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Abstract
Using a saliencymeasure basedon the global property of

contourclosure, wehavedevelopeda methodthat reliablyseg-
mentsoutsalientcontoursboundingunknownobjectsfromreal
edge images. The measure incorporates the Gestalt princi-
plesof proximityandsmoothcontinuitythat previousmethods
haveexploited. Unlike previousmethods,we incorporatecon-
tour closurebyfindingtheeigenvectorwith largestpositivereal
eigenvalueof a matrixdefininga stochasticprocesswhich mod-
els the distribution of contours passingthrough edges in the
scene. Thesegmentationalgorithm utilizes the saliencymea-
sure to identify multiple closedcontours by finding strongly-
connectedcomponentson an inducedgraph. Thedetermina-
tion of strongly-connectedcomponentsis a directconsequence
of the propertyof closure. We report for the first time, results
on large real imagesfor which segmentationtakesan average
of about

���
secsper objecton a general-purposeworkstation.

Thesegmentationis madeefficientfor such large imagesbyex-
ploiting theinherentsymmetryin thetask.

I. Introduction
Visual perceptionevolved in a world of objectsmany of

which are boundedby smoothclosedcontours. We hypoth-
esizethat thesecontoursobey a stochasticdistribution which
is utilized by perceptualprocessesin finding contoursbound-
ing objects.In prior work [22], [24], [25] this distribution has
beenmodeledandusedto derive a saliency measure(termed
WT) whichexploitstheclosureof contoursboundingobjects.It
wasfoundthatthismeasureprovidesasignificantimprovement
over previous approachesin highlighting edgeslying on con-
toursboundingobjectsin small syntheticscenescreatedfrom
contoursof real objectsand natural backgroundtexture[25].
However, no methodwas presentedfor actually segmenting
out thesalientobjectcontours.Despitetheeffectivenessof the
WT measure,we will show thata simplethresholdon theraw
saliency valuesis not sufficient for segmentation,especiallyin
caseswheretwo or moreobjectcontourshave similar salien-
cies.In this paper, we presenta methodfor extractingmultiple
salientclosedcontoursboundingdistinctobjects.Previously, a
routinefrom astandardnumericallibrary wasusedto solve the
eigenproblemrequiredto computetheWT measure.However,
dueto thenumberof edgesinvolved,this is infeasiblefor large
realimages.Consequently, in thispaper, wehavedevelopedan
efficienttechniquethatexploitsthesparsenessandsymmetryof
representationsintrinsic to theproblem,usingwhich,wereport
for thefirst time,resultson largerealimages.

Fig.1. An exampleedgeimage.Theimagewassyntheticallycreatedbysuper-
imposingtwo copiesof edgesfrom theboundaryof arealpearonabackground
texture.

Givenanedgeimageasin Fig. I, wewould liketo extractout
separatelytheindividual contoursboundingthetwo pears.We
wishtoachievesuchasegmentationwith noa priori knowledge
of thespecificobjectsthatgeneratethesecontours.Sucha task
is oneof thegoalsof perceptualgrouping. In lieu of any spe-
cific knowledgeaboutthe objectsgeneratingthe contours,we
imposea subsetof the Gestaltprinciplesfor perceptualorga-
nization. Most previousapproachesto perceptualgroupingof
edgeshaveincorporatedtheGestaltprinciplesof proximity and
goodcontinuationin someform (e.g., [2], [9], [6], [12]). These
methodsassumethatadjacentedgesof anobjectboundaryare
closetogetherandcanbesmoothlyinterpolated.In additionto
thesetwo local properties,we exploit the global propertythat
contoursboundingobjectsmustbe closed. Unlike proximity
and good continuation,closurecannotbe reducedto a local
propertydefinedfor pairsof edgesin isolation.

Previousapproaches[1],[6], [11], [16] haveusedgraphbased
searchtechniquesto find closedcontours.A graphof affinities
betweenedgesis constructedwherethe affinities modelprox-



imity andgoodcontinuation.The affinity betweentwo edges
is a purely� local measurewhich is proportionalto the likeli-
hoodthat a smoothcontour(openor closed)passesthrougha
pair of edges.Closureis imposedby searchingthe graphfor
closedcontourswhile minimizing a globalcostfunctionwhich
is relatedto how salienttheclosedcontoursare.Our approach
differsfrom thesepreviousapproachesbecausewefirst usethe
local affinity measure(which asnotedabove doesnot differ-
entiatebetweenopenandclosedcontours)to computea global
saliency measure,which is proportionalto therelative number
of closedcontourswhich join a pair of edges. Sucha mea-
surefor closedcontourswasfirst proposedandcomparedex-
tensively with previous approaches(including [9], [17], [20])
which do not incorporateclosurein [25]. Only after thecom-
putationof this globalsaliency measuredo we employ a graph
searchtechniqueto identify individual closedcontours. We
show that usinga saliency measurebasedon contourclosure
leadsnaturallyto a specifictype of graphsearch,namely, the
determinationof strongly connectedcomponents. The close
relationshipbetweenthe stronglyconnectedcomponentcom-
putationand the closurepropertyof the global saliency mea-
suredistinguishesour work from previous approaches,where
genericgraphsearchtechniqueshave beenappliedto graphs
representinga local affinity measuredefinedfor pairsof edges
in isolation. To illustratethe crucial role playedby the global
propertyof contourclosure,we show thata methodbasedon a
purelylocalaffinity measureproducespoorsegmentations.

Computing the saliency measurerequires identifying the
eigenvector with largestpositive real eigenvalue of a sparse,
positive matrix exhibiting a specifickind of symmetry. Ordi-
narytechniquesfor thecomputationof eigenvectorsandeigen-
valuesareinfeasiblefor largereal images.We have developed
efficient techniqueswhichexploit thesparsenessandsymmetry
of thematrix to significantlyreducethe time requiredto com-
putethis eigenvector. In this paper, we report the first results
on real imageswith a large numberof edges. Our technique
reducesthe time taken to computethe segmentationfor each
objectcontourfrom anaverageof around� ��� � hrs. to around���

seconds.

II. Problem Formulation
Sincethe Gestaltprinciplesof proximity andgood contin-

uationcanbe reducedto local propertiesof the positionsand
orientationsof two edges,we canmodel themusingonly lo-
cal information.Following[14], [22], [24], proximity andgood
continuationcanbemodeledby adistributionof smoothcurves
tracedby particlesmoving with constantspeedin directionsun-
dergoingBrownianmotion. In ourwork, the“affinity” between
edge� andedge	 is denotedby 
���
 andis thesumof theprob-
abilities of all pathsthat a particle can take betweenthe two
edges(see[22] for details).Two parameterscontrolthemotion
of theparticleandembodytheGestaltprinciplesof proximity
andgoodcontinuation.Eachparticlehasa half-life, � , which
determinesthe distanceover which pairs of edgesare likely
to be linked by randomwalks. Hence, � modelsproximity.
Thevariance,� , of theGaussianrandomvariablerepresenting
changein directionmodelstheprincipleof goodcontinuation.
A third parameter, � , representsthe speedof the particle,and
hencedeterminesthe effective scaleat which the sceneis an-
alyzed,since the affinity betweenpairs of edgesvarieswith
speed.At larger speeds,the distancebetweena pair of edges
is effectively smaller, while at slower speedsthesamedistance
is effectively larger. In our initial experiments,wechoseafixed
speedthatwasjudgedto give goodresultsfor mostimages.In
a latersection,we presentresultswheretheoptimal � for each
objectin thesceneis identifiedusinganoptimizationmethod.
This leadsto a scale-invariantsegmentation.

Becauseparticlesat oneedgeneednot reachanotheredge
due to the half-life, in general � � 
���
�� �

. HenceP is not

a stochastic(Markov) matrix, andmethodsbasedon Markov
chainsare not directly applicable. While closedcontoursdo
form a Markov chain(see[26]), the Markov matrix M is not
known until theedgeandlink saliencieshavebeendetermined,
andthesearefunctionsof theeigenvectorwith largestpositive
realeigenvalueof P.

The smoothcontinuationof a curve betweentwo edgesre-
quiresthat the tangentat any point alongthe curve be contin-
uous. If we wish to extend the curves to include additional
edges,then tangentcontinuity must be enforcedat the edges
themselves.A particlevisiting anedge,andtravelingin agiven
direction, must continuealong in that samedirection to pre-
serve tangentcontinuity. This requirementcanbe ensuredby
replacingeachorientededge,wheretheorientationis anangle
in therange,� ������� , with two oppositelydirectededges,where
thedirectionsareanglesin therange,� ��� � ��� . A particlemust
enterandexit a directededgein the samedirection. If we do
not imposetangentcontinuityat theedges,it is possibleto get
contourswith cusps(i.e., reversalsin direction) at the edges,
which arenot judgedto besalientin practice.For moredetails
see[25]. Sinceevery directededge� hasa sibling edgeat the
samepositionbut pointing in the oppositedirection,it will be
convenientto denotethesibling edgeby � � .

Imposing tangent continuity through the use of directed
edgeshasanimportantimplicationfor thestructureof thema-
trix of affinitiesP. Fromsymmetry, theprobabilitythatany par-
ticle travels alonga curve startingfrom edge � andendingin
edge	 is thesameastheprobabilityof aparticletravelingfrom
edge � to edge� � in thereversedirection.Hence
���
"!#
�$%&$' . We
call thisspecialsymmetryof theaffinity matrixreversalsymme-
try which is distinctfrom theusualsymmetry
 ��
 !(
 
)� which
neednothold in general.Reversalsymmetryhasimportantim-
plicationsfor boththeform of theexpressionswhichdefinethe
salienciesandfor theproblemof efficiently computingthem.

In the restof thepaperwe will have occasionto associatea
vector * with thesetof directededges(e.g.thevectorof salien-
ciesfor eachdirectededge),onecomponentfor eachdirected
edge.Analogouswith thecasefor edges,a componentof such
avector + 
 associatedwith edge� will haveasiblingcomponent
denotedby �+�
,!-+.$% associatedwith edge� � .
III. Saliency measure

In this section,we first motivatethe expressionfor the WT
saliency measureintroducedin [25]. Wethenshow thattheWT
saliency measurecanbecomputedby solvinganeigenproblem
associatedwith theaffinity matrix P. Givenanedgeimage,we
defineaclosedcontourasafinite closedsequenceof edges.By
aclosedsequencewemeanthatif westartfrom any edgein the
sequence,andtraceout thecontour, we will returnto thesame
edge. Eachclosedcontour / hasa likelihood(or probability)
associatedwith it, whichwedenoteby 0213/ � . Thisprobabilityis
theproductof thetransitionprobabilities(givenby theaffinity
matrix P) betweensuccessiveedgesof thecontour.
A. Edge Saliency

We would like to definethesaliency of anedgesuchthat it
is directly relatedto the likelihoodthat a closedcontourcon-
tains that edge. Ratherthan derive the contribution of indi-
vidual closedcontoursto the saliency of an edge,it is sim-
pler to considerthe contribution of the ensembleof all closed
contoursthroughthat edge. We begin by consideringthe set
of infinite closedcontourscontainingthe edge. Eachinfinite
closedcontourcan be decomposedinto a sequenceof finite
closedcontours,andhencethe relative likelihoodof different
infinite closedcontourscontaininganedgedependsontherela-
tive likelihoodof theindividual finite closedcontoursof which
they arecomposed.In orderto calculatetherelative saliencies
of infinite closedcontours,we startby consideringtherelative
salienciesof closedcontoursof finite lengthandtake the limit
as the length goesto infinity. Restrictingourselves to finite



contoursfor now, the saliency of an edgeshouldbe propor-
tional to4 theexpectednumberof closedcontourswhichcontain
thatedge.Theexpectednumberof closedcontoursof length 5
which containedge� is simply the sumof the probabilitiesof
all suchclosedcontours:687
 !(9�:;0,1</>=���?�/A@�= /B=C!D5 � (1)

Sincewe are interestedin the relative salienciesof the vari-
ous infinite contourswhich containdifferent edges,we take
the limit 5(EGF for the expectednumberof closedcontours
which containa given edge � relative to the expectednumber
whichcontainany edgeandobtaintheformaldefinitionfor the
saliency of edge� : H 
,!JILKNM7CO8P 6 7
� � 6 7� (2)

This definition suggeststhat thereis a simplerelationshipbe-
tweenedgesalienciesandtheeigenvectorcorrespondingto the
largestpositiverealeigenvalueof theaffinity matrix,P.

Theorem1—FirstSaliencyTheorem: The saliency for edge� is givenby: H 
 !(+ 
 �+ 
 (3)

wherethe + 
 ’s arethecomponentsof theeigenvector(normal-
izedsothat � 
 + 
 �+ 
 ! � ) correspondingto the largestpositive
realeigenvalue, Q , of theaffinity matrix R , i.e. RS*T!-QU* .
Proof.SeeAppendixA andalso[25] for anearlierproof.

It is importantto notethatsinceR ispositive(all entriesarepos-
itive), Perron’s theorem[10]guaranteesthat the largesteigen-
valueof R will be real andpositive. The componentsof the
correspondingeigenvector + 
 will all bepositive (i.e., + 
WV � ).
Note that dueto reversal-symmetry, we would expect H 
 ! H $ %
ascanbeverifiedfrom theexpressionabove.
B. Link Saliency

For the purposeof segmentation,in addition to the edge
saliencies,we will also needinformation which will help us
traceoutcontoursgivenastartingedge.Specifically, giventwo
edges,	 and � , we would like to know the probability that a
closedcontourpassesthroughedge	 andthen,withoutvisiting
anotheredge,throughedge� . We definethe link saliency, XY
Z� ,
to be the relative numberof closedcontoursthatpassthrough
edges	 and � in succession.Analogousto the definition for
edgesaliency, we have :X 
Z� ![INKLM7\O8P 6 7
)��^] 6 7] (4)

where
6 7
)� is theexpectednumberof closedcontoursof length5 which passthroughedges	 and � in succession,and

6 7] is as
definedbeforein (1). Like theedgesaliencies,the link salien-
ciesalsohave a simplerelationshipwith theeigenvectorcorre-
spondingto thelargestpositive realeigenvalueof P.

Theorem2—SecondSaliencyTheorem: The link-saliencies
betweenany two edges	 and � aregivenby :X 
)� ! �+ 
 
 
)� + �Q (5)

wherethe +�
 ’s arethecomponentsof theeigenvector(normal-
izedsuchthat � 
 + 
 �+ 
 ! � ) correspondingto the largestposi-
tive realeigenvalue, Q , of theaffinity matrix,P.
Proof.SeeAppendixA.

As in the caseof the edgesaliencies,dueto reversalsymme-
try, we would expect X 
Z� !_X $' $ % as can be verified from the
expressionabove(recallthat 
2
)�T!-
"$' $ % and � �+�
,!(+�
 ).

Sincewe areconcernedwith closedcontours,an important
conservationpropertyholdsfor all edges.Any closedcontour
thatgoesfrom someedge ` to a secondedge� mustcontinue
on to somethird edge	 . This is not necessarilytruein thecase
of opencontours.We confirmthisconservationpropertyandat
thesametime useit asa consistency checkon theexpressions
for the XY
)� ’s and H 
 ’s :9ba X 
 a ! 9ca �+�
�1<
,
 a + a �Q (6)

! �+�
�1<Qd+�
 �Q (7)! �+ 
 + 
 (8)! H 
fe (9)

Doinga similar calculationfor � � X"��
 , we find9ca X 
 a ! H 
 ! 9 � X ��
ge (10)

C. Contour Saliency
Ideally, our segmentationalgorithm should extract closed

contoursin orderof increasingsaliency. A possibledefinition
for thesaliency of a closedcontourwould beto defineit asthe
probabilityof a particletracinga paththroughthesameedges,
i.e. the productof the the affinities along the contour’s path.
However, this definitionis dependenton thelengthof thecon-
tour. A closedcontour, / , andanotherclosedcontourformed
by traversingtheedgesin / twice, i.e., /ih�/ , shouldbejudged
to havethesamesaliency. However, it is clearthattheprobabil-
ity of thesecondcontourwill bemuchlessthanthatof thefirst.
In fact, it will bethesquareof thefirst. A morenaturaldefini-
tion for thesaliency of a closedcontour, / , a definitionwhich
is invariantto repetition,is thegeometricmeanof theaffinities
alongthecontour’spath:Q�1</ � !j0213/ ��k�l�m : m (11)

where = /Y= is the lengthof the closedcontourand 0,1</ � is the
productof the affinities which compriseit. In other words,
if the lengthnormalizedprobability of onecontouris greater
thanthatof asecondcontour, thenweconsiderthefirst contour
to be moresalientthanthe second.This definition of contour
saliency hasaninterestingrelationshipwith theaffinity matrix,
P, constructedfrom the givencontour(see[25]). If we imag-
ine a scenecontainingjust the closedcontour, / , and where
theprobabilitiesbetweennon-adjacentedgesarezero,thenthe
saliency of thecontouris justthelargestpositiverealeigenvalue
of P.
D. Importance of Directionality

Weconcludethissectionby demonstratinghow well theWT
saliency measureperformsfor a simpleexampleconsistingof
edgesfrom the silhouettesof two pearsartificially superim-
posedon a backgroundtexture. SeeFig. I. Thesaliency mea-
surefor eachedgewascomputedusing the expressionfor H 

given in Equation(3) after solving for the largestpositive real
eigenvalueof P andits correspondingeigenvector. Thesaliency
plot is shown in Fig. 2 (a). Thelengthof anedgein theplot is
proportionalto its saliency. It canbeplainly seenthattheedges
boundingboth pearshave high (and comparable)saliencies.
The salienciesof all other edgeshave beensuppressed.Nu-
merically, their salienciesare � � ordersof magnitudesmaller
thanthoseof thepears.



(a) (b)

Fig. 2. Saliency plots for the n -pearexample. (a) Our measurewith directed
edges(b) Our measurewith undirectededges.Thelengthof eachedgeis pro-
portionalto its saliency value.

Usingthesameexample,we demonstratethe importanceof
usingpairsof directededgesto form an affinity matrix, P, of
size �coqpr�co asopposedto simplyusingthe o edgesto form
a symmetricaffinity matrix,A, of size ospto . Recallthatthis
mechanismis requiredso that closedcontoursdo not include
reversalsin directionat thelocationsof theedges.For thepur-
poseof this demonstration,we constructa symmetricaffinity
matrixA from P by settingu 
Z� !(
 
)�wv 
 
&$' v 
 $ %Z�wv 
 $ %&$' . It can
be verified that A is symmetricbecause
,
)�r!x
"$' $ % . Fig. 2 (b)
shows thesquaredmagnitudeof thecomponentsof the eigen-
vector with largestpositive real eigenvalue of A. Two edges
in thebackgroundtexturewhich, simply by chance,areproxi-
malandverynearlycollinear, areextremelysalientwhile edges
forming the closedboundaryof the pearsare ignored. It fol-
lows that usinga non-symmetricaffinity matrix, P, andpairs
of oppositelydirectededges,� and � � , is essentialto satisfactory
performanceof thesaliency measure.

In orderto distinguishthecontoursboundingthetwo pears,
onemight try to simply thresholdthe edgesaliencies,i.e., theH 
 ’s. However, as is illustratedby this example,edgesfrom
differentobjectscanhave salienciesof comparablemagnitude.
It is thereforelikely that sucha simplestrategy will groupto-
getheredgesboundingdistinctobjects.In thenext section,we
develop a more robust approachthat usesthe link saliencies,
i.e., the X 
Z� ’s, to grouptogethersetsof edgesbelongingto in-
dividualobjects.

IV. Segmentation
The goal of segmentationis to group togetherinto distinct

sets,edgesboundingdistinct objectsin the scene. To moti-
vateoursegmentationalgorithm,considerthehypotheticalcase
wheresomeoracleprovidesuswith a set y of closedcontours
in the scenewhosesalienciesare above somethreshold. We
canconstructagraphwhoseverticescorrespondto theedgesin
our scene.We createa directedlink in this graphfrom edge�
to edge	 if � and 	 aresuccessive edgesof somesalientcon-
tour in y . TheThird Saliency Theorem(seeAppendixA) tells
usthatsucha constructioninducesa partitionof thegraphinto
a setof isolatedstrongly-connectedcomponents.A strongly-
connectedcomponent[5]is a setof edgesin which any pair of
edges� and 	 have a path from oneto the other, i.e., ��z{	
aswell as 	|z}� . In generaleachstrongly-connectedcompo-
nentwill containmultiple salientcontoursthat sharecommon
edges.It is shown in the AppendixA that the partition into a
setof strongly-connectedcomponentsis a direct consequence
of the propertyof closureof the contoursin y . As notedin
the introduction,the strongdependencebetweenthe natureof
thepartitionandthepropertyof closureis a distinguishingfea-
ture of our approach,ascomparedwith otherapproaches[6],
[11] which employ genericgraphsearch. More precisely, in
our approach,thedeterminationof strongly-connectedcompo-
nentsmakessenseonly in thecontext of a graphderivedusing

asaliency measurebasedon contourclosure.
In practice,of course,we do not know the salientcontours

beforehand.Nevertheless,sincethelinks in thesalientcontours
becomethelinks in thegraph,all we needto know is which of
thelinks aresalient,i.e., thelikelihoodthatsomesalientcontour
passesthrougha givenlink. Thelink-saliencies,i.e., the X 
)� ’s,
encodepreciselythis information.

Ideally, thesetof edgeswill bepartitionedinto isolatedcom-
ponents.However, in practice,not all of the componentspro-
vide reliable segmentations. The dominantcontourstend to
suppressthe salienciesof all othercontoursto the degreethat
the salienciesof thesenon-dominantcontoursare insufficient
to inducecomponentsthat canbe isolatedreliably. Hence,in
practice,we begin by extractingthemostsalientcontours,and
sincesuchcontourswill normallycontainthemostsalientedge,
we first identify the contourscorrespondingto the strongly-
connectedcomponentcontainingthe mostsalientedge. Hav-
ing identifiedthemostsalientcontours,we suppresstheir link
salienciesin orderto reveal thenext setof dominantcontours.
We suppressthe currentset of dominantcontoursby deflat-
ing the affinities of all links amongthe edgesin the strongly-
connectedcomponent.Specifically, if � and 	 areedgesin the
component,thenthe link �WE~	 is deflatedby setting 
���
W! �
(aswell assettingthe reversal-symmetric“sibling” 
 $ %3$' ! � ).
We theniteratethis processto revealmultiple salientcontours.

Ideally, the strongly-connectedcomponentcontaining the
most salient edge will be isolated from the other compo-
nents. In practice, due to noise, some of the XA
)� ’s might
wrongly indicatethat the strongly-connectedcomponentcon-
tainingthemostsalientedgeis connectedto oneor moreother
strongly-connectedcomponents.Nevertheless,we canextract
thecomponentof interestby utilizing animportantpropertyof
strongly-connectedcomponents:thesetof edgesin a strongly-
connectedcomponentcontaininga givenedge is the intersec-
tionof thesetof edgesreachablefromthegivenedgeandtheset
of edgesreachableif all linksarereversed.Becauseof reversal
symmetry, the above propertyreducesto a particularlysimple
form. Let �b��� H.� �����<��1N	 � be the setof edgesreachablefrom a
givenedge	 . Due to reversalsymmetryit canbeverifiedthat
thesetof edgesreachablefrom 	 whenall links arereversedis
thesameasthereversalof thesetof edgesreachablefrom edge� . Thereversalof theset �b��� H.� �����<��1�� � is definedto be�b��� H.� �����3��1�� � !�� �`�=c`r?��b��� H.� �����3��1�� ��� e
Hence,in order to identify the strongly-connectedcomponent
containingthemostsalientedge	 , wefind�b��� H.� �����<��1N	 ��� �b��� H.� �����3��1�� � e
SeeAlgorithm 1. Interestingly, the above is analogousto the
expressionfor edgesaliency, H 
 !�+ 
 �+ 
 . Oneneedssimply to
replacethetheeigenvector + 
 with theset �b��� H.� �����<��1&� � , there-
versaloperatorfor vectorswith the reversaloperatorfor sets,
andcomponent-wisemultiplicationof vectorswith intersection
of sets.In our case,dueto reversalsymmetry, theabove prop-
erty reducesto a particularlysimpleform.

Algorithm 1: Extractanobject.�������b� H ��1<u �
beginR��������d��5��������b+�13u �*T����������5���� H �f����13R �	 !T¡g¢&£g¤¥¡�¦� 1g�+ 
 + 
 �

return �b��� H.� �����3��1L	 ��� �b��� H�� �����<�C1 �	 �
end

In order to decideif a link is salient or not, we needto
thresholdthe X 
)� ’s. We could usea single thresholdfor the



entiregraph.However, we cando betterby choosinganadap-
tive threshold§ for thesetof links which originatefrom edge	 ,
i.e., the 	 -th columnof C. To thresholdtheseXY
)� ’s in a natural
manner, we sort the 	 -th column in decreasingorder. In this
sortedlist, l, we find the ` -th largestvalue(in all of theexperi-
mentsin thispaper̀ equalstwo). Edgesjoinedby links from 	
with magnitudelargerthanthe � a areassumedto lie on salient
closedcontours,andarethereforeselected.Suchathresholding
schememight misclassifycertainlinks assalient.However, we
have observed that the extractionof strongly-connectedcom-
ponentsis usuallyrobustto suchmisclassifications.SeeAlgo-
rithm 3.

The terminationcriterion we usefor the currentimplemen-
tation is to simply stopafter reportingsomefixed numberof
components.SeeAlgorithm 2. One way to justify the use
of sucha simplecriterion is to imaginea higher-level module
that, for example,performsobject-recognition,andwhich em-
ploysthesegmentationalgorithmto highlightregionswherethe
presenceor absenceof someobject can be determinedusing
domainknowledgeavailableto the recognizer. It is up to the
recognizerto determinethe numberof salientcontoursthat it
wantsto process(basedon,for example,real-timeconstraints).
If themoduledeterminesthatthesegmentationalgorithmis re-
portinggarbageaftera certainnumberof iterations,thenit can
decideto terminatethesearchfor additionalcontours.Alterna-
tively, we couldstopwhenthe largestpositive realeigenvalue,Q , becomesnegligibly small.

Algorithm 2: Segmentanimage.+��.��¨���5���1<u �
beginy©�«ª

for �w� �
to o do¬ ���������b� H ��13u �y©�«y�­®� ¬ �u(��u � ¬

end
return y

end

Algorithm 3: Computeedgesreachablefrom 	 .�b��� H.� �����3��1L	 �
begin¬ �~��	 �

if not ���f+.���f��¯d1N	 � then
for �2� �

to = u°= doX 
)� �±�+ 
 
 
)� + �
end² �_+�������1 H �b�&³d¨�5"1�´µ@�	 ���
for �2� �

to = u°= do
if X 
Z�8V � a then¬ � ¬ ­r����� H.� �����3��1&� �
end

end
end
return

¬
end

As a demonstration,we applythesegmentationalgorithmto
thetwo pearexamplefrom Fig. I. Thesegmentationin thefirst
andseconditerationsareshown in Fig. 3 (a) and (b) respec-
tively. As previously noted,a segmentationbasedon simply
thresholdingthe edgesaliencieswould not be ableto separate
thetwo pears.

V. Results
In this section,we show resultsof our segmentationalgo-

rithm on a few real images.All the imagesweretakenusinga

(a) (b)

Fig. 3. Segmentationresultsfor thetwo pearexample.(a) First iteration. (b)
Seconditeration.

KodakDC50 480x480pixel digital color camera.The Canny
edgedetector[4]wasrunontheimagesafterconvertingthemto
greyscale,with theparameters¶·!�¸ e � , low hysteresisthresh-
old ! � e � andhighhysteresisthreshold! � e ¹ . Thesetof edges
returnedby the Canny edgedetectorwere found to be quite
redundant.The edgesare sampledto improve running times
with almostnosacrificein performance.In ourexperimentswe
sampletheedgessuchthatnotwo edgesarecloserthan º pixels
apart.

Theentriesof theaffinity matrix R werecalculatedwith pa-
rametersettings(seeSection II for their descriptionsandalso
[22]) �©! � e � º , �»! � e �C�c¼ and �i!»º e � . All edgeimagesare
remappedto a ½ ¼ p|½ ¼ imagesize.Sincetheaffinity matrix R
hasa specialsymmetry(thereversalsymmetry),we hadprevi-
ouslydevelopedan algorithmthat finds the eigenvectorcorre-
spondingto the largestpositive realeigenvalueof R (required
for thecomputationof theWT saliency measure)by exploiting
thereversalsymmetry. See[23] for details.

A. Example Segmentation
In our first examplewe chosea simple scenewherenon-

occludingobjects(fruits) wereplacedonatexturedbackground
(concrete).Fig.4 showsfour fruits onaconcretebackgroundin
greyscale(a)andthecorrespondingedgeimage(b) (with � ¹ �\�
directededgesafterthesamplingprocessdescribedabove).No-
tice thatthecontrastbetweenthetextureof thefruit on thetop-
left (a cantelope)andthatof thebackgroundis quitelow. As a
result,few edgesaredetectedalongsomepartsof the bound-
ary of the cantelope.Fig 4 (a),(c),(e),(g), and (i) show the
edgesaliencies,i.e. the H 
 ’s,computedduringthefirst five iter-
ationsof thesegmentationalgorithm.Fig 4 (b),(d),(f),(h),and
(j) show thecorrespondingcontourswhichareextractedduring
thosesameiterations. It is interestingto notethat the contour
boundingthecantelopehasbeenextracteddespitethefact that
therearelargegapsin somepartsof thecontour.

Fig. 4 (a)shows thevariationof thesaliency of thedominant
contouracrossiterations. The dominantcontour is extracted
at eachiteration by tracingout the mostsalientlinks starting
from the mostsalientedgeuntil we returnto the mostsalient
edgeagain.Its saliency is measuredby theexpressionin equa-
tion (11). Sincethesaliency of thedominantcontourdecreases
aswe extractout successive contours,we seethat thecontours
areindeedextractedin theorderof their saliencies.

Finally, we give thetime requirementsfor our algorithmfor
this example. It takes ¾ � ¸ secondsto generatea total of¾ �C�\� @ �\�C� entriesin the sparseaffinity matrix R on an SGI
R10000. Sincegeneratingthe entriesin the matrix is easily
parallelizable,it is usefulto know the time per entrywhich is¾ � e �\� msec. In Fig. 4 (b), we show the time taken to iso-
late successive objects. The eigensolver describedabove (see
[23] for details)is adaptive,thetimeroughlyvaryingaccording
to the complexity of the contoursextractedandthenumberof
edgeseachcontains. As expected,the first iteration took the



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4. Fruitson concrete.(a) Greyscaleimage.(b) Canny edgeoutput. (c)-
(j) First four iterationsof the segmentationalgorithm. For eachiteration the
salienciesareshown on theleft andthesegmentationis shown on theright. In
eachsaliency plot, the lengthof anedgeis propotionalto thesaliency of that
edge. The mostsalientedgein both the saliency andsegmentationplots are
shown insidethesmallcircle.
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leasttime of ¾À¸ secsincethe contourextractedis relatively
salient(asseenfrom thedominantcontoursaliency plot above)
comparedto the othercontoursin the scene.The third itera-
tion took thelongesttimeof ¾Á� � sec–possiblybecauseof the
largegapsin thecontourbeingextracted(boundingthecante-
lope).Theaveragetime for all iterationsis ¾(Â e Â sec.
B. Importance of Global Information

In this section,we will show the importancefor segmenta-
tion of theglobalinformationencodedby thelink saliency ma-
trix C by replacingit with theaffinity matrix P which encodes
only local information. The edgesaliency vectorc is left un-
changed. With this replacement,the segmentationalgorithm
extractsout the samecontourin the first iterationasthe algo-
rithm usingthe X 
)� ’s. Notethatthiscontouris easyto traceout
sincethereareno largegapspresentbetweensuccessive edges
of thecontour. However, thehardpart is to geta startingedge
(i.e., the mostsalientedgein the currentiteration)which (for
this demonstration)is still beingprovided by the H 
 ’s. Fig. 5
shows the segmentationafter the seconditeration. As canbe
seen,thesegmentationcompletelybreaksdown. The 
,
)� ’s are
sufficient aslong aswe startoff from the mostsalientedgein
eachiterationandthereareno largegapsin thecontoursbeing
traced.Thebreakdown in theseconditerationshows theneed
for the moreglobal informationencodedin the X 
)� ’s in cases
wheretherearelargegapsin thecontoursbeingtraced.

In a previous paper[25], a purely local saliency measure
(termed WJ) was judged to be more effective in isolating
smoothclosedcontoursin the presenceof backgroundclutter
than threeotherwell known saliency measures(thosetermed
GM, SB, and SU and basedon [8], [17], and [20]). Analo-
gousto theexpression,H 
 !Ã+ 
 �+ 
 (wheres and �* areright and
left eigenvectorswith largestpositive realeigenvalueof P) the
saliency of anedgeaccordingto theWJ measureis ÄW
2!-�U
.��U
 ,
where � 
 ! � � 
 
Z� . We observe that the WJ measurecanbe
seenasasinglestepof thepower-methoditerationnecessaryfor



(a) (b)

Fig. 5. Fruitson concrete.(a) Whentheglobal link saliency matrix,C, is re-
placedby thelocalaffinity matrix,P, from whichit is derived,thesegmentation
algorithmfails in the seconditeration. (b) Whenthe global link saliency ma-
trix, C, is replacedby a local link saliency matrix,W, basedontheWJsaliency
measure,thesegmentationalgorithmfails in thefirst iteration.

computingtheeigenvectorwith largestpositiverealeigenvalue
of P. It followsthatbycomparingtheperformanceof asegmen-
tationalgorithmbasedon theWT measureto onebasedon the
WJmeasure,wecanascertainthevalueof power-methoditera-
tionsbeyondtheinitial step.This speaksdirectly to theimpor-
tantissueof iterativeversusnon-iterative(i.e.,voting)methods
in perceptualorganization,an issuewhich is explored exten-
sively in [13].

Usingreversalsymmetry, 
 
Z� !-
 $' $ % , wecaneasilyshow thatÄW
2!#� ��Å a 
 a 
�
,
)� which impliesthatthesaliency for edge� is
thesumof theprobabilitiesof contoursof lengthtwo centered
on � . Becausethesaliency is determinedsolelyby theprobabil-
ities of lengthtwo contours,it follows that theglobalproperty
of contourclosureplaysno role in determiningedgesaliency.
Consequently, edgesforming a closedcontourcanbe of low
saliency despitethefactthatthey containmany closedcontours
of relatively highprobability.

In our seconddemonstrationof the importanceof using
global information, the global link saliency matrix, C, based
on theWT measure,is replacedby a local link saliency matrix,
W, basedon the WJ measure.The expressionfor local link
saliency is analogousto theexpressionfor globallink saliency,
Eq. 5. Specifically, Æ 
)� !x�� 
 
 
Z� � �Ce (12)

Usingreversal-symmetry, it canbeshown thatÆ 
Z�Ç!;9 a Å ] 
 a 
�
,
)��
�� ] e (13)

Thusthe

Æ 
Z� ’s areproportionalto the probability that a con-
tour of lengththreeis centeredon the link 	ÈEÉ� . However,
whenwe usetheselocal measures,thesegmentationalgorithm
breaksdown in the first iterationasshown in Fig. 5 (b). The
mostsalientedgeaccordingto the Ä 
 ’s (indicatedby the cir-
cle) lies on the cantelope,which was the third fruit extracted
usingthe global saliency measure.While tracing the contour
boundingthe cantelope,the algorithm losesits way when it
encountersthe large gaps. In summary, the H 
 ’s areessential
for reliably determiningthestartingedgefor thesegmentation
algorithm,andthe X 
)� ’s areessentialfor bridging large gaps.
Both arefunctionsof theeigenvectorwith largestpositive real
eigenvalueof theP matrix.
C. Additional Segmentation Examples

Theeigen-solver for thematrix R describedabove(see[23]
for details)is adaptive, the time roughly varying accordingto
the complexity of the contoursextractedand the numberof
edgesin it. As expectedthe first iteration took the leasttime

(a) (b)

(c) (d)

Fig. 6. Fruitsongrass.(a)Greyscaleimage(b) Canny edgeoutput(c)-(d)first
andsecondsegmentations.

of ¸ secsincethe contourextractedis relatively simple. The
third iterationtook thelongesttimeof � � secpossiblybecause
of the largegapsin the contourbeingextracted(boundingthe
cantelope).Theaveragetime for the

¼
iterationsis Â e Â sec.

Fig. 6 shows the samefour fruits with grassas the back-
groundand with oneof the fruits occludinganother. Due to
poor contrastbetweenthe two dark fruits andthe background
the Canny edgedetectordoesnot reliably detect the edges
boundingthe two fruits. The fruits are hardly salient in the
edgeimage(not shown) even for humanobservers. Our algo-
rithm canbe expectedto extract out contoursonly whenpro-
videdwith reliableedgeinformation.In thiscasethealgorithm
picks out only the other two fruits in the image. Of the two
fruits thatit doespick out,onepartlyoccludestheother. Dueto
thepoor contrastbetweenthe two fruits, the edgeinformation
(especiallythe orientation)is quite poor in the region around
theocclusion.However, despitethis fact,andthe fact that the
contourboundingtheoccludedfruit containsa largegapat the
occlusion,thealgorithmsegmentsout bothfruits individually.

Fig. 7(a)showsanexamplewheretherearesignificantshad-
ows which producestrong smoothcontoursadjacentto the
stones. However, sincethey arenot closed,the shadow con-
toursarenotassalientasthecontourswhichactuallyboundthe
stones.Consequently, they do not confusethealgorithm.

Finally, Fig. 8(a) is an imageof a largenumberof coinson
a tabletop. Although this is an imagewhich would be rela-
tivelyeasytosegmentusingimagebrightness,thesegmentation
which is shown in Fig. 8(c)hasbeencomputedsolelyusingthe
Canny edgesshown in Fig. 8(b).

VI. Finding the Optimum Speed
The shapedistribution which is usedto build the P matrix

is definedby threeparameters,� , � , and � . Although there
hasbeensomeinterestingrecentwork on learningparameter
settingsfor groupingalgorithms(see[18]), we have simply se-
lectedvaluesfor � , � , and � which we have foundyield good
resultsin practice.In thissection,wedescribepreliminarywork
on choosingthevalueof oneof theseparameters,� , theparti-
cle’s speed,automatically.

The segmentationalgorithm which we have describedas-
sumesa fixed valuefor � . However, therearetwo properties



(a) (b)

(c) (d)

(e) (f)

Fig. 7. Stoneonpavement.(a)Greyscaleimage(b) Canny edgeoutput(c)-(f)
first four segments.

of theshapedistributionwhich aredirectly affectedby thepar-
ticle’s speed.First, thedistancea particletravelsbeforeit de-
caysincreaseswith increasingspeed.Second,the variancein
aparticle’sdirectionof motionrelative to thedistanceit travels
decreaseswith increasingspeed.Consequently, the choiceof� effectively determinesboth the curvatureof the closedcon-
tourswhich will beclassifiedasmostsalient,andtheoptimum
distancebetweenadjacentedges.A moreprincipledapproach
wouldbeto isolateclosedcontoursirrespectiveof theiraverage
curvatureandirrespectiveof theaveragedistancebetweenadja-
centedges.Oneway to do thiswouldbeto systematicallyvary
speedwithin Algorithm 1 so that the contourwhich is most
salient,i.e., thecontourwith maximumeigenvalue,amongcon-
toursof all possible� is extracted.In principle,thesaliency of
contoursof differentaveragecurvatureanddifferentedgesam-
pling rateswouldbemaximizedatdifferentspeeds,resultingin
a morerobustsegmentationalgorithm.SeeAlgorithm 4.

Algorithm 4: Extractanobject(scale-invariant).�������b� H ��13u �
begin� ¤¥¡�¦ � ¡g¢&£g¤¥¡�¦� ��������5������&³���13�����d��5��������b+�13uÊ@f� ���*T����������5���� H �f����1<�����d��5��������b+�13u8@���ËWÌ�Í ���	 !T¡g¢&£�¤¥¡�¦� 1g�+�
�+�
 �

return �b��� H.� �����3��1N	 ��� ����� H.� �����3��1 �	 �
end

(a) (b)

(c)

Fig. 8. Coins. (a) Original image.(b) Edgeinputobtainedby Canny detector.
(c) Segmentedobjects,numberedin theorderin which they areextracted.

Fig. 9(a) is an imageof threefruits on a woodentablewith
prominentwood grain background.The segmentationshown
in Fig. 9(c) wascomputedusingAlgorithm 4 insteadof Al-
gorithm 1. The optimalspeedwithin the range � � e �Î� @ � e º�Ï for
eachobjectwascomputedusingBrent’smethod[3],whichdoes
not requireanalyticderivatives,andis ableto locatea localop-
timumin Q,1Ð� � .

In our initial attemptto run themodifiedsegmentationalgo-
rithm on this image,we usedthesamevaluesfor � and � used
to computetheotherresultsin this paper. Unfortunately, the �
whichmaximizedtheeigenvaluewas1.5.Becausethisvalueis
on theboundaryof thesearchinterval, it is not actuallya local
optimumof Q,1Ð� � , andthe resultingsegmentationwasof very
low quality. After increasingthe diffusion constant,� , from
0.004to 0.007andthe decayconstant,� , from 5.0 to 6.5, the
optimizationprocedurereturnedvaluesof � whichwerewithin
therange � � e �Î� @ � e º�Ï , which implies that they aretrue local op-
tima. The optimal speed,� ËWÌ�Í , for the first objectwas 1.23
and1.27 for the second.The eigenvalue, Q�1&��ËWÌ�Í � , at the op-
timal speedwas0.0099for the first objectand0.0071for the
second.Theclosedcontoursareof goodquality. SeeFig. 9(c).
Thealgorithmfailedto find thethird object,becausetheCanny
edgedetectorreturnedvery few edgeswhich lie on its bound-
ary.

VII. Conclusion
We have demonstratedhow anedgesaliency measurebased

ontheglobalpropertyof contourclosurecanform thebasisof a
segmentationalgorithmableto identify multiple salientclosed
contoursin real images. More specifically, we have demon-
stratedthat computingthe connected-componentsof a graph
basedon a matrix which makes explicit the relative number
of closedcontourscontainingpairsof edges,is moreeffective
thansearchinga graphbasedon local informationaboutpairs
of edgesin isolation.

Our approachto grouping edgesinto salient closedcon-
tours involvesthe solutionof an eigenvector/eigenvalueprob-
lem. Recently, other researchers[15],[17], [18], [21] have
also proposedgrouping image featuresby solving eigenvec-
tor/eigenvalueproblems.



(a) (b)

(c)

Fig. 9. Fruits. (a)Original image.(b) Edgeinputobtainedby Canny detector.
(c) Segmentedobjects,numberedin theorderin which they areextracted.The
optimalspeed,Ñ�Ò2Ó�Ô , for thefirst objectwas1.23and1.27for thesecond.The
eigenvalue, Õ�ÖNÑ�Ò2Ó�Ôc× , at theoptimalspeedwas0.0099for thefirst objectand
0.0071for thesecond.

The normalizedmin-cut approachdescribedin [21] can
group more general image featuresthan our approachcan.
However, sincewe restrictourselvesto groupingedges,we are
able to imposethe importantconstraintof tangentcontinuity,
which hasno counterpartfor non-edgefeaturessuchas tex-
ture or brightness.Furthermore,any approachenforcingtan-
gentcontinuityusingthemechanismof edge-directionalityre-
quiresanon-symmetricaffinity matrix R for whichthemin-cut
approachproposedin [21] doesnotapply. As previouslynoted,
theuseof a symmetricaffinity matrix makescontourscontain-
ing cuspssalient (seethe discussionin Section II). Hence,
wewouldexpectpoorperformanceonedgegroupingproblems
with a min-cutapproachsincetangentcontinuitycannotbeen-
forced.

Like [21], thedominanteigenvectorbasedmethoddescribed
by [17] is applicableto featuresother than edges. Also like
[21], this methodassumesthat theaffinity matrix is symmetric
andthereforecannotuseedge-directionalityto enforcetangent
continuity.

Of course,thegenericgroupingalgorithmsof [1], [7], [15],
[21] make much weaker assumptionsabout the input image
thandoesthealgorithmwhichwedescribehere.Thealgorithm
wedescribeis specificallydesignedto groupedgesinto smooth
closedcontours.Whenan imagedoesnot containclosedcon-
tours,when the contoursit containsarenot smooth,or when
local edgedetectionprocessesfail becauseof lack of contrast,
i.e., whenour assumptionsareviolated,our methodwill fail.
It is possiblethat in such cases,genericgrouping methods,
which areable to organizea wider variety of imagefeatures,
andwhich makeweakerassumptionsaboutthem,maysucceed
in suchcases.

However, we believe that groupingmethodswhich arede-
signedto solve a specificgroupingproblem,suchasgrouping
edgesinto smoothclosedcontours,will outperformgeneral-
purposemethodson imagesfor which their assumptionshold.
This is becausegenericmethodscannotfully exploit domain
specificcontraintssuchascontourclosureandtangentcontinu-
ity, which have no counterpartsfor non-edgefeaturessuchas

textureor brightness.

Appendix A
First weprovesomepreliminarylemmas.
Lemma1: If * is a(right) eigenvectorof P with eigenvalue Q

then Ø * is a left eigenvectorof P or equivalentlya (right) eigen-
vectorof 
ÚÙ with thesameeigenvalue.
Proof.Takingthe � -th componentof RÚÙ,Ø* ,9 � 
 ��
 �+ � ! 9 � 
 $ %&$' + $� (14)! 9 � 
 $ %)� + � (15)! Q2�+�
 e (16)

Hence,Ø * is aneigenvectorfor RÚÙ or equivalentlya left eigen-
vectorfor P with thesameeigenvalue Q .

Lemma2: For an irreducible positive matrix P that is
reversal-symmetric INKLM7\O8PÃÛ R QÊÜ 7 !-*Wh �* Ù (17)

where Q is thelargesteigenvalueof R and * is thecorrespond-
ing eigenvector.
Proof. For a generalirreduciblepositive matrix A it is shown
in[10] that INKLM7\O8P ÛAÝ Q°Ü 7 !-Þ�h.ß Ù (18)

whereÞ and ß arerespectively theright andleft eigenvectorsof
A correspondingto the largesteigenvector Q normalizedsuch
that �UÙ�à-! �

. From the previous lemma,we know that if *
is a left eigenvectorof a reversal-symmetricmatrix P, then �* is
the correspondingright eigenvectorwith the sameeigenvalue.
Hencetheproof.
Proofof theFirstSaliency Theorem(Theorem1). Firstwenote
the simple relationshipbetweenthe diagonalelementsof the
powersof theaffinity matrix P andprobabilitiesof closedcon-
tours. 13
 a � 
N
 is thesumof the probabilitiesof all closedcon-
toursof length ` thatpassthroughedge� . Usingthis relation-
shipandletting Q bethe largesteigenvalueof P, thedefinition
for H 
 in Equation2 canberewritten in termsof thepowersof
P as: H 
 ! ILKNM7\OÊP 1<R 7 � 
L
� � 13R 7 � ��� (19)

! ILKNM7\OÊP 1�á â � 7
L
� � 1.á â � 7��� e (20)

The above limit exists if the limit for both the numeratorand
thedenominatorexistsandthelimit for thedenominatoris non-
zero.UsingLemma2 :INKLM7\O8P Û R QÊÜ 7
N
 !-+�
��+�
 (21)

wherethe + 
 ’s arethecomponentsof theeigenvectorof P cor-
respondingto its largesteigenvalue Q and assumingthat the
eigenvector is normalizedsuch that � � + � �+ � ! �

. Hence,
both the limits for the numeratorand denominatorin the ra-
tio (20) exist and is equal to respectively, + 
 �+ 
 and � � + � �+ � .
Finally, we notethat the limit for the denominatorin the ratio



is non-zero. For our problemthereis a non-zeroprobability
that a contourã passesthroughany two edgesin the imagein
succession1. HenceP is positive[10]andaccordingto Perron’s
theorem[10] for positive matrices,all the componentsof the
eigenvectorcorrespondingto thelargesteigenvaluearepositive.
Hence,� � + � �+ �8V � andhencethelimit of thedenominatorin
the ratio (20) is non-zero.Sincewe assumethat theeigenvec-
tor is normalizedso that � � +����+��ä! �

, the expressionfor H 

becomes: H 
 ! INKLM7\O8P 1 á â � 7
L
� � 1 á â � 7��� (22)

! INKLM 7\O8P 1�á â � 7
L
INKLM 7\O8P � � 1 á â � 7��� (23)! + 
 �+ 
� � + � �+ � (24)! + 
 �+ 
�e (25)

Proofof theSecondSaliency Theorem(Theorem2). Theprob-
ability that closedcontoursof length 5 passthroughedges	
and � successively is givenby 
 7�å k��
 
,
)� sinceall suchcontours
passthroughthelink from edge	 to edge� at leastonce.Hence
wecanrewrite thedefinitionfor thelink saliencies(4) as:

X 
)� ! ILKNM7CO8PÀæ á â¥ç 7�å k��
 hdèdéCê)ëâ|ì� ] 1.á â � 7])] (26)

Again, using the limit theoremin Lemma(2) and arguments
similar to that madein the proof of Theorem(1) on the exis-
tenceof limits, we have :

X 
Z� ! ILKLM 7CO8P æ á â¥ç 7�å k��
 h�èUé êíëâ|ì� ] ILKLM 7CO8P 1.á â � 7])] (27)

! + � �+ 
,èdé ê)ëâ ì�D] + ] �+ ] (28)! �+ 
 
 
)� + �Q e (29)

Theorem3—Third SaliencyTheorem: Given a set î of
closedcontoursin an image, considerthe inducedgraph ï
whoseverticesareedgesfrom the image. The only links be-
tweenverticescorrespondto the directedlinks betweensuc-
cessive edgesof the contoursin î . Then ï is partitionedinto
isolatedstrongly-connectedcomponents,no two of whichhave
any link betweenthem.
Proof. It is easilyseenthat ï hasisolatedstrongly-connected
componentsif f for two edges� and 	 , thereis a path �Yz~	 if f
thereis a path 	ðz«� . Hencein our case,we needto prove that
the above conditionbetweentwo edges� and 	 alwaysholds.
It is enoughto show this for simplepathswherethereareno
loops. Any path ��zñ	 canbe decomposedinto a sequence
of subpathseachof which is a subsequencefully containedin
someclosedcontourof î . Thesubsequencesareconstructedin
the following manner. Considerthe set u 
 of all the contours
in î thatcontainedge� . Startingfrom edge� we traceout the
thepath �Bz«	 . As we move alongthis path,we remove from
theset uT
 any closedcontoursthatdoesnot containthewholeò

This is not necessarilytruewhenwe considersparserepresentationsof the
matrix P, but for sucha caseall that is requiredis that there is a non-zero
probabilitythatacontourstartfromedgeó andendin edgeô with thepossibility
of threadingthroughintermediateedges.

subsequenceseenso far. Theneitherwe reachedge	 before
exhaustingthe contoursin u 
 or u 
 becomesempty at some
intermediateedge. In the former case,any of the remaining
closedcontourin u 
 providesa returnpathto edge� from 	 by
tracingout therestof sucha closedcontour. In thelattercase,
let ` be the last intermediateedgeafter which the set u 
 be-
comesempty. Thepathfrom �2z«` is thefirst subsequencethat
we construct.At ` therestill existssomeclosedcontourin uõ
 .
Thusthereis areturnpath `°z_� bycompletingany suchclosed
contourremainingin uõ
 . We recursively constructtheremain-
ing subpathsby consideringthe path `izö	 andstartingwith
theset u a which is thesetof all contoursin î thatpassthrough
edge ` . As arguedabove, eachsuchsubpathhasa returning
pathfrom theendof thesubpathto its beginning.Henceall the
returningpathscanbe concatenatedtogetherin reverseorder
to get a returningpathfrom 	©z÷� . Hence �Úz}	 if f 	©zG� .
A stronglyconnectedcomponentof a graphis defined[5] asa
subsetof nodeswherefor any two nodes� and 	 in thesubset,
thereexistsa pathfrom ��zø	 andfrom 	tzù� . Hencein our
casesince �"z�	 if f 	ðzú� , if thereexistsany path ��z�	 , then
edges� and 	 belongto somestronglyconnectedcomponent.
Hencethewholegraphcanbepartitionedinto a setof isolated
stronglyconnectedcomponentswith no links betweenany two
of thecomponents.

Appendix B
In this appendix,we giveananalyticexpressioncharacteriz-

ing theprobabilitydistribution of boundary-completionshapes
derivedin [22]. Foraderivationof arelatedaffinity functionsee
[19]. We definetheaffinity, 
 ��
 , betweentwo directededges,i
andj, to be
û1L	µ=b� � !Áü Pý 
û1N	r=b��þ�� � ¯\�°ÿ��S
û1N	r=���þ�������� � (30)

where 
û1L	�=Y��þ�� � is the probability that a particle which be-
gins its stochasticmotion at 1&�d
g@��U
�@��b
 � at time 0 will be at1&� � @�à � @�� � � at time t. This probability is definedto bethesum
over the probabilitiesof all pathsthat a particlecan take be-
tweenthetwo edges.Thisintegralis approximatedanalytically.
Theapproximationis theproductof P evaluatedat thetime at
which theintegral is maximized,i.e., ���	�
� , andaweightingfac-
tor, F. Theexpressionfor 
 at time t is


û1L	µ=���þ�� � ! ¸��

���� ���� ��� 13����� � ��� v H � Ï��

���1 � �� �� � � � ������
(31)

where� ! � v��
�! 1���� � �b
 �¸ (32)� ! � ��
 1 �
�! � ��v��
�" � 
 � v à ��
 1  K$#%� �Av& K'#%� 
 �� (33)H ! 1&�(���
 v à����
 �� � (34)

for � ��
 !^� � � � 
 and à ��
 !-à � � à 
 . Thedistributionof shapes
is determinedby thehalf-life, � , thevariance,T, andthespeed
of the particle, � . The expressionfor 
 shouldbe evaluated
at �Ç! � ����� , where � ���
� is real,positive, andsatisfiesthe cubic
equation �*) ��+¼ v ¸U13����� � �\��� v ¸ H �� ! � e (35)



If morethanonereal,positive root exists, thenthe root maxi-
mizing 
û1L	µ=c�gþ�� � is chosen.Finally, theextra factor � is

�#! ,--. � � ��/�����k �
0'+21 å43 ��5�687:9� v<; � �5�687�
e (36)
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