In contrast, a path of length,n = 2, joining i
and j is a path which begins at edge,i, next visits some unspecified intermediate
edge,k, and then ends at edge,j. In addition to integrating over all possible
visitation times,t1, for edge,j, the expression forP(2)( j | i) requires summing the
probabilities of paths through all possible intermediate edges,k1, and integrating
over all possible visitation times,t1, for edge,k1:

P(2)( j | i) =

Z ∞

0
dt2

Z t2

0
dt1∑

k1

P( j |k1 ; t2− t1)P(k1 | i ; t1) (7)

where the limits of integration reflect the fact thatt2 is constrained to be greater
thant1. By extending the pattern, we can define a path of length,n, joining i and j
to be a path which begins at edge,i, next visitsn−1 unspecified edges, and then
ends at edge,j. The expression forP(n) requiresn sums over the set of possible
intermediate edges, andn+1 integrals over visitation times:

P(n)( j | i) =

Z ∞

0
dtn...

Z t2

0
dt1∑

kn

...∑
k1

P( j |kn ; tn− tn−1)...P(k1 | i ; t1) (8)

where the limits of integration reflect the fact thattm is constrained to be greater
thantm−1 for 1≤ m≤ n. By reversing the order in which the integrals are evalu-
ated, so that the first integral evaluated is overtn and the last evaluated is overt1,
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and making the necessary changes in the limits of integration, we get the following
expression:

P(n)( j | i) =
Z ∞

0
dt1...

Z ∞

tn−1

dtn∑
kn

...∑
k1

P( j |kn ; tn− tn−1)...P(k1 | i ; t1). (9)

We now substituteτm for tm− tm−1, for 1≤ m≤ n, and move the integrals inside
the expression, so that each integral is immediately to the left of the conditional
probability involving its variable of integration:

P(n)( j | i) =

Z ∞

0
dτn...

Z ∞

0
dτ1∑

kn

...∑
k1

P(i |kn ; τn)...P(k1 | i ; τ1) (10)

= ∑
kn

...∑
k1

Z ∞

0
dτnP( j |kn ; τn)...

Z ∞

0
dτ1P(k1 | i ; τ1) (11)

= ∑
kn

...∑
k1

P( j |kn)...P(k1 | i). (12)

The result is an expression forP(n)( j | i), the probability of a lengthn path joining
i and j, purely in terms of probabilities of length one paths. Let usnow define
a 2N× 2N matrix, P, wherePji = P( j | i), i.e., Pji is the probability of a length
one path between edges,i and j. BecauseP( j | i) 6= P(i | j), the matrix,P, is not
symmetric. However, by time-reversal symmetry,P( j | i) = P(ī | j̄) whereθ ī =
θi +π andθ j̄ = θ j +π. See Figure 2. From the above expression, it follows that:

P(n)( j | i) = (Pn) ji . (13)

This result is significant because it shows that the probability of a particle with
motion governed by a continuous time random process visiting n edges atn real
valued times can be computed simply by taking then-th power of a matrix. The
implication is that our analysis from this point on need not involve the continuous
time random process, i.e., we need not write expressions involving integrals over
continuous times. Rather, our analysis can be based entirely on the discrete time
random process with transition probabilities specified by the matrix,P. Further-
more, any expressions we derive based on the discrete time process will also apply
to the underlying continuous time process.
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Figure 1: Left: An input pattern consisting ofN edges. Each edge,i, has a po-
sition,~xi , and an orientation,θi . Right: A set of 2N states,S. For each edge,i,
in the input pattern, there are two states,i and ī, in S. The two states associated
with an edge have the same position, but are opposite in direction. That is,~xi =~x ī
but θi = θ ī +π. These two states represent the two possible directions a particle
undergoing a random motion can visit an edge of the input pattern.
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Figure 2: The matrix,P, represents the transition probabilities between pairs of
edges. In general,P(i | j) 6= P( j | i), i.e.,P is not symmetric. However,Ppossesses
another form of symmetry:P(i | j) = P( j̄ | ī) andP( j | i) = P(ī | j̄). This is termed
time-reversalsymmetry.

3 A Discrete State, Discrete Time Random Process

3.1 Edge Saliency

In the last section, we derived an expression for the probability that a particle
moving with constant speed in a direction given by a Brownianmotion will travel
from edge,i, to edge, j and visit n− 1 intermediate edges. Significantly, this
expression involved only the probabilities of length one paths:

P( j | i) =

Z ∞

0
P( j | i ; t)dt. (14)

In effect, we reduced the problem of computing visitation probabilities for a con-
tinuous time random process to the more tractable problem ofcomputing visita-
tion probabilities for a discrete time random process. In the discrete time process,
the probability of a path of lengthn between edgesi and j can be computed using
the following recurrence equation:

P(n)( j | i) = ∑
k

P( j |k)P(n−1)(k| i). (15)
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This equation allows us to define an expression for the relative number of contours
which visit edge,i, and eventually return to edge,i:

ci = lim
n→∞

P(n)(i | i)
∑ j P(n)( j | j)

. (16)

This quantity, which we term theedge saliency, is the relative number of closed
contours through edgei. To evaluate the above expression, we first divideP by
its largest real positive eigenvalue,λ, allowing us to distribute the limit over the
numerator and denominator. This yields:

ci =
limn→∞

(P
λ
)n

ii

limm→∞ ∑ j
(P

λ
)m

j j

. (17)

To evaluate the numerator and denominator, we observe thatP is a positive matrix,
and therefore, by Perron’s Theorem (see Golub and Van Loan, 1996), there is a
largest positive real eigenvalue,λ, i.e.,λ > |µ|, for all eigenvalues,µ, exceptµ= λ.
It follows that:

lim
n→∞

(
P
λ

)n

=
s̄sT

s̄Ts
(18)

wheres and s̄ are the right and left eigenvectors ofP with largest positive real
eigenvalue, i.e.,λs= Psandλs̄= PTs̄. Because of the time-reversal symmetry of
P, the right and left eigenvectors are related by a permutation which exchanges
values associated with the same edge but opposite directions, i.e.,s̄i = sī . Apply-
ing this result to the denominator of the expression forci yields:

lim
m→∞∑

j

(
P
λ

)m

jj
= ∑

j

(s̄sT)jj

s̄Ts
= 1. (19)

Consequently, the saliency of edgei is given by the numerator:

ci =
(s̄sT)ii

sTs̄
=

sis̄i

∑ j sj s̄j
. (20)
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3.2 Link Saliency and Markov Chains

Generalizing the notion of edge saliency, it is possible to compute the relative
number of contours which begin at edge,i, immediately visit edge,j, and then
eventually return toi:

Cji = lim
n→∞

P(n−1)(i | j)P( j | i)

∑kP(n)(k | k)
. (21)

This quantity, which we term thelink saliency, is the relative number of closed
contours which visit edgei and j in succession. To solve this expression, we first
divide the numerator and denominator byλn, and then take separate limits in the
numerator and the denominator, yielding:

Cji =
limn→∞

(P
λ
)n−1

i j

(P
λ
)

ji

limm→∞ ∑k
(P

λ
)m

kk

. (22)

After evaluating the limits as before, we get the following expression for link
saliency:

Cji =
s̄jP( j | i)si

λs̄Ts
. (23)

It easy to verify that the number of closed contours enteringedgei equals the
number of closed contours leaving edgei:

∑
j

Ci j = ci = ∑
k

Cki. (24)

This establishes that closed contours are conserved at edges. Since closed con-
tours are conserved, it is possible to treat them as Markov chains. By dividing the
joint probability of a closed contour visiting edgesi and j in succession by the
probability of a closed contour visitingi, we get a conditional probability,

M( j | i) =
Cji

ci
=

s̄jP( j | i)

λs̄i
, (25)

equal to the probability that a closed contour will visit edge j given that it has just
visitedi. Unlike the matrix,P, the matrix,M , is stochastic, i.e.,∑ j M ji = 1, andc
is the eigenvector ofM with eigenvalue equal to one:

c = Mc. (26)
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This is consistent with our claim thatci is the probability of a closed contour
through edgei.

3.3 Saliency of Closed Contours

In our approach, the magnitude of the largest positive real eigenvalue ofP is re-
lated to the saliency of the most salient closed contour. To develop some intuition
for the meaning of the eigenvalue and its relationship to contour saliency, it will
be useful to consider an idealized situation. We know from linear algebra that
the eigenvalues ofP are solutions to the equation det(P−λI) = 0. Now, consider
a closed contour,Γ, threadingn edges. The probability that a contour will visit
edge,Γ(i+1)modn, given that has just visited edge,Γi , equalsP(Γ(i+1)modn|Γi).
Assuming that the probability of a contour joining edgesΓi andΓ j is is negligible
for non-adjacenti and j (i.e., Pj i = P(Γ j |Γi) when j = (i +1)modn andPj i = 0
otherwise) then:

λ(Γ) =

(
n

∏
i=1

P(Γ(i+1)modn| Γi)

)1
n

(27)

satisfies det(P−λI) = 0. This is thegeometric meanof the transition probabilities
in the closed path. Equivalently, minus one times the logarithm of the eigenvalue
equals theaverage transition energy:

− lnλ(Γ) = −
n

∑
i=1

lnP(Γ(i+1)modn| Γi)/n. (28)

Because maximizingλ minimizes the average transition energy, there is a close re-
lationship between the most salient closed contour and the minimum mean weight
cycle of the directed graph with weight matrix,− lnP.

Using psychophysical methods, (Elder and Zucker, 1994) quantified the ef-
fect that the distribution and size of boundary gaps has on contour closure. They
measured reaction-time in a pre-attentive search task and found that it was well
modeled by the square root of the sum of the squares of the gap lengths. They
assumed that reaction-time is inversely related to the degree of contour closure.
We note that for stimuli consisting of relatively few edges of negligible length
separated by large gaps thatλ is maximized when the edges are equidistant. Also,
the decrease in saliency due to one large gap is much greater than the decrease due
to many small gaps. Both of these properties are consistent with the observations
in (Elder and Zucker ’94).
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3.4 Stochastic Completion Fields

Finally, givens and s̄, it is possible to compute the relative number of closed
contours at anarbitrary position and direction in the plane, i.e., to compute the
stochastic completion field. Letη = (~u,φ) be an arbitrary position and direction
in the plane, then

cη = lim
n→∞∑

i
∑

j

P(n−1)(i | j)P( j |η)P(η | i)
∑kP(n)(k|k)

(29)

represents the probability that a contour first visits edgei, then passes through
position,~u, in direction,φ, next visits edgej, then visits anothern−1 edges, and
finally returns toi. Dividing numerator and denominator byλn yields:

cη = lim
n→∞∑

i
∑

j









(P
λ
)n−1

i j

∑k

(P
λ
)n

kk



 ·
(

P( j |η)P(η | i)
λ

)


 . (30)

Taking separate limits in the numerator and the denominatorresults in

cη = ∑
i

∑
j

[(
sis̄j

∑k sks̄k

)

·
(

P( j |η)P(η | i)
λ

)]

, (31)

which can be re-arranged to yield

cη =
1

λsTs̄∑
i

P(η | i)si

︸ ︷︷ ︸

source field

·∑
j

P( j |η)s̄j

︸ ︷︷ ︸

sink field

. (32)

This expression gives the relative probability that a closed contour will pass through
η, an arbitrary position and direction in the plane. Note thatthis is a natural gener-
alization of the factorization of the stochastic completion field into the product of
source and sink fields described in (Williams and Jacobs, 1997a). For this reason,
we call the components ofsands̄, theeigensourcesandeigensinksof the stochas-
tic completion field. The crucial difference is that we now know how to weight
the contribution of each edge to the stochastic completion field.
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4 A Continuous State, Discrete Time Random Pro-
cess

The approach which has just been outlined suffers from several limitations. First,
it assumes that we have perfect knowledge of the positions and directions of the
edges which serve as the input to the problem. This is unecessarily restrictive.
Second, because the vectors and matrices (e.g.,sandP) are specific to the config-
uration of input edges, it is not obvious how the computations we have described
can be translated into brain-like representations and algorithms, i.e., parallel op-
erations in a finite basis.

In order to address both of these limitations, we can generalize our approach
by considering the distribution of closed contours,c, to be a function of position
and direction in the plane,c(~u,φ). While previously, the input took the form of a
set of edges, with exact knowledge of the edge’s positions and orientations, now
the input takes the form of a probability density function,b(~x,θ), which represents
the probability that an edge exists at position~x and orientationθ. We refer to this
p.d.f., as theinput bias function. Instead of a discrete state and discrete time
random process with transition probabilities representedby a matrix,P, we have
a continuous state and discrete time random process with transition probabilities
represented by a linear operator,P(~u,φ |~x,θ). The expression for the eigensources
of the stochastic completion field then becomes

λs(~x,θ) =

Z Z Z

R2×S1
d~udφ Q(~x,θ |~u,φ)s(~u,φ) (33)

where

Q(~x,θ |~u,φ) = b(~x,θ)
1
2P(~x,θ |~u,φ)b(~u,φ)

1
2 (34)

ands(~x,θ) is the eigenfunction ofQ with largest positive real eigenvalueλ. The
input bias function,b(.), is distributed equally between the left and right sides of
P(.) to preserve the time-reversal symmetry ofQ(.). Consequently, left and right
eigenfunctions ofQ(.) with equal eigenvalue are related through a reversal sym-
metry, s̄(~x,θ) = s(~x,θ +π). Finally, the expression for the stochastic completion
field itself can be generalized in the same way:
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c(~u,φ) =
1

λ < s, s̄>

Z Z Z

R2×S1
d~xdθ P(~u,φ |~x,θ)b(~x,θ)

1
2s(~x,θ)×

Z Z Z

R2×S1
d~x ′dθ′ P(~x ′,θ′ |~u,φ)b(~x ′,θ′)

1
2 s̄(~x ′,θ′) (35)

where s̄(~x,θ) = s(~x,θ + π), R2 × S1 is the space of positions in the plane and
directions on the circle, and< s, s̄>=

R R R

R2×S1 d~xdθ s(~x,θ)s̄(~x,θ).
Given the above expression for the stochastic completion field, it is clear that

the key problem is computing the eigenfunction with largestpositive real eigen-
value. To accomplish this, we can use the well known power method (see Golub
and Van Loan, 1996). In this case, the power method involves repeated application
of the linear operator,Q(.), to the function,s(.), followed by normalization:

s(n+1)(~x,θ) =

R R R

R2×S1 d~udφ Q(~x,θ |~u,φ)s(n)(~u,φ)
R R R

R2×S1 d~udφ s(n)(~u,φ)
. (36)

In the limit, asn gets very large,s(n+1)(~x,θ) converges to the eigenfunction of
Q(.), with largest positive real eigenvalue. We observe that theabove computation
can be considered a continuous state, discrete time, recurrent neural network.

5 Scale Invariance

Ideally, we would like our computation to be scale invariant. A computation is
scale invariant if scaling the input by a constant factor,γ, produces a correspond-
ing scaling of the output. This property is best summarized by a commutative
diagram:

b(~x,θ)
C→ c(~x,θ)

↓ S ↓ S

b(~x/γ,θ)
C→ c(~x/γ,θ)

(37)

whereb(.) is the input,c(.), is the output,
C→ is the computation, and

S→ is the
scaling operator. The diagram shows that the output is independent of the order in
which the operators are applied.

The only scale dependent parameter in the computation is thespeed of the par-
ticles. The lack of scale-invariance is due to the fact that this parameter has been
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arbitrarily set to one. In order to achieve a scale-invariant computation, we need
to eliminate this bias. To accomplish this, all speeds must be treated uniformly.

Previously,Q(.) was indexed by four arguments, i.e., the initial and final par-
ticle positions and directions. In the scale-invariant computation,Q(.) will be
indexed by six arguments, i.e., the initial and final particle positions, directions,
and speeds. Because particles have constant speed,Q(.) is block diagonal. This
property ofQ(.), together with the scale invariance of the Green’s function, G(.),
allowsQ(.) to be defined as follows:

Q(~x,θ,γ1 |~u,φ,γ0) =

{

b
1
2(~x,θ)P(~x/γ1,θ |~u/γ0,φ)b

1
2 (~u,φ) if γ0 = γ1

0 otherwise.
(38)

The Q(.) operator now includes an integral over all positive speeds,γ0. This
eliminates the scale dependency in the computation:

λs(~x,θ,γ1) =
Z Z Z

R2×S1
d~udφ

Z

R>0
dγ0 Q(~x,θ,γ1 |~u,φ,γ0)s(~u,φ,γ0). (39)

The eigenfunction ofQ(.) with largest positive real eigenvalue represents the lim-
iting distribution for particles of all speeds. BecauseQ(.) is block diagonal, its
eigenfunctions are zero everywhere outside of a single region of constant speed.
Consequently, the eigenfunction with largest positive real eigenvalue ofQ(.) can
be identified in two steps. First, we find the largest positivereal eigenvalue for
each constant speed sub-matrix:

λ(γ) = max

R R R

R2×S1 d~xdθ s̄(~x,θ)
R R R

R2×S1 d~udφ Q(~x,θ,γ |~u,φ,γ)s(~u,φ)
R R R

R2×S1 d~xdθ s̄(~x,θ)s(~x,θ)
(40)

where the eigenvalue is written as a Rayleigh quotient, and the maximum is taken
over all eigenfunctions,s(.), of the sub-matrix ofQ(.) with constant speed,γ.
Next, we find the speed,γmax, which maximizes,λ(γ):

γmax= argmax
γ

λ(γ). (41)

The eigenfunction,s(~x,θ), with eigenvalue,λ(γmax), gives the limiting distribution
for particles of all speeds:

λ(γmax)s(~x,θ) =
Z Z Z

R2×S1
d~udφ Q(~x,θ,γmax|~u,φ,γmax)s(~u,φ). (42)
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6 Orientation Selectivity in Primary Visual Cortex

A long standing problem in visual neuroscience is the emergence of orientation
selective responses in simple cells of primary visual cortex given input from cells
in lateral geniculate which exhibit little or no orientation selectivity. In contrast
with the classical pure feedforward model for the emergenceof orientation selec-
tivity proposed by (Hubel and Wiesel, 1962), the authors of arecent review article
(Sompolinksy and Shapley, 1997) and two computer simulation studies (Somers
et al., 1995) and (Ben-Yishaiet al., 1995), argue for a model with three defin-
ing features: 1) a weak orientation bias provided by excitatory input from the
lateral geniculate; 2) intra-cortical excitatory connections between simple cells
with similar orientation preferences; and 3) intra-cortical inhibitory connections
between simple cells without regard to orientation preference. These authors sug-
gest that the weak orientation bias provided by excitatory input from the lateral
geniculate is amplified by intra-cortical excitatory connections between simple
cells with similar orientation preference. The role of the intra-cortical inhibition
is to prevent the level of activity due to the intra-corticalexcitation from growing
unbounded.

The principal contribution of these recent studies is a unified explanation of
the many different (and sometimes contradictory) experimental findings related
to the emergence of orientation selectivity in primary visual cortex. However,
none of these authors considers the functional significanceof orientation selectiv-
ity, i.e., what purpose it serves in the larger context of human visual information
processing. Stated differently, is orientation selectivity an end in itself? Or can it
only be understood as an emergent property of a higher-levelvisual computation,
such as contour completion?

To our knowledge, the first model of orientation selectivityin visual cor-
tex which differed significantly from the original Hubel andWiesel feedforward
model was described in (Parent and Zucker, 1989). Like the more recent and
detailed integrate-and-fire models described in (Somerset al., 1995) and (Ben-
Yishaiet al., 1995), Parent and Zucker considered orientation selectivity to be an
end in itself. Unlike these recent models, Parent and Zucker’s primary motivations
were computational. In the relaxation labeling network they describe, crude local
estimates of tangent and curvature (i.e., the initial states of simple cells with and
without end-stopping) are sharpened by the activity of recurrent excitatory con-
nections representing geometric constraints between position, tangent, and curva-
ture. The magnitude of the network state vector is normalized at every time step
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by dividing by the sum of its components.1 It can be seen that this divisive normal-
ization plays the same role as the non-specific inhibition inthe model of (Somers
et al., 1995). Consequently, we see that there is a strong relationship between
Parent and Zucker’s model and more recent models of orientation selectivity in
primary visual cortex.

In this paper, we do not consider orientation selectivity tobe an end in itself,
rather, we consider it to be an emergent property of a higher-level visual com-
putation devoted to contour completion. Unlike (Parent andZucker, 1989), we
did not specifically intend to model the emergence of orientation selectivity in
primary visual cortex. Instead, our intention was to formulate a computational
theory level (Marr, 1980) account of contour completion; orientation selectivity is
simply a side-effect. Our specific hypothesis is that one of the major goals of early
visual processing is to compute a scale invariant distribution of closed contours,
c(.), consistent with weak constraints on position and direction derived by linear
filtering, b(.). We termed this distribution, the stochastic completion field, and,
in the previous section, described a continuous state, discrete time neural network
for computing it. We have demonstrated experimentally (seethe next section)
that the distribution ofs(.), the eigensources ofc(.), can be highly non-isotropic,
even for isotropic,b(.). We now show that the neural network which computes
s(.) is consistent with recent hypotheses concerning the emergence of orientation
selectivity in primary visual cortex.

The state of the neural network at timet is given bys(t)(.), which is a function
of R2×S1, the continuous space of positions and directions. In this paper, we
do not address the problem of hows(t)(.) can be represented as a weighted sum
of a fixed set of basis functions, i.e., receptive fields. Obviously, this needs to
be done before we can claim to have a complete account of the computation at
the algorithm and representation level (Marr ’80).2 Nevertheless, we believe that
it is often best to first describe the computation in the continuum (e.g., Williams
and Jacobs, 1997a), and by doing so, to (temporarily) avoid the issue of sampling

1For an introduction to relaxation labeling, see (Rosenfeldet al., 1976).
2Although beyond the scope of the current paper, the problem of representing continuous (but

band-limited) functions of position and direction using a finite set of basis functions is one we
are actively working on. For example, in (Zweck and Williams’00), we consider the problem of
computing the stochastic completion field using parallel operations in a finite basis subject to the
constraint that the result be invariant under rotations andtranslations of the input pattern. This is
accomplished, in part, by generalizing the notions of steerability and shiftability of basis functions
introduced in (Simoncelliet al., 1993).
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altogether.3

Recall that the fixed-point of the neural network we described is the eigenfunc-
tion with largest positive real eigenvalue of the linear operator,Q(.). The linear
operator,Q(.), is the composition of the input independent linear operator, P(.),
and the input dependent linear operator,B(.). The dynamics of the neural network
are derived from the update equation for the standard power method for comput-
ing eigenvectors. It is useful to draw an analogy between ourneural network for
contour completion and the models for the emergence of orientation selectivity
in primary visual cortex described by (Somerset al., 1995) and (Ben-Yishaiet
al., 1995). See Figure 3. First, we can identifys(.) with simple cells in V1 and
the input bias function,b(.), which modulatess(.) in the numerator of the update
equation, with the feedforward excitatory connections from the lateral geniculate.
Second, we can identifyP(.) with the intra-cortical excitatory connections which
Somerset al. hypothesize are primarily responsible for the emergence oforien-
tation selectivity in V1. As in the model of Somerset al., these connections are
highly specific and mainly target cells of similar orientation preference (See Fig-
ures 4 and 5). Third, we identify the denominator of the update equation with the
non-specific intra-cortical inhibitory connections whichSomerset al. hypothesize
keep the level of activity within bounds. Because the purpose of the denominator
is to normalizes(.), it plays the same role as the denominator in the relaxation la-
beling update equation (Rosenfeldet al., 1976) and might be implemented using
a mechanism similiar to the divisive inhibition mechanism proposed by (Heeger,
1992). Finally, we identifyc(.), the stochastic completion field, with the popula-
tion of cells in V2 described by (von der Heydtet al., 1985).

There is obviously a huge gap in level-of-detail between thecontinuous state,
discrete time neural network we describe and the integrate-and-fire simulations of
(Somerset al., 1995) and (Ben-Yishaiet al., 1995). For this reason, the above
discussion must be regarded as highly speculative. However, we would like to
stress that, unlike these recent theoretical studies, our neural network implements
a well-defined (and non-trivial) computation in the sense of(Marr, 1980). For this
reason, we believe our top-down approach complements the bottom-up approach
pursued by others.

3In this respect, the model of (Parent and Zucker, 1989) is instructive. Although their model
was a major source of inspiration for our own, we believe thatit (unnecessarily) confounds the
computational theory level goal of estimating tangent and curvature everywhere with algorithm
and representation level details related to discrete sampling.

17



LGN

V1

V2C i

P ( i | j )

s i ji
b( i ) b( j )

Figure 3:Thin solid lines indicate feedforward connections from LGNwhich provide a
weak orientation bias, i.e.,b(i), to simple cells in V1, i.e.,s(i). Solid lines with arrows
indicate orientation specific intra-cortical excitatory connections, i.e.,P(i | j). Dashed
lines with arrows indicate orientation non-specific intra-cortical inhibitory connections.
Thick solid lines indicate feedforward connections between V1 and V2, i.e.,c(i).

7 Experiments

7.1 Analytic Solution of Conditional Probabilities

The conditional probability,P(i | j), is the probability that a particle, moving with
constant speed in a direction given by a Brownian motion, will travel from edge
i to edge j. In order to test the computational theory described in the previous
sections, we need a fast and efficient method for computing these probabilities.
In prior work, these probabilities were computed using Monte Carlo simulation
(Williams and Jacobs, 1997a), and by numerical solution of the Fokker-Planck
equation (Williams and Jacobs, 1997b). Although there (currently) is no analytic
solution for the Fokker-Planck equation described by (Mumford, 1994), there
is a similiar equation for which an exact analytic solution exists (Thornber and
Williams, 1996). This equation governs the motion of particles with position and
velocity (instead of position and direction). The base-trajectory of these parti-
cles are straight-lines. Their velocities are modified by random impulses with a
zero mean distribution, and variance,σ2

g, acting at Poisson distributed times, with
rate,Rg. If the initial and final velocities are conditioned to be equal, this random
process can be used to compute stochastic completion fields which are virtually
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Figure 4:Visualization of
R

S1 dθP(x,y,θ | 0,0,0) computed using the analytic expression
from (Thornber and Williams, 1996). This is a rendering of the kernel of the hypothesized
intra-cortical excitatory connections, integrated over the θ dimension. Displayed values
are scaled by a factor of 105.

indistinguishable from those computed using the Mumford random process. The
analytic expression forP(i | j), based on the process described in (Thornber and
Williams, 1996), is given in the appendix.

7.2 Eight Dot Circle

Given eight dots spaced uniformly around the perimeter of a circle of diameter,
d = 16, we would like to find the relative number of closed contours which visit
each dot and in each direction. We would also like to compute the corresponding
completion field (Figure 6 (top-left)). Neither the order oftraversal, directions,
θ, or speed,γ, are specifieda priori. Accordingly, the position and direction bias,
bdot, is purely isotropic:

bdot(~x,θ) = ∑
i

δ(~x−~xi). (43)

The isotropy ofbdot(~x,θ) can be verified by noting the lack ofθ dependence on
the right side of the equation. In our neural model, this represents the assumption
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Figure 5:Visualization of
R

R dxP(x,y,θ | 0,0,0) computed using the analytic expression
from (Thornber and Williams, 1996). This is a rendering of the kernel of the hypothesized
intra-cortical excitatory connections, integrated over the x dimension. Displayed values
are scaled by a factor of 105.

that the LGN provides no information about orientation to simple cells in V1.
So that all computations can be performed using ordinary vectors and matri-

ces, the functions,s(.), P(.) andb(.), are sampled at the locations of the eight
dots,~xi , and atN discrete directions in theθ dimension, to form a vector,s, and
matrices,P andB:

sk = s(~xi ,m∆θ) (44)

Pkl = P(~xi ,m∆θ |~x j ,n∆θ) (45)

Bkl = δk` (46)

wherek = iN + m and l = jN + n, for dots,i and j, and sampling directions,m
andn. Sinceb(.) is isotropic and unweighted, after sampling,B = I . In all of
our experiments, we sample theθ dimension at 5◦ intervals. Consequently, there
areN = 72 discrete directions and 576 position-direction pairs, i.e.,P is of size
576×576.4 To achieve scale-invariance, we makesandP functions ofγ and solve

λ(γ)s(γ) = B
1
2P(γ)B

1
2s(γ) = P(γ)s(γ). (47)

4The parameters defining the distribution of completion shapes are:T = 0.0005 andτ = 9.5.
See Thornber and Williams, 1996.
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Figure 6: Top-left: The eight position constraints (i.e.,dots) which define the
test configuration. Neither the order of traversal, directions, or speed are spec-
ified a priori. Top-right: The right eigenvector,s(γmax) [where γmax = 0.149]
represents the limiting distribution of the random processover all spatial scales.
Bottom-left: The left eigenvector,̄s(γmax), represents the time-reversed distribu-
tion. Bottom-right: The vector,s(γmax) s̄(γmax), represents the magnitude of the
stochastic completion field at the locations of the dots.
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Figure 7: Plot of magnitude of maximum positive real eigenvalue, λ, vs. x =
log1.1(1/γ) for eight point test configuration withd = 16.0 (thin) andd = 32.0
(thick). Note that speed increases right to left.
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Figure 8: Stochastic completion field due tos(γmax) for eight point circle.
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In the first experiment, we evaluatedλ(γ) over the speed interval[1.1−1,1.1−30]
using standard numerical routines and plotted the magnitude of the largest, real
positive eigenvalue,λ, vs. log1.1(1/γ) (Figure 7). The function reaches its maxi-
mum value atγmax≈ 1.1−20. Consequently, the eigenvector,s(1.1−20) represents
the limiting distribution over all spatial scales (Figure 6(top-right)). The direction
reversed permutation of this eigenvector,s̄(1.1−20), is shown in Figure 6 (bottom-
left). This is the eigenvector ofPT with eigenvalue,λ(γmax). The component-wise
product ofs and s̄ is shown in Figure 6 (bottom-right). This vector represents
the magnitude of the stochastic completion field at the locations of the dots. As
one would expect, orientations tangent to the circle have the greatest magnitude.
The magnitude of the stochastic completion field at all otherpositions in the plane
(summed over all directions) is shown in Figure 8.

Next, we scaled the test figure by a factor of two, i.e.,d′ = 32.0 and plotted
λ′(log1.1(1/γ) over the same interval (Figure 7). We observe thatλ′(1.1−x+7) ≈
λ(1.1−x), i.e., when plotted using a logarithmicx-axis, the functions are identical
except for a translation. It follows thatγ′max≈ log1.17× γmax≈ 2.0× γmax. This
confirms the scale-invariance of the system—doubling the size of the figure results
in a doubling of the selected speed.

(a) (b)

Figure 9: Amodal completion of a partially occluded circle and square (redrawn
from Kanizsa, 1979).
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Figure 10: An array of Koffka Crosses with arms of varying width. Observers
report that as the width of the arms increases, the shape of the illusory contour
changes from a circle to a square.

(−0.5w , 0.5d ) ( 0.5w , 0.5d )

( 0.5d , 0.5w )

( 0.5d ,−0.5w )

( 0.5w , −0.5d )(−0.5w , −0.5d )

(−0.5d , −0.5w )

(−0.5d , 0.5w )

w
d

(a) (b)

Figure 11:(a) Koffka Cross.(b) Orientation and position constraints in terms of
d andw. The normal orientation at each endpoint is indicated by thethick line
while the thin lines represent plus or minus one standard deviation (i.e., 12.8◦) of
the Gaussian weighting function.
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(a) (b)

Figure 12: (a) Typically perceived as circle.(b) Typically perceived as square.
The positions of the ends of the line segments are the same in both cases.

7.3 Contours with Corners

The distribution of shapes considered by (Mumford, 1994) and (Thornber and
Williams, 1996) consists of smooth, short contours. Yet there are many exam-
ples in human vision where completion shapes perceived by humans contain dis-
continuities in orientation (i.e., corners). Figure 9 shows a display by Kanizsa
(Kanizsa, 1979). This display illustrates the completion of a circle and square
under a square occluder. The completion of the square is significant because it
includes a discontinuity in orientation. Figure 10 shows a continuum of “Koffka
Crosses.” When the width of the arms of the Koffka Cross is increased, observers
report that the percept changes from an illusory circle to anillusory square (Sam-
bin, 1974).

In the experiments described in the next section, we did not generalize the dis-
tribution described in (Mumford, 1994) to include contourswith corners (e.g., by
randomizing the direction of the particle’s motion at Poisson distributed times).
Instead, consistent with the experiments in the last section, we assumed a distri-
bution of completion shapes consisting of straight-line base-trajectories modified
by random impulses drawn from a mixture of two limiting distributions. The
first distribution consists of weak but frequently acting impulses (we call this the
Gaussian-limit). The distribution of these weak impulses has zero mean and vari-
ance equal toσ2

g. The weak impulses act at Poisson times with rateRg. The sec-
ond distribution consists of strong but infrequently acting impulses (we call this
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the Poisson-limit). Here, the magnitude of the random impulses is Gaussian dis-
tributed with zero mean. However, the variance is equal toσ2

p (whereσ2
p >> σ2

g).
The strong impulses act at Poisson times with rateRp << Rg. Particles decay
with half-life equal to a parameterτ. The effect is that particles tend to travel
in smooth, short paths punctuated by occasional orientation discontinuities. The
interested reader is encouraged to consult (Thornber and Williams, 2000).

7.4 Koffka Cross

The Koffka Cross stimulus (Figure 10) has two basic degrees of freedom which we
call diameter (i.e.,d) and arm width (i.e.,w) (Figure 11 (a)). We are interested
in how the stochastic completion field changes as these parameters are varied
(recall that observers report that as the width of the arms increases, the shape
of the illusory contour changes from a circle to a square (Sambin, 1974)). The
endpoints of the lines comprising the Koffka Cross can be used to define a set of
position and orientation constraints (Figure 11 (b)). The position constraints are
specified in terms of the parameters,d andw. The orientation constraints take
the form of a Gaussian weighting function which assigns higher probabilities to
contours passing through the endpoints with orientations normal to the lines.5 The
corresponding input bias function is

bend(~x,θ) =
1√

2πσ2 ∑
i

δ(~x−~xi)e
−(θ−θi± π

2)/2σ2
(48)

whereσ = 12.8◦ is the standard deviation of the Gaussian weighting function.
As before, so that all computations can be performed using ordinary vectors and
matrices, the functions,s(.), P(.), andb(.) are sampled at the locations of the eight
line endpoints,~xi , and atN discrete directions in theθ dimension. The vector,s,
and matrix,P, are defined as before. However, sinceb(.) is not isotropic,B is now
a diagonal matrix

Bkk = bend(~xi ,n∆θ) (49)

wherek = iN + n, for line endpoint,i, and sampling direction,n. To achieve
scale-invariance, we makes andP functions ofγ and solve

5Observe that Figure 12 (a) is perceived as a square while Figure 12 (b) is perceived as a
circle. Yet the positions of the line endpoints is the same. It follows that the orientations of the
lines affect the percept. We have chosen to model this dependence through the use of a Gaussian
weighting function which favors contours passing through the endpoints of the lines in the normal
direction.
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λ(γ)s(γ) = B
1
2P(γ)B

1
2s(γ) = Q(γ)s(γ) (50)

whereP(γ) is the edge-to-edge transition probability matrix for speed, γ, λ(γ) is
an eigenvalue ofQ(γ), ands(γ) is the corresponding eigenvector. Letλ(γ) be
the largest positive real eigenvalue ofQ(γ) and letγmax be the scale whereλ(γ) is
maximized. Thens(γmax), i.e., the eigenvector ofQ(γmax) associated withλ(γmax),
is the limiting distribution over all spatial scales.

First, we used a Koffka Cross whered = 2.0 andw = 0.5 and evaluatedλ(γ)
over the speed interval[8.0×1.1−1,8.0×1.1−80] using standard numerical rou-
tines.6 The function reaches its maximum value atγmax≈ 8.0×1.1−62 (Figure
13). Observe that the completion field due to the eigenvector, s(8.0×1.1−62), is
dominated by contours of a predominantly circular shape (Figure 14 (right)). We
then uniformly scaled the Koffka Cross Figure by a factor of two, i.e.,d′ = 4.0
andw′ = 1.0 and plottedλ′(log1.11/γ) over the same interval (Figure 13). Ob-
serve thatλ′(8.0×1.1−x+7) ≈ λ(8.0×1.1−x). As before, this confirms the scale-
invariance of the system.

Next, we studied how the relative magnitudes of the local maxima of λ(γ)
change as the parameterw is varied. We begin with a Koffka Cross whered = 2.0
andw = 0.5 and observe thatλ(γ) has two local maxima (Figure 15). We refer to
the larger of these maxima asγcircle. As previously noted, this maximum is located
at approximately 8.0×1.1−62. The second maximum is located at approximately
8.0×1.1−32. When the completion field due to the eigenvector,s(8.0×1.1−32),
is rendered, we observe that the distribution is dominated by contours of pre-
dominantly square shape (Figure 16(a)). For this reason, werefer to this local
maximum asγsquare. Now consider a Koffka Cross where the widths of the arms
are doubled but the diameter remains the same, i.e.,d′ = 2.0 andw′ = 1.0. We
observe thatλ′(γ) still has two local maxima, one at approximately 8.0×1.1−63

and a second at approximately 8.0× 1.1−29 (Figure 15). When we render the
completion fields due to the eigenvectors,s′(8.0×1.1−63) ands′(8.0×1.1−29),
we find that the completion fields have the same general character as before—
the contours associated with the smaller spatial scale (i.e., lower speed) are ap-
proximately circular and those associated with the larger spatial scale (i.e., higher
speed) are approximately square (Figure 16 (d) and (c)). Accordingly, we refer

6The parameters defining the distribution of completion shapes are:T = 0.0005,τ = 9.5,ξp =
100.0 andRp = 1.0×10−8. See Thornber and Williams, 2000. As an anti-aliasing measure, the
transition probabilities,P( j | i), were averaged over initial conditions modeled as Gaussians of
varianceσ2

x = σ2
y = 0.00024 andσ2

θ = 0.0019.
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Figure 13: Plot of magnitude of maximum positive real eigenvalue,λ, vs. x =
log1.1(1/γ) for Koffka Crosses withd = 2.0 andw = 0.5 (thin) andd = 4.0 and
w = 1.0 (thick).
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Figure 14: Stochastic completion field due to the eigenvector, s(8.0× 1.1−62).
This is the eigenvector with maximum positive real eigenvalue for a Koffka Cross
with d = 2.0 andw = 0.5.
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Figure 15: Plot of magnitude of maximum positive real eigenvalue,λ, vs. x =
log1.1(1/γ) for Koffka Crosses withd = 2.0 andw = 0.5 (thin) andd = 2.0 and
w = 1.0 (thick).
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Figure 16: Stochastic completion fields for Koffka Cross dueto (a) s(γsquare) is
a local optimum forw = 0.5 (b) s(γcircle) is the global optimum forw = 0.5 (c)
s′(γ′square) is the global optimum forw = 1.0 (d) s′(γ′square) is a local optimum for
w= 1.0. These results are consistent with the circle-to-square transition perceived
by human subjects when the width of the arms of the Koffka Cross are increased.

32



to the locations of the respective local maxima asγ′circle and γ′square. However,
what is most interesting is that the relative magnitudes of the local maxima have
reversed. Whereas we previously observed thatλ(γcircle) > λ(γsquare), we now
observe thatλ′(γ′square) > λ′(γ′circle). Therefore, the completion field due to the
eigenvector,s′(γ′square) [not s′(γ′circle)!] represents the limiting distribution over
all spatial scales. This is consistent with the transition from circle to square re-
ported by human observers when the widths of the arms of the Koffka Cross are
increased.

8 Conclusion

We have improved upon a previous model of illusory contour formation by show-
ing how to compute a scale-invariant distribution of closedcontours given position
constraints alone. We also used our model to explain a previously unexplained
perceptual effect.

Appendix

In this Appendix, we give the analytic expression for the conditional probabilities
in the pure Gaussian case.7 We define the affinity,Pj i , between two directed edges,
i and j, to be:

Pj i ≡ P( j | i) =
Z ∞

0
dt P( j | i; t)≈ F P( j | i; topt) (51)

whereP( j | i; t) is the probability that a particle which begins its stochastic motion
at (~xi ,θi) at time 0 will be at(~x j ,θ j) at timet. The affinity between two edges is
the value of this expression integrated over stochastic motions of all durations,
P( j | i). This integral is approximated analytically using the method of steepest
descent. The approximation is the product ofP evaluated at the time at which the
integral is maximized (i.e.,topt), and a weighting factor,F. The expression forP
at timet is:

P( j | i; t) =
3exp[− 6

Tt3
(at2−bt+c)] ·exp(−t

τ )
√

π3T 3 t7/2
(52)

7For a derivation of a related affinity function, see (Sharon,Brandt, and Basri, 1997).
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where

a = [2+cos(θ j −θi)]/3 (53)

b = [x ji(cosθ j+cosθi)+y ji (sinθ j+sinθi)]/γ (54)

c = (x2
ji +y2

ji )/γ2 (55)

for x ji = x j − xi and y ji = y j − yi . The parametersT, τ, and γ determine the
distribution of shapes (whereT = σ2

g is the diffusion coefficient,τ is particle half-
life and γ is speed). The expression forP should be evaluated att = topt, where
topt is real, positive, and satisfies the following cubic equation:

−7t3/4+3(at2−2bt+3c)/T = 0 (56)

If more than one real, positive root exists, then the root maximizing P( j | i; t) is
chosen.8 Finally, the weighting factorF is:

F =
√

2πt5
opt/[12(3c−2btopt)/T +7t3

opt/2] (57)

For our purposes here, we ignore the exp(−t/τ) factor in the steepest descent
approximation fortopt. We note that by increasingγ, the distribution of contours
can be uniformly scaled.
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