
Communicated by Steven Zucker

Local Parallel Computation of Stochastic Completion Fields

Lance R. Williams
David W. Jacobs
NEC Research Institute, Princeton, NJ 08540, USA

We describe a local parallel method for computing the stochastic comple-
tion field introduced in the previous article (Williams and Jacobs, 1997).
The stochastic completion field represents the likelihood that a comple-
tion joining two contour fragments passes through any given position
and orientation in the image plane. It is based on the assumption that the
prior probability distribution of completion shape can be modeled as a
random walk in a lattice of discrete positions and orientations. The local
parallel method can be interpreted as a stable finite difference scheme for
solving the underlying Fokker-Planck equation identified by Mumford
(1994). The resulting algorithm is significantly faster than the previously
employed method, which relied on convolution with large-kernel filters
computed by Monte Carlo simulation. The complexity of the new method
is O(n3m), while that of the previous algorithm was O(n4m2) (for an n× n
image with m discrete orientations). Perhaps most significant, the use of a
local method allows us to model the probability distribution of comple-
tion shape using stochastic processes that are neither homogeneous nor
isotropic. For example, it is possible to modulate particle decay rate by a
directional function of local image brightnesses (i.e., anisotropic decay).
The effect is that illusory contours can be made to respect the local im-
age brightness structure. Finally, we note that the new method is more
plausible as a neural model since (1) unlike the previous method, it can
be computed in a sparse, locally connected network, and (2) the network
dynamics are consistent with psychophysical measurements of the time
course of illusory contour formation.

1 Introduction

In recent years, several different researchers (Grossberg & Mingolla, 1985;
Guy & Medioni, 1996; Heitger & von der Heydt, 1993; Williams & Jacobs,
1997) have formulated computational models of perceptual completion and
illusory contours based on large-kernel convolution.1 Although the func-
tion computed in each case is different, each method requires computing

1 See “Stochastic Completion Fields” elsewhere in this journal for a detailed literature
review.
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one or more convolutions with filters represented by kernels of size equal
to the largest gaps to be bridged (usually taken to be the size of the image).
From the standpoint of computer vision, it should be clear that computing
large numbers of convolutions with kernels of size equal to the image size
is prohibitively expensive. These methods also have deficiencies as models
of human visual processing, since implementation in vivo would require
pairs of neurons separated by large amounts of visual arc to be densely in-
terconnected. Although this possibility cannot be ruled out,2 a model based
on local connections clearly makes weaker demands on neuroanatomy (see
Figure 1).

Data from human psychophysics are also inconsistent with methods re-
quiring large-kernel convolution. First, experiments by Rock and Anson
(1979) (and by Ramachandran, Ruskin, Cobb, Rogers-Ramachandran, &
Tyler, 1994) demonstrate (see Figure 2) that illusory contours can be sup-
pressed by the presence of texture or other figural elements along the path
the completion would follow if these elements were absent. That is, the
shape, salience, and sharpness of the completion are not solely a function
of characteristics of the pair of elements it bridges but are also a function of
the intervening pattern of image brightnesses. Second, recent studies of the
time course of illusory contour formation (Rubin, Shapley, & Nakayama,
1995) show that the time required for an illusory contour to form is at least
partly a function of the size of the gap to be bridged.3 Again, this is consis-
tent with a local-iterative process since a global process would require an
amount of time independent of the size of the gap to be bridged.

In the previous article (Williams and Jacobs, 1997), we presented a the-
ory of the shape, salience, and sharpness of illusory contours and other
perceptual completions. This theory was based on the assumption that the
visual system computes the probability that an object boundary (possibly
occluded) exists at each position and orientation in the visual field. This
representation was termed a stochastic completion field. The inputs to this
computation are measurements derived from the image about locations
where completions might begin and end and a model for the probability
distribution of completion shapes. Like Mumford (1994), we proposed that
the prior probability distribution of completion shapes can be modeled by

2 Absence of evidence is not evidence of absence.
3 This result is due to Rubin, Shapley, and Nakayama (1995), who used a forced-choice

discrimination task together with masking stimulus to estimate the time required for illu-
sory contour formation. They first showed that the time required for an illusory contour
to form increases in direct proportion to distance when the “pacmen” in a Kanizsa display
are “pulled apart.” Somewhat surprisingly, they then showed that the time required for
an illusory contour to form remains approximately constant when the entire figure is uni-
formly scaled. This somewhat paradoxical result is consistent with a stochastic completion
field “pyramid” computed by repeated small-kernel convolution.
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Figure 1: Two possible neural networks for computing stochastic completion
fields. (a) Convolution with large-kernel filters requires that neurons separated
by large amounts of visual arc be densely interconnected. (b) Repeated small-
kernel convolution makes weaker demands on neuroanatomy since it can be
implemented in a network with only local connections.
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(a) (b)

Figure 2: Rock and Anson (1979) show that illusory contours in the Kanizsa
triangle can be suppressed by the presence of a background texture. (a) Kanizsa
triangle. (b) Kanizsa triangle with background texture.

a particle undergoing a stochastic motion (i.e., a directional random walk).4

Unlike the familiar two-dimensional isotropic random walk, where a parti-
cle’s state is simply its position in the plane, the particles of the directional
random walk possess both position and orientation. The particle moves in
the plane with constant speed in the direction specified by its orientation.
Change in orientation (θ̇ ) is a normally distributed random variable with
zero mean and variance equal to σ 2 so that the particle’s orientation (θ ) is a
Brownian motion. The result is that particles tend to travel in straight lines
but deviate from straightness by an amount that depends on σ 2. This re-
flects a prior expectation of smoothness. In addition, a constant fraction of
particles decay per unit time (1− e−

1
τ , where τ is the half-life of the particle),

and this reflects a prior expectation of shortness.
If there exist two subsets of measurements, P and Q (representing the

beginning and ending points of a set of boundary fragments), then the
stochastic completion field, C(u, v, φ), is defined as the probability that a
particle, initially at (xp, yp, θp), for some p ∈ P, will, in the course of a di-

4 The important thing is not the particles themselves but the distribution of occluded
shapes that the device of stochastic particle motion is intended to characterize. A particle
follows a trajectory that represents one of the many possible shapes that an occluded
object’s boundary might have in the region where it is not directly visible. The probability
that a particle follows a path of a particular shape is presumed to equal the frequency with
which that shape occurs in the world.
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rectional random walk, pass through (u, v, φ), on its way to (xq, yq, θq), for
some q ∈ Q. This definition emphasizes the input and output of the compu-
tation that the visual system is performing (the function). It describes what
information from the image and generic knowledge of the world should be
combined to estimate the shape of occluded object boundaries. Using Marr’s
terminology (Marr, 1982), this is a computational theory—level model. We feel
that our work demonstrates the value of Marr’s approach for understand-
ing human vision. This approach distinguishes between theories at three
levels: (1) computational theories, (2) algorithm- and representation-level
theories, and (3) implementation-level theories. Identical functions might be
computable by different algorithms, and identical algorithms can be imple-
mented (in the brain) in different ways. Many previous theories of figural
completion have been specified only at the level of algorithm and repre-
sentation. These models use an abstraction of biological neural networks
as a kind of programming language. Unfortunately, it is difficult to under-
stand exactly what problem these programs solve and what assumptions
they make. Consequently the activity of units in these models and the com-
putations they perform are often impossible to interpret. In contrast, our
computational theory has allowed us to formulate algorithms based on op-
erations that are meaningful for distributions of contours.5

In this article, we show how the stochastic completion field can be com-
puted efficiently in a local parallel network. The network computation is
based on a finite difference scheme for solving the Fokker-Planck equa-
tion identified by Mumford (1994). This algorithm avoids computationally
prohibitive large-kernel convolutions and is more consistent with known
psychophysics and neuroanatomy.

2 Review of Previous Method

Because the random walk is defined by a Markov process, C(u, v, φ) is pro-
portional to the product of the probability that a particle beginning in a
source will reach (u, v, φ) before it decays (the source field) and the proba-
bility that a particle beginning at (u, v, φ) will reach a sink before it decays
(the sink field). Furthermore, because the Markov process is translation and
rotation invariant, the probability that a particle will reach (u, v, φ) can be
computed by “convolving” the source distribution, p(x, y, θ ; 0), with the
Green’s function representing the probability that a particle at (0, 0, 0) at
time zero will reach (u′, v′, φ′),

p′(u, v, φ) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy
∫ π

−π
dθ G′(u′, v′, φ′) p(x, y, θ ; 0),

5 It has also made obvious the relationship between the output of our algorithms and
curves of least energy (see Mumford, 1994; “Stochastic Completion Fields,” elsewhere in
this journal). This relationship is totally opaque in previous models.
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where (u′, v′, φ′) is (u, v, φ) rotated by −θ about (x, y), so that u′ = (u −
x) cos θ + (v− y) sin θ , v′ = −(u− x) sin θ + (v− y) cos θ and φ′ = φ− θ . The
Green’s function, G′, was originally computed by a Monte Carlo method that
involved simulating the random walks of 1.0× 106 particles on a 256× 256
grid with 36 fixed orientations. The probability that a particle beginning at
(0, 0, 0) reaches (x, y, θ) before it decays was approximated by the fraction of
simulated trajectories beginning at (0, 0, 0) that intersect the region (x±1.0,
y±1.0, θ±π/72). The sink field, q′(u, v, φ), which represents the probability
that a particle leaving (u, v, φ) will reach a sink state before it decays, can
be computed in a similar fashion,

q′(u, v, φ) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy
∫ π

−π
dθ G′(x′, y′, θ ′) q(x, y, θ ; 0),

where (x′, y′, θ ′) is (x, y, θ) rotated by −φ about (u, v), so that x′ = (x −
u) cosφ + (y − v) sinφ, y′ = −(x − u) sinφ + (y − v) cosφ, and θ ′ = θ −
φ. Finally, the stochastic completion field, C(u, v, φ), which represents the
relative likelihood that a particle leaving a source state will pass through
(u, v, φ) and enter a sink state before it decays, equals the product of the
source and sink fields:

C(u, v, φ) = p′(u, v, φ) · q′(u, v, φ).

Clearly, the run-time complexity (neglecting the time required to compute
G) of the above process is dominated by the convolution with the Green’s
function G′. The overall run-time compexity is therefore O(n4m2) for an n×n
image with m discrete orientations.

3 Local Parallel Computation

In this section we show how to compute the completion field in a local
parallel network. Fundamentally, the computation is the same as before:

1. Compute the source field.

2. Compute the sink field.

3. Compute their product.

The difference is in the way the source and sink fields are computed. In
the new algorithm, the source field is computed by integrating the Fokker-
Planck equation for the stochastic process identified by Mumford (1994).
The probability density function representing a particle’s position at time t′
is given by

p(x, y, θ ; t′ ) = p(x, y, θ ; 0)+
∫ t′

0

∂p(x, y, θ ; t)
∂t
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and

∂P
∂t
= − cos θ

∂P
∂x
− sin θ

∂P
∂y
+ σ 2/2

∂2P
∂θ2 − 1/τ P,

where P is p(x, y, θ ; t). The Fokker-Planck equation for the stochastic pro-
cess is best understood by considering each of the four terms separately.
The first two terms taken together are the so-called advection equation:

∂P
∂t
= − cos θ

∂P
∂x
− sin θ

∂P
∂y
.

Solutions of this equation have the form

p(x, y, θ ; t) = p(x+ cos θ 1t, y+ sin θ 1t, θ ; t+1t)

for small1t. That is, the probability density function for constant θ at times
t and t+1t is related through a translation by the vector [cos θ 1t, sin θ 1t].
Intuitively, for constant θ , probability density is being transported in the θ
direction with unit speed. The third term is the classical diffusion equation:

∂P
∂t
= σ 2/2

∂2P
∂θ2 .

Solutions of the diffusion equation are given by gaussian convolutions. Al-
though, strictly speaking, the gaussian is not defined for angular quantities,
for small 1t and variance σ 2 the following will approximately hold:

p(x, y, θ ; t+1t) = 1

σ
√

2π1t

∫ π

−π
dφ p(x, y, θ − φ ; t)

· exp(−φ2/2σ 21t).

The last term implements the exponential decay:

∂P
∂t
= −1/τ P.

It is possible to interpret the Fokker-Planck equation in this case as describ-
ing a set of independent advection equations (one for each possible value
of θ ) coupled in the θ dimension by the diffusion equation. Taken together,
the terms comprising the Fokker-Planck equation faithfully model the evo-
lution in time of the probability density function representing a particle’s
position and orientation.

The value of the source field will also depend on the initial conditions (the
probability density function [p.d.f.] describing the particle’s position at time
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zero). In our implementation, the p.d.f. defining the initial conditions con-
sist of oriented impulses located at corners detected in the intensity image.
These impulses represent the starting (or ending) points of possible comple-
tions. Strictly speaking, the Fokker-Planck equation can model our diffusion
process only if we assume smooth initial conditions. Unfortunately, because
the p.d.f.s defining the source and sink distributions are discontinuous, their
partial derivatives are not defined. Moreover, the discrete method that we
describe for solving the Fokker-Planck equation will be accurate only when
a first-order approximation holds well over the length of scales that we
discretely represent. For now, we will assume that the initial conditions
are smooth and are well approximated by first-order expressions. We then
show how to solve this partial differential equation iteratively. In the next
section, we consider the accuracy of this method and describe a stochastic
interpretation of the local method that does not require continuous initial
conditions.

A standard technique for solving partial differential equations on a grid
is to use the Taylor series expansion to write the partial derivatives at grid
points as functions of the values of nearby grid points and of higher-order
terms. Then by neglecting higher-order terms, we obtain an equation that
expresses the value of a grid point at time t + 1 as a function of nearby
grid points at time t, and which is accurate to first order (Ames, 1992; Ghez,
1988). This technique leads to the following iterative method for solving the
Fokker-Planck equation:

Step 1: pt+1/4
x,y,θ = pt

x,y,θ − cos θ ·
{

pt
x,y,θ − pt

x−1,y,θ if cos θ > 0

pt
x+1,y,θ − pt

x,y,θ if cos θ < 0

Step 2: pt+1/2
x,y,θ = pt+1/4

x,y,θ − sin θ ·
 pt+1/4

x,y,θ − pt+1/4
x,y−1,θ if sin θ > 0

pt+1/4
x,y+1,θ − pt+1/4

x,y,θ if sin θ < 0

Step 3: pt+3/4
x,y,θ = λ pt+1/2

x,y,θ−1θ + (1− 2λ) pt+1/2
x,y,θ + λ pt+1/2

x,y,θ+1θ

Step 4: pt+1
x,y,θ = e−

1
τ · pt+3/4

x,y,θ

where λ = σ 2/2(1θ)2. These equations require a few comments. First we
have split the computation into four separate steps. This standard fractional
method allows us to compute p(x, y, θ ; t+ 1)with a series of separate con-
volutions in each of the three spatial directions. Second, notice that the first
two steps of the computation depend on the sign of cos θ and sin θ . To un-
derstand why, consider a particle traveling in the positive x direction. In this
case, we wish to ensure that our approximation of ∂p(x, y, θ ; t)/∂x depends
on p(x − 1, y, θ ; t) but not on p(x + 1, y, θ ; t) because p(x, y, θ ; t + 1) de-
pends on the first value but not the second. This method of ensuring that the
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local difference used to approximate derivatives depends on the direction
relevant to the underlying physical process is called upwind differencing and
is necessary for stability.

Finally, we can see that the recurrence relationship given by these equa-
tions can be computed through small-kernel convolution. For example,
we can compute the first recurrence using a 1 × 3 kernel centered on the
pixel being convolved. This kernel is [cos θ, 1 − cos θ, 0] for cos θ > 0 and
[0, 1+ cos θ,− cos θ ] for cos θ < 0.

The source field, p′(x, y, θ), which represents the probability that a par-
ticle beginning at a source will reach (x, y, θ) before it decays, is computed
by integrating the probability density function representing the particle’s
position over time:

p′(x, y, θ) =
∫ ∞

0
dt p(x, y, θ ; t).

We can approximate the integral of p(x, y, θ ; t) over all times less than some
fixed time t′ as follows,

p′(x, y, θ ; t′) ≈
t′∑

t=0

p(x, y, θ ; t),

which can be computed by the following recurrence:

p′(x, y, θ ; t+ 1) = p′(x, y, θ ; t)+ p(x, y, θ ; t+ 1).

Since O(n) iterations are required to bridge the largest gaps that might be
found in an image of size n×n and each iteration requires O(n2m) time, the
run-time complexity of the small-kernel method is O(n3m). In our experi-
ments, the image size is typically 256 × 256 with 36 discrete orientations.
This represents an effective speedup on the order of one thousand times
when compared against the previous algorithm. We note that since the new
algorithm is local and parallel, the communication overhead on a SIMD
computer would be negligible, so that the parallel time complexity would
be O(n) on a machine with O(n2m) processors. This is consistent with the es-
timated time required for illusory contours to form in human vision (Rubin
et al., 1995).

4 Stability and Accuracy Considerations

We have presented a method of computing the stochastic completion field
using repeated small-kernel convolutions. We now consider how faithfully
this new method models the underlying stochastic process. First, we iden-
tify the conditions under which our finite-difference scheme converges to
the underlying partial differential equation that it models. We then present
a stochastic interpretation of the small-kernel method. This interpretation
embodies our original (i.e., physical) intuition and applies even in the case
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of discontinuous initial conditions. Finally, we compare the accuracy of our
new method to our previous approach, which used a single large convolu-
tion mask.

We can use standard techniques to determine that our method will be
stable, provided that the following three conditions are met:

1. λ = (σ 21t)/2(1θ)2 ≤ 1
2 .

2. cos θ 1t
1x ≤ 1.

3. sin θ 1t
1y ≤ 1.

Informally, stability is necessary to ensure that the solution of the partial
differential equation at each time step incorporates all the possibly relevant
information from the initial conditions and to ensure convergence to the
correct solution as space and time are discretized more finely. In the exper-
iments that we report in this article, we assume that 1x = 1y = 1t = 1.
Therefore, the last two conditions will always be met. However, should we
choose to discretize space more finely (to achieve greater accuracy), then we
must also discretize time proportionately. Regarding the first condition, in
all of our experiments we set 1θ = π/36. With this level of discretization,
our method will be stable only when σ ≤ π/36. All of our experiments use
values of σ much less than this limit.

We now present a stochastic interpretation of repeated small-kernel con-
volution. This discussion serves two purposes. First, the stochastic interpre-
tation more directly embodies our original (physical) intuition that the prior
probability distribution of completion shape can be modeled as a random
walk in a lattice of discrete positions and orientations. Second, our stochastic
interpretation applies even in the case of discontinuous initial conditions,
where interpreting the small-kernel method as a first-order approximation
to a partial differential equation breaks down.

The small-kernel method can be viewed as computing the probability
distribution of the position of a particle undergoing a random walk in a
lattice in R2 × S1. Suppose there is a particle in this lattice, with position
(x, y, θ), which at the first time step:

• Moves to the neighboring site in the x direction with probability
max(0, cos θ).

• Moves to the neighboring site in the −x direction with probability
max(0,− cos θ).

• Remains at the current site with probability (1− | cos θ |).
See Figure 3a. Clearly the convolution defined by the Step 1 equation up-
dates the probability distribution on the lattice consistent with this motion.
In a similar fashion, the change in the probability distribution of the parti-
cle’s y-position is updated in the second time step. This update is described
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Figure 3: The small-kernel method can be interpreted as a random walk in a
lattice of discrete positions and orientations. (a) Step 1: Advection in x direction
(for cos θ ≥ 0). (b) Step 2: Advection in y direction (for sin θ ≥ 0). (c) Step 3:
Diffusion in θ . (d) Step 4: Exponential decay.

by the Step 2 equation (see fig. 3b). In the third time step, the particle:

• Moves to the neighboring site in the θ direction with probability λ.

• Moves to the neighboring site in the −θ direction with probability λ.

• Remains at the current site with probability (1− 2λ).

See Figure 3c. The Step 3 equation updates the probability distribution on the
lattice consistent with this motion. Finally, the Step 4 equation implements
the exponential decay of the particle (see Figure 3d). After t iterations of
these four steps, we have computed the distribution of the position of a
set of particles at time t, given initial conditions that specify a distribution
of their positions at time zero. This stochastic process is an exact model of
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what our small-kernel method computes and is valid even when the initial
conditions are discontinuous.

We now estimate the difference in magnitude between the outputs of the
small- and large-kernel methods. Previously we constructed a large-kernel
filter by simulating the paths of a large number of particles. Each particle
starts its stochastic motion at the origin, with a direction of θ = 0. Time
was divided into discrete units, and at each time step, 1θ was drawn from
a continuous, gaussian distribution. The x and y positions of the particle
at each time step were represented as real numbers. The magnitude of the
large-kernel filter at any given point equaled the fraction of trajectories
intersecting a small volume of x− y− θ space. It is straightforward to show
that the distribution of a particle’s x position after t time steps is

∑t
i=1 ci

(where ci = cos θi and si = sin θi).
We now contrast this with the small-kernel method. If we let xi be a

random variable that is 1 with probability ci and 0 with probability 1 − ci,
then repeated small-kernel convolution produces values in the x direction
that are a probability distribution for the random variable

∑t
i=1 xi. Since the

expected value of xi is ci, it follows that the distribution of
∑t

i=1 xi has mean∑t
i=1 ci and variance

∑t
i=1(xi− ci)

2 =∑t
i=1(ci− c2

i ). This variance can range
from 0 (when all ci = 0 or all ci = 1) to as much as t/4 when all ci equal
1/2 (when θ = π/3). Moreover, it follows from Lindeburg’s theorem that
if this distribution is normalized to be of mean 0 and unit variance, it will
converge to a normal distribution as t→∞. This depends on the variables
satisfying the Lindeburg condition, which states roughly that each term in
the sum becomes, in the limit, a vanishingly small component of the overall
sum (see Feller, 1971).

Similar reasoning tells us that the distribution of a particle’s position
in the y direction will have mean

∑t
i=1 si and variance

∑t
i=1(yi − si)

2 =∑t
i=1(si − s2

i ), which can also range from 0 to t/4. So, for example, with
t = 100 the standard deviation of this “spread” in the position of a particle
is bounded by five pixels.

This effect is not isotropic. The above expressions show that particles
traveling in directions parallel to the x and y axis will have zero variance,
while those traveling in the π/4 direction will have maximum variance.6

Also, the source field can be computed with greater accuracy (if needed)
at the cost of additional computation. Suppose that we divide each unit in
space, angle, and time into d subunits and perform the same computations
on these subunits. Similar calculations show that the variance in each direc-
tion will be bounded by t/4d pixels (i.e., the standard deviation drops with

6 The lack of any detectable global phase coherence in the orientation preference struc-
ture of visual cortex (Niebur & Wörgötter, 1994) suggests that (unlike the obvious com-
puter implementation on a rectangular grid) systematic long-range errors due to local
anisotropy will be minimal in vivo.
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the square root of the number of discrete units used, as might be expected).
We must, however, perform td convolutions on a field of size nd× nd×m,
rather than t convolutions on a field of size n × n × m, increasing the run
time by a factor of d3.

5 Anisotropic Decay

The fact that previous computation took the form of a convolution with a
large kernel was a simple consequence of the translational and rotational in-
variance of the random process. That is, the likelihood of a particle’s taking a
random walk of a given shape is assumed to be independent of the random
walk’s starting point and orientation. Because the new method is based on
repeated small-kernel convolution, we are free to consider stochastic pro-
cesses that are not the same everywhere, that is, processes that are neither
homogeneous nor isotropic. There is some precedent for this in computer vi-
sion, where different methods lumped together under the term “anisotropic
diffusion” are becoming increasingly popular for image enhancement (Per-
ona & Malik, 1990; Nitzberg & Shiota, 1992; Weickert, 1995). The analogy
breaks down in the sense that the quantity being “diffused” in the one case
is image brightness, and in our case, the probability density of a particle’s
position and orientation.

Conceivably each of the two parameters defining the stochastic process
(σ 2 and τ ) could be modulated by local directional functions of the image
brightness. Interpreted within a Bayesian framework, this could be viewed
as augmenting the prior model with the additional information provided
by the local image brightnesses to estimate better the parameters of the
stochastic process modeling completion shape within the local neighbor-
hood. In this article, we take only a first step in this direction by modulating
the half-life of the particle by a directional function of the local image bright-
ness. Using this anisotropic decay mechanism, we can ensure that illusory
contours do not cross large brightness discontinuities.

The first requirement is that in regions where brightness is changing
slowly, a particle’s half-life should remain constant. This will allow illusory
contours to form in these regions. The second requirement is that along
edges, the half-life should be very short in directions leading away from the
edge but very long in directions leading toward the edge. This will have
the effect of channeling particles toward the edges. Finally, we require that
the half-life should be very long in the direction tangent to the edge. This
will encourage particles to continue traveling along the edge. All of these
requirements can be satisfied by a function based on the directional second
derivative,

τ(θ) =


τ · e D2

θ
I if D2

θ+π/2 I 6= 0 and D1
θ I > 0

τ · e−D2
θ

I if D2
θ+π/2 I 6= 0 and D1

θ I < 0
τ + |∇I| otherwise,
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where D1
θ I and D2

θ I are the first and second directional derivatives of
image brightness in the direction of the particle’s motion and D2

θ+π/2 I is
the second directional derivative in the direction normal to the particle’s
motion. The condition D2

θ+π/2 I 6= 0 is simply used to decide whether the
particle is traveling along an edge (a zero crossing of the second directional
derivative in the direction normal to the particle’s motion). If so, the half-life
is taken to be τ + |∇I|, which becomes τ in homogeneous areas as required,
irrespective of whether there are zero crossings. If the particle is not traveling
in the direction of an edge, then the half-life is τ ·exp(D2

θ I) or τ ·exp(−D2
θ I),

depending on the sign of D1
θ I. This expression is large or small depending

on whether the particle is moving toward or away from an edge, and it
evaluates to τ in homogenous areas.

6 Experimental Results

Through a sequence of pictures shown in Figure 4, we first demonstrate
the propagation of two probability density “waves” emitted from a pair of
sources located on a line parallel to the x-axis and with orientations equal
to π/6 and 5π/6. The pictures show the probability density (p(x, y, θ ; t))
summed over all orientations (the marginal distribution in θ ). The time inter-
val between successive pictures in the sequence, 1t, equals 5, the variance,
σ 2, equals 0.005, and the half-life, τ , equals 100. Error due to the inherent
anisotropy of the finite-difference scheme is especially pronounced in the
first five frames (frames 1–5) where it manifests itself as a flattening of the
face of the wave along the vertical direction. This effect diminishes as the
size of the wave increases, the result of greater effective resolution. In frames
11–20 the waves from the different sources can be seen to pass through each
other. Because they are traveling in different “orientation planes,” there is
no “collision.” Finally, we observe that there is a visible decrease in bright-
ness between the first and last frame of the sequence. Although some of this
decrease in brightness can be attributed to the diffusion in space, the larger
part can be attributed to the exponential decay of the particles.

A second sequence of images, shown in Figure 5, depicts the formation
of the completion field as a function of time. To simplify this demonstration,
p.d.f.s representing the source and sink distributions at time zero were as-
sumed to be equal. Frames 1–10 are totally dark, since insufficient time has
elapsed for particles traveling from the two sources to reach each other. The
completion field first appears in frame 11, at the point midway between both
sources. In frames 12–20 the completion field rapidly spreads outward in
both directions away from the midpoint and back toward the two sources.7

7 Assuming that the neural locus of the stochastic completion field is the population
of neurons in V2 identified by von der Heydt, Peterhans, and Baumgartner (1984) (see
“Stochastic Completion Fields” elsewhere in this journal), then this prediction could be
verified by measuring the latency between stimulus presentation and the onset of the



Computation of Stochastic Completion Fields 873

Figure 4: Sequence of images depicting probability density “waves” emitted by
a pair of sources located on a line parallel to the x-axis and with orientations
equal to π/6 and 5π/6. The pictures show the probability density (p(x, y, θ ; t))
summed over all orientations (the marginal distribution in θ ). The time interval
between successive pictures in the sequence,1t, equals 5; the variance,σ 2, equals
0.005; and the half-life, τ , equals 100.
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Figure 5: Sequence of images depicting the formation of the completion field
(C(u, v, φ ; t)) as a function of time. Frames 1–10 are totally dark, since insuf-
ficient time has elapsed for particles traveling from the two sources to reach
each other. The completion field first appears in frame 11, at the point midway
between both sources. In frames 12–20 the completion field rapidly spreads
outward in both directions away from the midpoint and back toward the two
sources.
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Figure 6: (a) Kanizsa triangle. (b) Stochastic completion field computed by
large-kernel convolution with filter generated by Monte Carlo simulation (see
“Stochastic Completion Fields” elsewhere in this journal) (summed over all
orientations and superimposed on the brightness gradient magnitude image).
(c) Stochastic completion field computed by large-kernel convolution with filter
generated by analytic expression (Thornber & Williams, 1996). (d) Stochastic
completion field computed by repeated small-kernel convolution.

The third demonstration is the well-known Kanizsa triangle (Kanizsa,
1979) (see Figure 6a). The sources and sinks were identified using the method

neuron’s increased firing rate. Because the wave has to arrive from both flanking elements,
the function describing this latency should have the general form, max(d1, d2) (where
d1 and d2 are distances from the center of the neuron’s receptive field to each flanking
element).
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Figure 7: Numerical artifacts caused by anisotropy inherent in finite difference
solution of the advection equation. (a) Completion field in neighborhood of
“pacman” computed by large-kernel convolution. (b) Completion field in same
neighborhood computed by repeated small-kernel convolution.

described in Williams and Jacobs (1997). Figure 6b shows the stochastic com-
pletion field computed using large-kernel convolution with a filter gener-
ated by Monte Carlo simulation (see our other article in this issue). The
completion field is summed over all orientations and superimposed on the
brightness gradient magnitude image for illustrative purposes. Figure 6c
shows the same, but this result was computed with a filter generated by
numerical integration of the analytic expression for G derived by Thornber
and Williams (1996). This is by far the most accurate method of computing
the stochastic completion field. Figure 6d shows the stochastic completion
field computed using repeated small-kernel convolution. There are small
but noticeable numerical artifacts due to the inherent anisotropy of the fi-
nite difference scheme for solving the advection equation (see Figure 7). The
similarity between Figures 6b–d demonstrates that our characterization of
the stochastic completion field is distinct from the algorithm (and neural
network) that computes it.

Although space considerations preclude our showing them here, we have
rerun all of the experiments from our other article in this issue using the
small-kernel algorithm and achieved results of similar quality. Finally, we
have tested the small-kernel method on a picture of a dinosaur. The stochas-
tic completion field, summed over all orientations and superimposed on an
edge image for illustration purposes, is shown in Figure 8. The body of the
dinosaur has been completed where it is occluded by the legs.

In Figure 9 we demonstrate the effectiveness of the anisotropic decay
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Figure 8: (a) Dinosaur image (Apatosaurus). (b) The body of the dinosaur has
been completed where it is occluded by the legs.

function described in the previous section. This figure also illustrates the
strong connection between the stochastic completion field and the active
energy minimizing contours (“snakes”) of Kass, Witkin, and Terzopolous
(1987). The stochastic completion field can be thought of as a probability dis-
tribution representing a family of snakes with given end conditions. This
connection is strengthened by the inclusion of the anisotropic decay mech-
anism, since this device plays a role similar to the “external” energy term
of the snake formulation. Figure 9a shows two probability density “waves”
emitted from a pair of sources located on the dinosaur’s back. The source
and sink fields were assumed equal and the time, t = 32. Figure 9b shows
the stochastic completion field computed for this pair of sources. The mode
of the stochastic completion field (the curve of least energy) lies significantly
below the back of the dinosaur. Furthermore, the variance of the distribu-
tion is quite large. Figure 9c shows the probability density “waves” emitted
from this same pair of sources but with particle half-life determined by the
anisotropic decay function. The probability density is maximum where the
wave intersects the back of the dinosaur. Figure 9d shows that the mode of
the resulting completion field conforms closely to the back of the dinosaur
and that the variance of the distribution is significantly reduced.

In our last experiment, we demonstrate the effect of the anisotropic decay
function using three variations of the Kanizsa square figure (Ramachandran
et al., 1994). Although we compare the results of our simulation against the
human percepts in each case, we make no special claims for the specific
anisotropic decay mechanism described in this article. Our intention was
not to propose a faithful model of human visual processing but to illustrate
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Figure 9: The stochastic completion field can be thought of as a probability dis-
tribution representing a family of snakes with given end conditions. (a) Probabil-
ity density at t = 32 (p(x, y, θ ; 32)) for a pair of sources placed on the back of the
dinosaur. This was computed by the small-kernel method without anisotropic
decay. (b) The mode of the stochastic completion field (the curve of least energy)
lies significantly below the back of the dinosaur. (c) Probability density at t = 32
for same sources computed with anisotropic decay. The probability density is
maximum where the wave intersects the back of the dinosaur. (d) The mode of
the resulting completion field conforms closely to the back of the dinosaur.

that the local-parallel algorithm, unlike the large-kernel algorithm, allows
illusory contour formation to be modulated by local image brightnesses.

The first variation of the Kanizsa square, shown in Figure 10a, consists of
four “pacmen” on a uniform white background. This figure is perceived as
an illusory square occluding four black discs. The second, shown in Figure
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Figure 10: (a) Kanizsa square. (b) Stochastic completion field magnitude along
the line y = 64. (c) Kanizsa square with out-of-phase checkered background (see
Ramachandran et al., 1994). (d) The enhancement of the nearest contrast edge is
not noticeable unless the magnitudes are multiplied by a very large factor (ap-
proximately 1.0×106). (e) Kanizsa square with in-phase checkered background.
(f) The peak completion field magnitude is increased almost threefold, and the
distribution has been significantly sharpened.
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10c, is the same except that a checkered background has been added. The
phase of the checkered pattern is such that illusory contours joining the
“pacmen” must traverse large brightness gradients. Ramachandran et al.
report not only that the illusory square is suppressed by the addition of the
out-of-phase checkered background but also that the edges of the checker
pattern nearest the old illusory square are enhanced. The third variation,
shown in Figure 10e, also places the “pacmen” on a checkered background,
but this time the phase of the checkered pattern is such that the illusory
contours encounter no large brightness gradients but instead coincide with
the borders of the squares. Ramachandran et al. report that the illusory
square is enhanced by the addition of the in-phase checkered background.

In our simulations, the images were of size 128 × 128 with 12 discrete
orientations. The positions and orientations of the sources and sinks (the cor-
ners of the “pacmen”) were defined manually. The diffusivity, σ 2 = 0.01 and
the particle half-life, τ = 100. The magnitude of the stochastic completion
field along the line y = 64 is displayed to the right of each of the Kanizsa
squares. Figure 10b and 10f are scaled by the same factor, so the results
may be directly compared. We note that the peak completion field magni-
tude is increased almost threefold by the addition of the in-phase checkered
background and that the distribution has been significantly sharpened. The
effect of adding the out-of-phase checkered background is that the stochas-
tic completion field from Figure 10b is almost totally suppressed. To a first
approximation, this is consistent with Ramachandran et al.’s observation.
However, the enhancement of the nearest contrast edge, also reported in
Ramachandran et al. (1994), is not noticeable unless the completion field
magnitudes are multiplied by a very large factor (approximately 1.0× 106).
See Figure 10d. To summarize, the results of our simulations are largely con-
sistent with the observations reported in Ramachandran et al. (1994), but
the enhancement effect observed in the case of the out-of-phase checkered
background is far smaller.

7 Conclusion

We have shown how to model illusory contour formation using repeated,
small-kernel convolutions. This method directly improves on several pub-
lished models because of its greater efficiency (by several orders of magni-
tude) and because it allows edges of objects to be connected in a way that
takes account of all relevant image intensities, forming illusory contours
only when they are consistent with these intensities. Our work therefore
helps to bridge the gap between work on understanding human perfor-
mance on illusory contours and work in computer vision (e.g., snakes) on
finding contours that are smooth yet faithful to the image intensities.
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