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Abstract

Using a saliencymeasue basedon the global property of
contourclosure, we havedevelopeda methodthat reliably seg-
mentsout salientcontouis boundingunknowrobjectsfromreal
edee images. The measue incorporatesthe Gestalt princi-
plesof proximity and smoothcontinuity that previousmethods
haveexploited. Unlike previousmethodswe incorporate con-
tour closue byfindingtheeigenvectorwith largestpositivereal
eigervalueof a matrix defininga stochasticprocesswhich mod-
els the distribution of contours passingthrough edgesin the
scene The sggmentationalgorithm utilizes the saliencymea-
sure to identify multiple closedcontouss by finding strongly-
connecteccomponent®n an inducedgraph. The determina-
tion of strongly-connecte@omponentss a directconsequence
of the property of closuie. We reportfor thefirst time results
on large real imagesfor which segmentatiortakesan average
of about10 secsper objecton a genel-purposeworkstation.
Thesagmentatioris madeefficientfor sud large imagesby ex-
ploiting theinherentsymmetryin the task.

|. Introduction

Visual perceptionevolved in a world of objectsmary of
which are boundedby smoothclosedcontours. We hypoth-
esizethat thesecontoursobey a stochastiadistribution which
is utilized by perceptuaprocessedn finding contoursbound-
ing objects. In prior work [22], [24], [25] this distribution has
beenmodeledand usedto derive a salieny measurgtermed
WT) whichexploitstheclosureof contoursboundingobjects.It
wasfoundthatthis measurgrovidesasignificantimprovement
over previous approache highlighting edgeslying on con-
toursboundingobjectsin small syntheticscenesreatedfrom
contoursof real objectsand natural backgroundtexture[25].
However, no methodwas presentedor actually segmenting
outthe salientobjectcontours.Despitethe effectivenesf the
WT measurewe will shav thata simplethresholdon the raw
salieny valuesis not sufficient for segmentationgspeciallyin
caseswheretwo or more object contourshave similar salien-
cies.In this paperwe presenta methodfor extractingmultiple
salientclosedcontoursboundingdistinctobjects.Previously, a
routinefrom a standarchumericalibrary wasusedto solve the
eigenproblenrequiredto computethe WT measureHowever,
dueto the numberof edgednvolved,thisis infeasiblefor large
realimages.Consequentlyin this paperwe have developedan
efficienttechniquehatexploitsthesparsenessndsymmetryof
representationisitrinsic to theproblem,usingwhich, we report
for thefirst time, resultson largerealimages.
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Fig.1. Anexampleedgeimage.Theimagewassyntheticallycreatedy super
imposingtwo copiesof edgesrom theboundaryof arealpearonabackground
texture.

Givenanedgeimageasin Fig. |, wewould lik e to extractout
separatelythe individual contoursboundingthe two pears.We
wishto achieve suchasegmentatiorwith noa priori knowledge
of the specificobjectsthatgeneratehesecontours.Suchatask
is oneof the goalsof perceptualgrouping In lieu of ary spe-
cific knowledgeaboutthe objectsgeneratinghe contours,we
imposea subsetof the Gestaltprinciplesfor perceptuabrga-
nization. Most previous approacheso perceptuaroupingof
edgesaveincorporatedhe Gestaltprinciplesof proximity and
goodcontinuationin someform (e.g., [2], [9], [6], [12]). These
methodsassumehatadjacentedgesof anobjectboundaryare
closetogetherandcanbe smoothlyinterpolated.ln additionto
thesetwo local propertieswe exploit the global propertythat
contoursboundingobjectsmustbe closed. Unlike proximity
and good continuation,closure cannotbe reducedto a local
propertydefinedfor pairsof edgedn isolation.

Previousapproaches[1]6], [11], [16] have usedgraphbased

searchtechniqueso find closedcontours.A graphof affinities
betweenedgess constructedvherethe affinities model prox-



imity andgood continuation. The affinity betweentwo edges
is a purely local measurewhich is proportionalto the likeli-
hoodthata smoothcontour(openor closed)passeghrougha
pair of edges. Closureis imposedby searchinghe graphfor
closedcontourswhile minimizing a global costfunctionwhich
is relatedto how salientthe closedcontoursare. Our approach
differsfrom thesepreviousapproachebecauseave first usethe
local affinity measurgwhich as notedabove doesnot differ-
entiatebetweeropenandclosedcontours)}o computea global
salieny measurewhich is proportionalto the relative number
of closedcontourswhich join a pair of edges. Sucha mea-
surefor closedcontourswasfirst proposedand comparedex-
tensiely with previous approachegincluding [9], [17], [20])
which do not incorporateclosurein [25]. Only afterthe com-
putationof this global salieny measuralo we employ agraph
searchtechniqueto identify individual closedcontours. We
shav that using a salieny measurebasedon contourclosure
leadsnaturallyto a specifictype of graphsearchnamely the
determinationof strongly connectedcomponents The close
relationshipbetweenthe strongly connecteccomponentom-
putationandthe closurepropertyof the global salieny mea-
suredistinguishesour work from previous approacheswhere
genericgraphsearchtechniqueshave beenappliedto graphs
representing local affinity measuralefinedfor pairsof edges
in isolation. To illustratethe crucial role playedby the global
propertyof contourclosure we shown thata methodbasedn a
purelylocal affinity measurgroducegoorsegmentations.

Computing the salieny measurerequiresidentifying the
eigervector with largestpositive real eigervalue of a sparse,
positive matrix exhibiting a specifickind of symmetry Ordi-
narytechniquegor the computatiorof eigervectorsandeigen-
valuesareinfeasiblefor largerealimages.We have developed
efficienttechniquesvhich exploit thesparsenessndsymmetry
of the matrix to significantlyreducethe time requiredto com-
putethis eigervector In this paper we reportthe first results
on real imageswith a large numberof edges. Our technique
reduceghe time taken to computethe sggmentationfor each
objectcontourfrom anaverageof around2 1/2 hrs. to around
10 seconds.

1. Problem Formulation

Sincethe Gestaltprinciplesof proximity and good contin-
uationcan be reducedto local propertiesof the positionsand
orientationsof two edges,we can modelthem usingonly lo-
calinformation. Following[14], [22], [24], proximity andgood
continuationcanbemodeledby adistribution of smoothcurves
tracedby particlesmoving with constanspeedn directionsun-
demgoingBrownianmotion. In ourwork, the“affinity” between
edgei andedgey is denotedby P;; andis the sumof theprob-
abilities of all pathsthat a particle cantake betweenthe two
edgeqsee[22] for details). Two parametersontrolthe motion
of the particleandembodythe Gestaltprinciplesof proximity
andgood continuation. Eachparticle hasa half-life, 7, which
determineshe distanceover which pairs of edgesare likely
to be linked by randomwalks. Hence,r modelsproximity.
Thevariance T, of the Gaussiarrandomvariablerepresenting
changen directionmodelsthe principle of goodcontinuation.
A third parameter, representshe speedof the particle,and
hencedetermineghe effective scaleat which the sceneis an-
alyzed, since the affinity betweenpairs of edgesvarieswith
speed. At larger speedsthe distancebetweena pair of edges
is effectively smaller while at slower speedshe samedistance
is effectively larger. In ourinitial experimentswe choseafixed
speedhatwasjudgedto give goodresultsfor mostimages.In
alatersection,we presentesultswherethe optimaly for each
objectin the scends identifiedusingan optimizationmethod.
This leadsto a scale-ivariantsegmentation.

Becauseparticlesat one edgeneednot reachanotheredge
dueto the half-life, in generalzj Pj; < 1. HenceP is not

a stochastiqMarkov) matrix, and methodsbasedon Markov

chainsare not directly applicable. While closedcontoursdo

form a Markov chain (see[26]), the Markov matrix M is not

known until theedgeandlink saliencieshave beendetermined,
andthesearefunctionsof the eigervectorwith largestpositive

realeigervalueof P.

The smoothcontinuationof a curve betweentwo edgesre-
quiresthatthe tangentat ary point alongthe curve be contin-
uous. If we wish to extend the curvesto include additional
edges,then tangentcontinuity must be enforcedat the edges
themseles.A particlevisiting anedge andtravelingin agiven
direction, must continuealong in that samedirectionto pre-
sene tangentcontinuity. This requirementcanbe ensuredby
replacingeachorientededge wherethe orientationis anangle
in therange [0 — «), with two oppositelydirectededgeswhere
thedirectionsareanglesin therange [0 — 27). A particlemust
enterandexit a directededgein the samedirection. If we do
notimposetangentcontinuity at the edgesit is possibleto get
contourswith cusps(i.e., reversalsin direction) at the edges,
which arenotjudgedto be salientin practice.For moredetails
see[25]. Sinceevery directededge: hasa sibling edgeat the
samepositionbut pointingin the oppositedirection, it will be
corvenientto denotethe sibling edgeby .

Imposing tangent continuity through the use of directed
edgeshasanimportantimplicationfor the structureof the ma-
trix of affinities P. Fromsymmetrythe probabilitythatany par
ticle travels along a curve startingfrom edge: and endingin
edgej is thesameastheprobability of aparticletraveling from
edgej to edger in thereversedirection. HenceP;; = P;;. We
callthisspeciakymmetryof theaffinity matrixreversalsymme-
try whichis distinctfrom the usualsymmetryP;; = P;; which
neednotholdin general Reversalsymmetryhasimportantim-
plicationsfor boththeform of the expressionsvhich definethe
salienciesandfor the problemof efficiently computingthem.

In therestof the paperwe will have occasionto associate
vectors with thesetof directededgeqe.g.thevectorof salien-
ciesfor eachdirectededge),onecomponenfor eachdirected
edge.Analogouswith the casefor edgesa componenbf such
avectors; associateevith edgei will haveasiblingcomponent
denoteduy §; = s; associatedvith edger.

[11. Saliency measure

In this section,we first motivatethe expressionfor the WT
salieny measuréntroducedn [25]. Wethenshaw thatthe WT
salieny measureanbecomputeddy solvinganeigenproblem
associateavith theaffinity matrix P. Givenanedgeimage,we
defineaclosedcontourasafinite closedsequencef edges By
aclosedsequenceve meanthatif we startfrom ary edgein the
sequenceandtraceout the contour we will returnto the same
edge. Eachclosedcontoura hasa likelihood (or probability)
associateavith it, whichwe denoteby p(«). Thisprobabilityis
the productof thetransitionprobabilities(given by the affinity
matrix P) betweersuccessie edgeof the contour

A. Edge Saliency

We would like to definethe salieny of anedgesuchthatit
is directly relatedto the likelihoodthat a closedcontourcon-
tains that edge. Ratherthan derive the contribtution of indi-
vidual closedcontoursto the salieny of an edge, it is sim-
pler to considerthe contribution of the ensembleof all closed
contoursthroughthat edge. We begin by consideringthe set
of infinite closedcontourscontainingthe edge. Eachinfinite
closedcontour can be decomposednto a sequenceof finite
closedcontours,and hencethe relative likelihood of different
infinite closedcontourscontaininganedgedepend®ntherela-
tivelikelihoodof theindividual finite closedcontoursof which
they arecomposedlin orderto calculatetherelative saliencies
of infinite closedcontourswe startby consideringhe relative
salienciesof closedcontoursof finite lengthandtake the limit
as the length goesto infinity. Restrictingoursehesto finite



contoursfor now, the salieny of an edgeshouldbe propor
tional to the expectednumberof closedcontourswvhich contain
thatedge.The expectednumberof closedcontoursof lengthn
which containedges is simply the sumof the probabilitiesof
all suchclosedcontours

=S plali€alal =n) (1)

Sincewe are interestedin the relative salienciesof the vari-
ous infinite contourswhich contain different edges,we take
thelimit n — oo for the expectednumberof closedcontours
which containa given edges relative to the expectednumber
which containarny edgeandobtainthe formal definitionfor the
salieny of edge :

n

(2)

C; =

This definition suggestghat thereis a simplerelationshipbe-
tweenedgesalienciesandthe eigervectorcorrespondingdo the
largestpositive real eigervalueof the affinity matrix, P.

Theoeml—~Hrst SaliencyTheoem: The salieng for edge
i is givenby:

(3)

wherethe s;’s arethe component®f the eigervector(normal-
izedsothat}, s;5; = 1) correspondindo the largestpositve
realeigerva ue, )\, of theaffinity matrix P, i.e. Ps = )s.
Proof. SeeAppend|xA andalso[25] for anearlierproof.

Ci = 8; 8

It isimportantto notethatsinceP is positive(all entriesarepos-
itive), Perrons theorem[10]guaranteeshat the largesteigen-
value of P will be real and positive. The componentf the
correspondingigervectors; will all be positive (i.e., s; > 0).
Note that dueto reversal-symmetrywe would expectc; = ¢;
ascanbeverifiedfrom the expressiorabove.

B. Link Saliency

For the purposeof sggmentation,in addition to the edge
saliencieswe will also needinformation which will help us
traceout contoursgivena startingedge.Specifically giventwo
edges,j and, we would like to know the probability that a
closedcontourpasseshroughedgej andthen,withoutvisiting
anotheredge,throughedgei. We definethelink saliency Cj;,
to be the relatve numberof closedcontoursthat passthrough
edgesj and: in succession.Analogousto the definition for
edgesalieng, we have :

n

=00 Y, E"
whereE]; is the expectednumberof closedcontoursof length

n which passthroughedgesj ands in successiomandE}® is as
definedbeforein (1). Like the edgesalienciesthelink sallen-
ciesalsohave asimplerelationshipwith the eigervectorcorre-
spondingo thelargestpositive realeigervalueof P.

Theoem2—Secon&aliencyTheoem: The link-saliencies
betweerary two edgesj and: aregivenby :

Ci; = lim 4

§z'Piij
A

wherethe s;’s arethe component®f the eigervector(normal-
izedsuchthat); s;5; = 1) correspondingdo the largestposi-
tive realelgen/alue A, of theaffinity matrix, P.

Proof. SeeAppendle

Cij = 5)

As in the caseof the edgesalienciesdueto reversalsymme-
try, we would expectC;; = Cy ascanbe verified from the
expressiorabove (recallthatP = Py ands; = s;).

Sincewe are concerneduith closédcontours ,animportant
consenration propertyholdsfor all edges.Any closedcontour
thatgoesfrom someedgek to a secondedge: mustcontinue
onto somethird edgej. Thisis not necessarilyruein thecase
of opencontours We confirmthis conserationpropertyandat
the sametime useit asa consisteng checkon the expressions
for theC;;’sandc;’s

5i( P
Yo = Y @ (6)
k k

_ 5i(As;)
= =5 (7)
SiSi (8)
= C;. (9)

Doing a similar calculationfor »°; C'j;, wefind

(10)

Zcik=cz'=
&

C. Contour Saliency

Ideally, our segmentationalgorithm should extract closed
contoursin orderof increasingsalieng. A possibledefinition
for thesalieng of a closedcontourwould beto defineit asthe
probability of a particletracinga paththroughthe sameedges,
i.e. the productof the the affinities along the contours path.
However, this definitionis dependenon the lengthof the con-
tour. A closedcontour «, andanotherclosedcontourformed
by traversingtheedgesn a twice, i.e,, a - a, shouldbejudged
to havethesamesalieng. However, it is clearthatthe probabil-
ity of thesecondcontourwill be muchlessthanthatof thefirst.
In fact,it will bethe squareof thefirst. A morenaturaldefini-
tion for the salieny of a closedcontour «, a definition which
is invariantto repetition,is the geometricmeanof the affinities
alongthecontours path:

> Cji
J

Ma) = p(a)'/1* (11)
where|a] is the length of the closedcontourand p(«) is the
productof the affinities which compriseit. In other words,
if the length normalizedprobability of one contouris greater
thanthatof asecondcontour thenwe considetthefirst contour
to be more salientthanthe second. This definition of contour
salieng hasaninterestingrelationshipwith the affinity matrix,
P, constructedrom the given contour(see[25]). If we imag-
ine a scenecontainingjust the closedcontour «, andwhere
the probabilitiesbetweemon-adjacenedgesarezero,thenthe
salieny of thecontouris justthelargestpositiverealeigervalue
of P.

D. Importance of Directionality

We concludethis sectionby demonstratindiow well the WT
salieny measureerformsfor a simple exampleconsistingof
edgesfrom the silhouettesof two pearsartificially superim-
posedon a backgroundexture. SeeFig. I. The saliengy mea-
surefor eachedgewas computedusing the expressionfor ¢;
givenin Equation(3) after solving for the largestpositive real
eigervalueof P andits correspondingigervector Thesalieny
plotis shavnin Fig. 2 (a). Thelengthof anedgein the plot is
proportionatto its salieng. It canbeplainly seerthattheedges
boundingboth pearshave high (and comparable)aliencies.
The salienciesof all other edgeshave beensuppressed.Nu-
merically, their salienciesare 20 ordersof magnitudesmaller
thanthoseof the pears.
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Fig. 2. Salieny plotsfor the 2-pearexample. (a) Our measurewith directed
edgegqb) Our measurawith undirectededges.The lengthof eachedgeis pro-
portionalto its salieny value.

Using the sameexample,we demonstratéhe importanceof
using pairs of directededgesto form an affinity matrix, P, of
size2N x 2N asopposedo simply usingthe N edgedo form
asymmetricaffinity matrix, A, of size N x N. Recallthatthis
mechanisris requiredso that closedcontoursdo not include
reversalsn directionat the locationsof the edges For the pur-
poseof this demonstrationye constructa symmetricaffinity
matrix A from P by settingA;; = P;; + P;; + P + P. It can
be verifiedthat A is symmetricbecause?;; 7 Flg 2 (b)
shaws the squaredmagnitudeof the components)f the eigen-
vector with largestpositive real eigervalue of A. Two edges
in the backgroundexture which, simply by chance are proxi-
malandvery nearlycollinear, areextremelysalientwhile edges
forming the closedboundaryof the pearsareignored. It fol-
lows that using a non-symmetricaffinity matrix, P, and pairs
of oppositelydirectededges; andz, is essentiato satishctory
performancef thesalieny measure.

In orderto distinguishthe contoursboundingthe two pears,
onemight try to simply thresholdthe edgesalienciesij.e., the
¢;'s. However, asis illustrated by this example, edgesfrom
differentobjectscanhave saliencief comparablanagnitude.
It is thereforelik ely that sucha simple strateyy will groupto-
getheredgesboundingdistinctobjects.In the next section,we
develop a more robust approachthat usesthe link saliencies,
i.e., the Cj;’s, to grouptogethersetsof edgesbelongingto in-
dividual objects

V. Segmentation

The goal of sgmentationis to grouptogetherinto distinct
sets, edgesboundingdistinct objectsin the scene. To moti-
vateour seggmentatioralgorithm,considethehypotheticatase
wheresomeoracleprovidesuswith a setS of closedcontours
in the scenewhosesalienciesare abose somethreshold. We
canconstructa graphwhoseverticescorrespondo the edgesn
our scene.We createa directedlink in this graphfrom edge:
to edgej if ¢ andj aresuccessie edgesof somesalientcon-
tourin S. TheThird Salieny Theorem(seeAppendixA) tells
usthatsucha constructiorinducesa partition of the graphinto
a setof isolatedstrongly-connecte¢omponents.A strongly-
connecteccomponent[5]s a setof edgesin which ary pair of
edges; andj have a pathfrom oneto the other i.e., ¢ ~ j
aswell asj ~ i. In generaleachstrongly- connectedompo-
nentwill containmultiple salientcontoursthat sharecommon
edges.lt is shovn in the Appendix A thatthe partitioninto a

setof strongly-connectedomponentss a direct consequence

of the propertyof closureof the contoursin S. As notedin
the introduction,the strongdependencéetweerthe natureof
thepartitionandthe propertyof closureis a distinguishingfea-
ture of our approachascomparedwith otherapproache$g],
[11] which employ genericgraphsearch. More precisely in
our approachthe determinatiorof strongly-connectedompo-
nentsmakessenseonly in the contet of agraphderivedusing

asalieny measurédasecbn contourclosure.

In practice,of course,we do not know the salientcontours
beforehandNeverthelesssincethelinks in thesalientcontours
becomethelinks in the graph,all we needto know is which of
thelinks aresalient,.e., thelik elihoodthatsomesalientcontour
passe$hroughag|venllnk Thelink-salienciesj.e., the C;;’s,
encodepreciselythis information.

Ideally, thesetof edgeswill bepartitionedinto isolatedcom-
ponents.However, in practice,not all of the componentgro-
vide reliable sgmentations. The dominantcontourstend to
suppresghe salienciesf all othercontoursto the degreethat
the salienciesof thesenon-dominantcontoursare insufficient
to inducecomponentghat canbe isolatedreliably. Hence,in
practice,we begin by extractingthe mostsalientcontours,and
sincesuchcontourswill normallycontainthemostsalientedge,
we first identify the contourscorrespondingo the strongly-
connecteccomponentontainingthe mostsalientedge. Hav-
ing identifiedthe mostsalientcontours,we suppressheir link
salienciedn orderto revealthe next setof dominantcontours.
We suppresghe currentset of dominantcontoursby deflat-
ing the affinities of all links amongthe edgesin the strongly-
connecteccomponent.Specifically if 4 andj areedgesin the
componentthenthelink ¢ — j is deflatedby setting P;; = 0
(aswell assettingthe reversal-symmetri¢sibling” P;; = 0).
We theniteratethis procesgo revealmultiple sallentcontours

Ideally, the strongly-connectedomponentcontainingthe
most salient edge will be isolated from the other compo-
nents. In practice, due to noise, someof the C;;’s might
wrongly indicatethat the strongly-connecte@omponentcon-
tainingthe mostsalientedgeis connectedo oneor moreother
strongly-connectedomponents Neverthelessye canextract
the componenbdf interestby utilizing animportantpropertyof
strongly-connectedomponentsthe setof edgesin a strongly-
connecteccomponentontaininga givenedge is the intersec-
tion of thesetof edgesreatablefromthegivenedg andtheset
of edgesreadableif all links are reversed.Becausef reversal
symmetry the above propertyreducego a particularlysimple
form. Let reachable(j) be the setof edgesreachablegrom a
givenedgej. Dueto reversalsymmetryit canbe verified that
thesetof edgeseachabldrom j whenall links arereverseds
thesameasthereversal of thesetof edgegeachabldrom edge
7. Thereversalof the setreachable(7) is definedto be

reachable(7) = {k | k € reachable(})}.

Hence,in orderto identify the strongly-connectedomponent
containingthe mostsalientedgej, we find

reachable(j) Nreachable(}).

SeeAlgorithm 1. Interestingly the above is analogougo the

expressiorfor edgesalieny, ¢; = s;5;. Oneneedssimply to

replacethethe eigervectors; with thesetreachable(i), there-

versaloperatorfor vectorswith the reversaloperatorfor sets,
andcomponent-wisenultiplicationof vectorswith intersection
of sets.In our case dueto reversalsymmetry the above prop-
erty reducego a particularlysimpleform.

Algorithm 1: Extractanobject.
extract(A)
begin
P < af finities(A)
s « eigenvector(P)

j :arg;:nax (gz Sz)
return reachable(j) N reachable(j)
end

In orderto decideif a link is salientor not, we needto
thresholdthe C;;'s. We could use a single thresholdfor the



entiregraph. However, we cando betterby choosinganadap-
tive thresholdfor the setof links which originatefrom edgey,

i.e., the j-th columnof C. To thresholdtheseC’;;’s in a natural
manney we sort the j-th columnin decreasingrder In this
sortedlist, |, we find the k-th largestvalue(in all of the experi-

mentsin this paperk equalgwo). Edgegoinedby links from j

with magnituddargerthanthel, areassumedo lie on salient
closedcontoursandarethereforeselected Suchathresholding
schemenight misclassifycertainlinks assalient.However, we

have obsened that the extraction of strongly-connectedom-
ponentss usuallyrobustto suchmisclassificationsSeeAlgo-

rithm 3.

The terminationcriterion we usefor the currentimplemen-
tation is to simply stop after reportingsomefixed numberof
components.SeeAlgorithm 2. Oneway to justify the use
of sucha simplecriterionis to imaginea higherlevel module
that, for example,performsobject-recognitionandwhich em-
ploysthesegmentatioralgorithmto highlightregionswherethe
presenceor absenceof someobjectcan be determinedusing
domainknowledgeavailableto the recognizer It is up to the
recognizerto determinethe numberof salientcontoursthat it
wantsto procesgbasedn, for example real-timeconstraints).
If themoduledetermineghatthe segmentatioralgorithmis re-
porting garbageaftera certainnumberof iterations thenit can
decideto terminatethe searcHor additionalcontours Alterna-
tively, we could stopwhenthe largestpositive real eigervalue,
A, becomesegligibly small.

Algorithm 2; Segmentanimage.

segment(A)
begin
S0
for i < 1to N do
B «+ extract(A)

S+ Su{B}
A+~ A-B
end
return S

end

Algorithm 3; Computeedgeseachabldrom j.

reachable(j)
begin
Be{}
if not visited(j) then
for i < 1to|A| do
Ci]' — S; Pij Sj
end
1 « sort(column(C, j))
for i <~ 1to|A| do
if Cij > [ then
B + B U reachable(i)

end
end
end

return B
end

As ademonstrationywe apply the sggmentatioralgorithmto
thetwo pearexamplefrom Fig. 1. Thesegmentationn thefirst
and seconditerationsare shovn in Fig. 3 (a) and (b) respec-
tively. As previously noted,a segmentationbasedon simply
thresholdingthe edgesaliencieswvould not be ableto separate
thetwo pears.

V. Results
In this section,we shav resultsof our segmentationalgo-
rithm on a few realimages.All theimagesweretakenusinga

(@) ®)

Fig. 3. Segmentatiorresultsfor the two pearexample.(a) Firstiteration. (b)
Secondteration.

Kodak DC50 480x480pixel digital color camera.The Canry
edgedetector[4wasrun ontheimagesafterconvertingthemto
greyscale with the parameterg = 3.0, low hysteresighresh-
old = 0.2 andhigh hysteresishreshold= 0.8. Thesetof edges
returnedby the Canry edgedetectorwere found to be quite
redundant. The edgesare sampledto improve running times
with almostno sacrificein performanceln our experimentsve
sampleheedgessuchthatnotwo edgesarecloserthanj pixels
apart.

Theentriesof the affinity matrix P werecalculatedwith pa-
rametersettings(seeSection Il for their descriptionsandalso
[22]) ¥ = 0.15, T = 0.004 andT = 5.0. All edgeimagesare
remappedo a64 x 64 imagesize. Sincethe affinity matrix P
hasa specialsymmetry(the reversalsymmetry) we hadprevi-
ously developedan algorithmthat finds the eigervectorcorre-
spondingto the largestpositive real eigervalueof P (required
for thecomputatiorof the WT salieny measurepy exploiting
thereversalsymmetry See[23] for details.

A. Example Segmentation

In our first examplewe chosea simple scenewhere non-
occludingobijects(fruits) wereplacedon atexturedbackground
(concrete) Fig. 4 shavsfour fruits onaconcretebackgroundn
greyscale(a) andthecorrespondingdgeimage(b) (with 2800
directededgesafterthesamplingprocesslescribedbove). No-
tice thatthe contrastbetweernthetextureof thefruit onthetop-
left (a cantelopepndthatof the backgrounds quitelow. As a
result,few edgesare detectedalongsomepartsof the bound-
ary of the cantelope.Fig 4 (a),(c),(e),(g), and(i) showv the
edgesalienciesi.e. thec;'s, computedduringthefirst five iter-
ationsof the sggmentatioralgorithm. Fig 4 (b),(d),(f),(h),and
(i) shaw the correspondingontourswhich areextractedduring
thosesameiterations. It is interestingto notethatthe contour
boundingthe cantelopehasbeenextracteddespitethe factthat
therearelargegapsin somepartsof the contour

Fig. 4 (a) shavs thevariationof the salieng of thedominant
contouracrossiterations. The dominantcontouris extracted
at eachiteration by tracing out the most salientlinks starting
from the mostsalientedgeuntil we returnto the mostsalient
edgeagain.lts salieng is measuredby the expressiorin equa-
tion (11). Sincethe salieny of thedominantcontourdecreases
aswe extractout successie contourswe seethatthe contours
areindeedextractedin the orderof their saliencies.

Finally, we give the time requirementgor our algorithmfor
this example. It takesa 13 secondsto generatea total of
~ 111,000 entriesin the sparseaffinity matrix P on an SGI
R10000. Since generatingthe entriesin the matrix is easily
parallelizable,t is usefulto know the time per entry which is
~ 0.11 msec. In Fig. 4 (b), we shav the time taken to iso-
late successie objects. The eigensoler describedabove (see
[23] for details)is adaptive, thetime roughlyvaryingaccording
to the compleity of the contoursextractedandthe numberof
edgeseachcontains. As expected,the first iterationtook the
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Fig. 4. Fruitson concrete.(a) Greyscaleimage. (b) Canry edgeoutput. (c)-
(j) Firstfour iterationsof the sggmentationalgorithm. For eachiterationthe
salienciesareshavn on theleft andthe segmentationis shavn ontheright. In
eachsalieny plot, the lengthof an edgeis propotionalto the salieng of that
edge. The mostsalientedgein both the salieny and segmentationplots are
shown insidethesmallcircle.
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leasttime of ~ 3 secsincethe contourextractedis relatively
salient(asseenfrom thedominantcontoursalieny plot above)
comparedo the othercontoursin the scene. The third itera-
tion took thelongesttime of ~ 20 sec—possiblybecaus®f the
large gapsin the contourbeing extracted(boundingthe cante-
lope). Theaveragetime for all iterationsis =~ 9.9 sec.

B. Importance of Global I nformation

In this section,we will shav the importancefor sggmenta-
tion of the globalinformationencodedy thelink salieny ma-
trix C by replacingit with the affinity matrix P which encodes
only local information. The edgesalieny vectorc is left un-
changed. With this replacementthe segmentationalgorithm
extractsout the samecontourin the first iterationasthe algo-
rithm usingthe C;;’s. Notethatthis contouris easyto traceout
sincethereareno large gapspresenbetweersuccessie edges
of the contour However, the hardpartis to geta startingedge
(i.e., the mostsalientedgein the currentiteration)which (for
this demonstration)s still being provided by the ¢;’s. Fig. 5
shaws the sggmentationafter the seconditeration. As canbe
seenthe sggmentatiorcompletelybreaksdown. The P;;’s are
sufficient aslong aswe startoff from the mostsalientedgein
eachiterationandthereareno large gapsin the contoursbeing
traced. The breakdavn in the secondterationshavs the need
for the more global informationencodedn the C;;’s in cases
wheretherearelarge gapsin the contoursbeingtraced.

In a previous paper|[25], a purely local saliengy measure
(termed WJ) was judged to be more effective in isolating
smoothclosedcontoursin the presenceof backgroundclutter
thanthreeotherwell known salieny measuregthosetermed
GM, SB, and SU and basedon [8], [17], and[20]). Analo-
gousto the expressiong; = s;5; (wheres ands areright and
left eigervectorswith largestpositive real eigervalueof P) the
salieny of anedgeaccordingto theWJ measures w; = z;%;,
wherez; = Ej P;;. We obsene thatthe WJ measurecanbe

seerasasinglestepof thepower-methodterationnecessarfor
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Fig.5. Fruitsonconcrete.(a) Whenthegloballink saliengy matrix, C, is re-

placedby thelocal affinity matrix, P, fromwhichit is derived,thesegmentation
algorithmfails in the secondteration. (b) Whenthe globallink salieng ma-
trix, C, isreplacedy alocallink saliengy matrix, W, basebntheWJsalieny

measurethe sggmentatioralgorithmfails in thefirst iteration.

computingthe eigervectorwith largestpositive real eigervalue
of P. It followsthatby comparingheperformancef asegmen-
tationalgorithmbasedon the WT measurdo onebasedon the
WJ measurewe canascertairthevalueof pawermethoditera-
tionsbeyondtheinitial step.This speaksirectly to theimpor-
tantissueof iterative versuson-iteratve (i.e., voting) methods
in perceptualorganization,an issuewhich is explored exten-
sivelyin [13].
Usmg reversalsymmetry P;; = Py, we caneasilyshav that
E « Pri Pij whichimpliesthatthe salieny for edges is

the sum of the probabilitiesof contoursof lengthtwo centered
oni. Becausehesalieny is determinedsolely by the probabil-
ities of lengthtwo contours,it follows thatthe global property
of contourclosureplaysno role in determiningedgesalieng.

Consequentlyedgesforming a closedcontourcan be of low

salieny despitehefactthatthey containmary closedcontours
of relatively high probability.

In our seconddemonstrationof the importanceof using
global information, the global link salieny matrix, C, based
ontheWT measureis replacedy alocallink salieny matrix,
W, basedon the WJ measure. The expressionfor local link
salieny is analogoudo the expressiorfor globallink salieng,
Eq. 5. Specifically

Wij = i'z'P,'j.’lfj. (12)
Usingreversal-symmetryit canbe shavn that
Wi = Z PyiPij Pji. (13)

k,l

Thusthe WW;;’s are proportionalto the probability thata con-
tour of lengththreeis centeredon thelink j — 4. However,
whenwe usethesdocal measureghe sgmentatioralgorithm
breaksdown in the first iterationasshown in Fig. 5 (b). The
most salientedgeaccordingto the w;’s (indicatedby the cir-
cle) lies on the cantelopewhich wasthe third fruit extracted
usingthe global salieny measure.While tracing the contour
boundingthe cantelope the algorithm losesits way when it
encounterghe large gaps. In summary the ¢;’s are essential
for reliably determiningthe startingedgefor the segmentation
algorithm, andthe C;;’s are essentiafor bridging large gaps.
Both arefunctionsof the eigervectorwith largestpositive real
eigervalueof the P matrix.

C. Additional Segmentation Examples

The eigen-soler for the matrix P describedabove (see[23]
for details)is adaptve, the time roughly varying accordingto
the compleity of the contoursextractedand the numberof
edgesin it. As expectedthe first iterationtook the leasttime
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Fig.6. Fruitsongrass.(a) Greyscaleimage(b) Canry edgeoutput(c)-(d)first
andsecondsegmentations.

of 3 secsincethe contourextractedis relatively simple. The
third iterationtook thelongesttime of 20 secpossiblybecause
of the large gapsin the contourbeing extracted(boundingthe
cantelope)Theaveragetime for the4 iterationsis 9.9 sec.

Fig. 6 shawvs the samefour fruits with grassas the back-
groundand with one of the fruits occludinganother Due to
poor contrastbetweenthe two dark fruits andthe background
the Canry edgedetectordoesnot reliably detectthe edges
boundingthe two fruits. The fruits are hardly salientin the
edgeimage(not shovn) evenfor humanobseners. Our algo-
rithm canbe expectedto extract out contoursonly when pro-
videdwith reliableedgeinformation. In this casethe algorithm
picks out only the othertwo fruits in the image. Of the two
fruits thatit doespick out, onepartly occludegheother Dueto
the poor contrastbetweerthe two fruits, the edgeinformation
(especiallythe orientation)is quite poor in the region around
the occlusion. However, despitethis fact, andthe factthatthe
contourboundingthe occludedfruit containsa large gapatthe
occlusion the algorithmsegmentsout bothfruits individually.

Fig. 7(a)shavs anexamplewheretherearesignificantshad-
ows which producestrong smooth contoursadjacentto the
stones. However, sincethey are not closed,the shadev con-
toursarenotassalientasthecontourswhich actuallyboundthe
stones Consequenththey do not confusethealgorithm.

Finally, Fig. 8(a)is animageof a large numberof coinson
a tabletop. Although this is an image which would be rela-
tively easyto segmentusingimagebrightnessthesegmentation
whichis shavn in Fig. 8(c) hasbeencomputedsolelyusingthe
Canry edgesshawn in Fig. 8(b).

V1. Finding the Optimum Speed

The shapedistribution which is usedto build the P matrix
is definedby three parameters?’, =, and~y. Although there
hasbeensomeinterestingrecentwork on learningparameter
settingsfor groupingalgorithms(see[18]), we have simply se-
lectedvaluesfor T', 7, and~y which we have foundyield good
resultsn practice.In thissectionwe describereliminarywork
on choosingthe valueof oneof theseparametersy, the parti-
cle’s speedautomatically

The segmentationalgorithm which we have describedas-
sumesa fixed valuefor . However, therearetwo properties
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Fig. 7. Stoneonpavement.(a) Greyscaleimage(b) Canry edgeoutput(c)-(f)
first four segments.

of the shapddistribution which aredirectly affectedby the par
ticle’s speed.First, the distancea particletravels beforeit de-
caysincreaseswith increasingspeed.Secondthe variancein
aparticle’sdirectionof motionrelative to the distancet travels
decreaseswith increasingspeed. Consequentlythe choiceof
~ effectively determinedoth the curvatureof the closedcon-
tourswhichwill beclassifiedasmostsalient,andthe optimum
distancebetweeradjacentdges.A more principledapproach
would beto isolateclosedcontoursrrespectve of their average
curvatureandirrespectve of theaveragedistancebetweeradja-
centedgesOneway to do this would beto systematicallywary
speedwithin Algorithm 1 so that the contourwhich is most
salient,.e., thecontourwith maximumeigervalue,amongcon-
toursof all possibley is extracted.In principle,the salieng of
contoursof differentaveragecurvatureanddifferentedgesam-
pling rateswould bemaximizedat differentspeedstesultingin
amorerobustsegmentatioralgorithm. SeeAlgorithm 4.

Algorithm 4; Extractanobject(scale-ivariant).

extract(A)
begin
argmax
Ymax < ¥ eigenvalue(af finities(A, 7))

s « eigenvector(af finities(A, Ymaz)

. argmax
i= i (5is) .
return reachable(j) N reachable(7)

end

Fig. 8. Coins (a) Originalimage.(b) Edgeinput obtainedby Canry detector
(c) Sgmentedobjects,numberedn theorderin which they areextracted.

Fig. 9(a) is animageof threefruits on a woodentablewith
prominentwood grain background. The segmentationshavn
in Fig. 9(c) was computedusing Algorithm 4 insteadof Al-
gorithm 1. The optimal speedwithin the range[0.01, 1.5] for
eachobjectwascomputedusingBrent's method[3]whichdoes
notrequireanalyticderivatives,andis ableto locatealocal op-
timumin A(7y).

In our initial attemptto run the modifiedsegmentatioralgo-
rithm on thisimage,we usedthe samevaluesfor 7" andr used
to computethe otherresultsin this paper Unfortunately they
which maximizedtheeigervaluewasl.5. Becausehisvalueis
ontheboundaryof the searchinterval, it is not actuallyalocal
optimumof A(y), andthe resultingsegmentatiorwas of very
low quality. After increasingthe diffusion constant, 7", from
0.004to 0.007andthe decayconstant,r, from 5.0to 6.5, the
optimizationproceduraeturnedvaluesof v which werewithin
therange[0.01, 1.5], which impliesthatthey aretrue local op-
tima. The optimal speed;y,,..., for the first objectwas 1.23
and1.27for the second.The eigervalue, A(isqz ), at the op-
timal speedwas0.0099for the first objectand 0.0071for the
second.Theclosedcontoursareof goodquality. SeeFig. 9(c).
Thealgorithmfailedto find thethird object,becaus¢he Canry
edgedetectorreturnedvery few edgeswhich lie on its bound-
ary.

VI1I. Conclusion

We have demonstratetiow an edgesalieny measurébased
ontheglobalpropertyof contourclosurecanform thebasisof a
segmentationalgorithmableto identify multiple salientclosed
contoursin real images. More specifically we have demon-
stratedthat computingthe connected-components a graph
basedon a matrix which makes explicit the relatve number
of closedcontourscontainingpairsof edgesjs moreeffective
thansearchinga graphbasedon local information aboutpairs
of edgesn isolation.

Our approachto grouping edgesinto salient closed con-
toursinvolvesthe solution of an eigervector/eigemalueprob-
lem. Recently other researchers[15]j17], [18], [21] have
also proposedgrouping image featuresby solving eigervec-
tor/eigevalueproblems.
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Fig.9. Fruits. (a) Originalimage.(b) Edgeinput obtainedby Canry detector
(c) Sgmenteddbjects,numberedn the orderin which they areextracted.The
optimalspeed;ymaz, for thefirst objectwas1.23and1.27for thesecondThe
eigevalue, A\(Ymaz ). atthe optimalspeedvas0.0099for thefirst objectand
0.0071for thesecond.

The normalized min-cut approachdescribedin [21] can
group more generalimage featuresthan our approachcan.
However, sincewe restrictoursehesto groupingedgeswe are
ableto imposethe importantconstraintof tangentcontinuity,
which hasno counterpartfor non-edgefeaturessuch as tex-
ture or brightness.Furthermoreary approachenforcingtan-
gentcontinuity usingthe mechanisnof edge-directionalitye-
quiresanon-symmetri@ffinity matrix P for whichthe min-cut
approactproposedn [21] doesnotapply: As previously noted,
the useof a symmetricaffinity matrix makescontourscontain-
ing cuspssalient(seethe discussionin Section Il). Hence,
we would expectpoorperformancen edgegroupingproblems
with amin-cutapproactsincetangentontinuity cannotbe en-
forced.

Like[21], thedominanteigervectorbasednethoddescribed
by [17] is applicableto featuresotherthan edges. Also like
[21], this methodassumeshatthe affinity matrixis symmetric
andthereforecannotuseedge-directionalito enforcetangent
continuity.

Of course the genericgroupingalgorithmsof [1], [7], [15],
[21] make much wealer assumptionsaboutthe input image
thandoesthealgorithmwhich we describenere. Thealgorithm
we describds specificallydesignedo groupedgesnto smooth
closedcontours.Whenanimagedoesnot containclosedcon-
tours, whenthe contoursit containsare not smooth,or when
local edgedetectionprocessesail becausef lack of contrast,
i.e.,, whenour assumptiongre violated, our methodwill fail.
It is possiblethat in such cases,genericgrouping methods,
which are able to organizea wider variety of imagefeatures,
andwhich make wealer assumptionaboutthem,maysucceed
in suchcases.

However, we believe that groupingmethodswhich are de-
signedto solve a specificgroupingproblem,suchasgrouping
edgesinto smoothclosedcontours,will outperformgeneral-
purposemethodson imagesfor which their assumption$old.
This is becausegenericmethodscannotfully exploit domain
specificcontraintssuchascontourclosureandtangentontinu-
ity, which have no counterpartfor non-edgefeaturessuchas

textureor brightness.

Appendix A

Firstwe prove somepreliminarylemmas.

Lemmal: If sisa(right) eigervectorof P with eigervalue
thens is aleft eigervectorof P or equivalentlya (right) eigen-

vectorof PT with the sameeigervalue.
Proof. Takingthei-th componenof PTs,

J J
= Z Pjs; (15)

J
= )5 (16)

Hence s is aneigervectorfor PT or equivalentlya left eigen-
vectorfor P with thesameeigervalue.
Lemma2: For an irreducible positve matrix P that is

reversal-symmetric
. P\"
lim (— =s-§T
n—oo \ \

(17)

where is the largesteigervalueof P ands is the correspond-

ing eigervectot
Proof. For a generalirreducible positive matrix A it is shavn

in[10] that
(3) -»

wherex andy arerespectiely theright andleft eigervectorsof
A correspondingo the largesteigervector A normalizedsuch
thatzTy = 1. From the previous lemma,we know thatif s
is aleft eigervectorof areversal-symmetricnatrix P, thens is
the correspondingight eigervectorwith the sameeigervalue.
Hencethe proof.

Proofof theFirst Saliengy Theorem(Theoreml). Firstwe note
the simple relationshipbetweenthe diagonalelementsof the
powersof theaffinity matrix P andprobabilitiesof closedcon-
tours. (P*);; is the sumof the probabilitiesof all closedcon-
toursof lengthk that passthroughedge:. Usingthis relation-
shipandletting A bethe largesteigervalueof P, the definition
for ¢; in Equation2 canbe rewritten in termsof the powersof
P as:

lim
n—oo

(18)

i o= lim 9
¢ ”—’lmoo Zj (Pn)ﬂ =
= lim (l;‘)?‘ (20)

The above limit existsif the limit for both the numeratorand
thedenominatoexistsandthelimit for thedenominatois non-

zero.UsingLemmaz2 :
P\"
(5), ==

wherethe s;’s arethe component®f the eigervectorof P cor-
respondingto its largesteigervalue A and assumingthat the
eigervector is normalizedsuchthat 3, s;5; = 1. Hence,
both the limits for the numeratorand denominatotin the ra-
tio (20) exist andis equalto respectiely, s;5; and Zj 5;5;.
Finally, we notethatthelimit for the denominatoiin the ratio

lim
n—o0

(21)



is non-zero. For our problemthereis a non-zeroprobability
that a contour passeghroughary two edgesin the imagein
successioh HenceP is positive[10] andaccordingto Perron's
theorem[10] for positive matrices,all the componentof the
eigervectorcorrespondingpo thelargesteigervaluearepositive.
Hence,_; s;3; > 0 andhencethelimit of thedenominatoin

theratio (20) is non-zero.Sincewe assumeahatthe eigervec-
tor is normalizedsothat }°; s;5; = 1, the expressionfor c;

becomes

ey
¢ = lim v (22)
oo 3R
_ hmn_mo(%)z 23)
limn 00 325(X)3;
Si8;
= - (24)
25 5i8;
= 8;5;. (25)

Proofof the SecondSalienyy Theorem(Theoren?2). Theprob-
ability that closedcontoursof lengthn passthroughedges;

and: successiely is givenby P};‘lPij sinceall suchcontours

passthroughthelink from edgej to edgei atleastonce.Hence
we canrewrite thedefinitionfor thelink saliencieq4) as:

(26)

Again, usingthe limit theoremin Lemma (2) and aguments
similar to that madein the proof of Theorem(1) on the exis-
tenceof limits, we have :

lim,, 0 (%):171 ) (P;\J)

Ciyi = 27)
7 Zlhmn%m(g)ﬁ

_ (P

_ (%) (28)
lelgl
SiHjSJ

29

t (29)

Theoem3—Thid SaliencyTheoem: Given a set C of
closedcontoursin an image, considerthe inducedgraph G
whoseverticesare edgesfrom the image. The only links be-
tweenverticescorrespondo the directedlinks betweensuc-
cessve edgesof the contoursin C. ThenG is partitionedinto
isolatedstrongly-connectedomponentsno two of which have
ary link betweerthem.

Proof. It is easilyseenthat G hasisolatedstrongly-connected
componentsff for two edgesi andj, thereis a pathi ~ j iff
thereis apathj ~ i. Hencein our case we needto prove that
the above conditionbetweentwo edgesi andj alwaysholds.
It is enoughto shaw this for simple pathswherethereareno
loops. Any pathi ~~ j canbe decomposednto a sequence
of subpathsachof which is a subsequenctilly containedn
someclosedcontourof C. Thesubsequencemeconstructedn
the following manner Considerthe set A4; of all the contours
in C thatcontainedgei. Startingfrom edge: we traceout the
thepathi ~ j. As we move alongthis path,we remove from
thesetA; ary closedcontoursthatdoesnot containthewhole

IThis is not necessarilfrue whenwe considersparserepresentationsf the
matrix P, but for sucha caseall thatis requiredis that thereis a non-zero
probabilitythatacontourstartfrom edge: andendin edge;j with thepossibility
of threadinghroughintermediateedges.

subsequencseenso far. Theneitherwe reachedgej before
exhaustingthe contoursin A; or A; becomesmpty at some
intermediateedge. In the former case,ary of the remaining
closedcontourin A; providesareturnpathto edges from j by

tracingout therestof sucha closedcontour In thelatter case,
let & be the lastintermediateedgeafter which the set A; be-
comesempty Thepathfromi ~ k is thefirst subsequencinat
we construct.At k therestill existssomeclosedcontourin A;.

Thusthereis areturnpathk ~ i by completingary suchclosed
contourremainingin A;. We recursvely constructhe remain-
ing subpathsy consideringthe pathk ~~ j andstartingwith

thesetA;, whichis thesetof all contoursn C thatpasshrough
edgek. As amuedabove, eachsuchsubpathhasa returning
pathfrom the endof the subpathto its beginning. Henceall the

returning pathscan be concatenatedogetherin reverseorder
to getareturningpathfrom j ~» i. Hencei ~» j iff j ~» .

A stronglyconnecteccomponenbf a graphis defined[5] asa

subsebf nodeswherefor ary two nodes; andj in the subset,
thereexistsa pathfromi ~» 5 andfrom j ~» 4. Hencein our

casesinces ~» j iff j ~ 14, if thereexistsary pathi ~~ j, then
edgesi andj belongto somestrongly connecteccomponent.
Hencethewhole graphcanbe partitionedinto a setof isolated
stronglyconnecteccomponentsvith no links betweenrary two

of thecomponents.

Appendix B

In this appendixwe give ananalyticexpressiorcharacteriz-
ing the probability distribution of boundary-completioshapes
derivedin [22]. Foraderivationof arelatedaffinity functionsee
[19]. We definethe affinity, P;;, betweertwo directededges;
andj, to be

n:lmmﬂ@oa

where P(j | i;t) is the probability that a particle which be-
gins its stochasticmotion at (z;,x;,0;) attime O will be at
(z;,y;,6;) attime t. This probabilityis definedto be the sum
over tﬂe probabllltlesof all pathsthat a particle cantake be-
tweenthetwo edges Thisintegralis approximateanalytically
The approximationis the productof P evaluatedat thetime at
which theintegralis maximizedj.e., t,,:, andaweightingfac-
tor, F. Theexpressiorfor P attimet is

P(j itope)  (30)

3 exp[— 755 (at? — bt + )] exp(—1)

P(j | ist) = — (31)
2
where
2+ COS(GJ' — 0,)
= — 32
a 3 (32)
b — z;;(cos 0 4 cos 0;) + y;;(sin 0; + sin 6;) (33)
0
(z5; +y7:)
c = ]72J (34)
Y
for z;; = x; — z; andy;; = y; — y;. Thedistribution of shapes

is determlnedaythehalf-llfe T, thevariance,T, andthe speed
of the particle,y. The expressionfor P shouldbe evaluated
att = topt, Wheret,, is real, positive, andsatisfiesthe cubic
equation

G
4

3(at? — 2bt + 3c)
T

= 0. (35)



If morethanonereal, positive root exists, thenthe root maxi- [26] Williams, L.R. andThornber K.K. 2001.Orientation,ScaleandDiscon-

mizing P(j | 4;t) is chosenFinally, theextrafactor F is tinuity asEmegentPropertief lllusory ContourShapeNeurl Computa-
tion 13(8):1683-1711.

27td
F= ot (36)
12(3c—btopt) + Tt pe
T 2
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