
Artificial Cells as Reified Quines

Lance R. Williams

Department of Computer Science
University of New Mexico, Albuquerque, NM 87131

Abstract

Cellular automata were initially conceived as a formal model
to study self-replicating systems. Although reproduction by
biological cells is characterized by exponential population in-
crease, no population of self-replicating machines modeled
as a cellular automaton has ever exhibited such rapid growth.
We believe this is due to the inability of cellular automata
to model bonded complexes of reified actors undergoing ran-
dom independent motion.

To address this limitation, we introduce a model of parallel
distributed spatial computation which is highly expressive,
indefinitely scalable, and asynchronous. We then use this
model to define two examples of self-replicating kinematic
automata. These machines assemble copies of themselves
from components supplied by diffusion and increase in num-
ber exponentially until the supply of components is depleted.
Because they are both programmable constructors and self-
descriptions, we call them reified quines.

Introduction
Much as Turing had done twenty years earlier when motivat-
ing his computing machine by first describing a notional hu-
man computer which computed with paper and pencil (Tur-
ing, 1936), von Neumann motivated his self-replicating ma-
chine by means of a thought experiment (Burks, 1970). von
Neumann’s machine assembled copies of itself from a set
of components undergoing random independent motion on
the surface of a lake. The components consisted of girders,
hands, muscles, sensors, switches (and, or and not gates),
and delays, together with tools for welding and cutting. von
Neumann ultimately concluded that the physics of his ma-
chine was too removed from reality to be interesting, while
unnecessarily complicating the study of the information pro-
cessing problems inherent in self-replication. Accordingly,
the bulk of his subsequent efforts were concerned with ab-
stract machines not physical machines, and the class of ab-
stract machine he adopted, cellular automata, has domi-
nated the field for the past fifty years.

Although self-replication by biological cells is character-
ized by exponential population increase, no population of
self-replicating machines modeled as a cellular automaton
has ever displayed such rapid growth. Indeed, populations

of the most fecund (Langton, 1984) grow only as a quadratic
function of time. We believe this is due to the inability of
cellular automata to model bonded complexes of reified ac-
tors undergoing random independent motion.

Random independent motion, or diffusion, plays a cru-
cial role in our work. First, as in von Neumann’s kinematic
model, components required for self-replication are supplied
by diffusion. Second, diffusion changes the length of bonds,
and vital operations must wait until bonds are of sufficient
length. Third, the products of self-replication are dispersed
by diffusion, which is essential for exponential population
growth because it prevents overcrowding.

Quines

Self-replicating machines can be divided into two types.
The Darwinian type contain a self-description (genotype)
and replicate by both copying it (yielding a copy of the
genotype) and decoding it (yielding a copy of the pheno-
type). In contrast, the Lamarckian type replicate by copy-
ing the phenotype directly. Computer worms are Lamarck-
ian, while quines (programs written in high-level languages
which print themselves) are Darwinian. Worms don’t need
a self-description because of the nearly unique capacity for
reflection possessed by machine language programs running
on digital computers with von Neumann architectures. Pro-
grams and data reside in the same memory; programs are
data. In contrast, most high-level programming languages
lack the capacity for reflection. It follows that quines, like
biological cells, must replicate by copying and decoding
self-descriptions.

Prior Work

The prior work with goals and approach most similar to our
own is that of Hutton (2007), who has developed an artificial
cell with a membrane in a 2D artificial chemistry. Hutton’s
cell consists of a membrane formed from a ring of 14 atoms
internally bisected by a string of 5 atoms which serves as a
partial genome. The membrane is permeable to unbonded
atoms but impermeable to bonded atoms. The entire struc-
ture is copied atom-by-atom, through the action of 39 reac-
tion rules which define a universal chemistry. Atoms are of

6 different types and can possess up to 62 states each. The
reaction rules have a very restricted form; both left and right
hand sides consist of a single pair of atoms (either bonded
or unbonded), and each in a specified state.

The most impressive aspect of Hutton’s work is the par-
tial genome. This is an arbitrary string of atoms which can
be used to encode any reaction rule. It is translated into a
bonded pair of atoms which functions as an enzyme. Be-
cause it is contained inside a membrane impermeable to
bonded atoms, it is hoarded by the cell for its exclusive use.
Although enzymes can (in principle) be used to replace any
of the reaction rules in the artificial chemistry (the single ex-
ception presumably being the rule governing the use of en-
zymes), this has only been demonstrated for a single reaction
rule and Hutton (2005) states that a genome 700 atoms long
(and a correspondingly larger membrane), would be needed
to replace the full set.

Actor Model

Biological cells are membranes made of lipids which con-
tain water, enzymes, and DNA. The DNA encodes the en-
zymes and the enzymes (in water) form metabolic pathways
which collectively: 1) copy the DNA; 2) translate the DNA
into enzymes; and 3) make the membrane grow and divide.
In our view, biochemistry is parallel distributed computa-
tion and enzymes are actors. Membranes don’t just con-
centrate and isolate enzymes, they define private absolute
address spaces. In effect, they permit the construction of
idiosyncratic biochemistries, defined by specific sets of en-
zymes, the descriptions of which are encoded by the cells’
own DNA.

The actor model is a model of parallel distributed com-
putation (Hewitt et al., 1973). An actor is a process which
possesses a unique absolute address. Using these addresses,
actors send and receive messages to and from other actors.
In response to receiving a message, actors can change state,
create new actors, and send new messages. Significantly,
and unlike cellular automata, computation in the actor model
is event-driven and asynchronous.

With respect to the goal of constructing reified quines, the
actor model has a number of shortcomings. First, because
of its use of absolute addresses, it is not indefinitely scal-
able; in an actual implementation, the average time required
to deliver a message increases as the number of actors in-
creases. Second, there is no satisfactory method to generate
guaranteed unique addresses in a parallel distributed man-
ner. Third, and most significantly, the actor model is not
reified–actors exist in an abstract space, not in a space which
is isomorphic to physical space.

Reified Actor Model

Although as originally conceived, actor models are not rei-
fied, it is possible to create a reified actor model or movable
feast (Ackley and Cannon, 2011). In a movable feast, all

actors have unique positions on a 2D grid. Actors possess
a finite number of states and can sense and change the posi-
tions and states of actors in their n×n neighborhoods. Sig-
nificantly, actors can create bonds with other actors in their
n×n neighborhoods. Bonds are relative addresses which are
short, symmetric, and automatically updated as actors un-
dergo random independent motion (restricted by the lengths
of bonds).

The set of actors reachable through a sequence of bonds of
length less than or equal to k comprise an actor’s bond graph
k-neighborhood. Actors can sense and change the positions
and states of actors in their bond graph k-neighborhoods.

Like conventional actor models, computations in a mov-
able feast are event-driven and asynchronous. Unlike con-
ventional actor models, movable feast computations are
based on the application of graph rewrite rules possessed by
individual actors to the actors’ bond graph k-neighborhoods.
Sets of related graph rewrite rules are grouped into behav-
iors, which are indivisible and conferred as units. Actors
can possess multiple behaviors but can denote at most one
behavior. Significantly, an actor can confer the behavior
it denotes on other actors through bonds. The distinction
between possessing and denoting mirrors the phenotype-
genotype distinction in biological cells and the program-data
dichotomy in quines.

The update scheme in the movable feast consists of pick-
ing an actor at random, picking a behavior possessed by
that actor at random, and applying the first graph rewrite
rule with a pattern matching the actor’s bond graph k-
neighborhood.

Kinematic Automata
The vertices of a bond graph are actors and the edges are
bonds; both actors and bonds can be of one or more types.
Because they are reified, actors have unique positions on a
2D grid. In homage to von Neumann, we define a kinematic
automaton (KA) to be a set of reified actors possessing type
specific behaviors assembled in a bond graph.

A description of a KA consists of a bond graph and a
behavior graph. The behavior graph represents the relation
between the set of types and the set of behaviors, i.e., the be-
havior relation. Actors are finite state machines with transi-
tion functions defined by the behaviors they possess (Fig. 1).
It follows that a KA is an asynchronous network of commu-
nicating finite state machines (Brand and Zafiropulo, 1983);
the set of behaviors possessed by its actors define a graph
rewriting system (Klavins et al., 2004) which transforms the
embedding and topology of the network over time.

A programmable constructor for a class of KA’s is a KA
which takes a description of a KA in the class and builds it.
Example classes are reified-strings and reified-sets. A pro-
grammable constructor may (or may not) be in the class it
builds. A self-description is a KA where the bond graph rep-
resents the behavior graph using an encoding scheme; it is

leaving

inserting

un
lo

ck
ed

default

H

P

P

P P

H
L

D

D D

L

D

D

gone

splicing

ready

going

R

R, CU

Z

K

K

K

K

U

C

K

K

Figure 1: State transition diagrams for actors in reified-
string (left) and reified-set (right) quines. Letters denote be-
haviors mediating state transitions. Green sticks mark states
where the actor possesses a hand bond.

this use of dual meaning which resolves the seeming para-
dox of self-description–how can a thing contain a descrip-
tion of itself?

Reified-String Quine
A reified-string is a KA consisting of a chain of reified ac-
tors linked by bonds. Apart from the head (tail) each ac-
tor in the reified-string has a unique predecessor (succes-
sor) to which it is bonded by a prev bond (next bond).
A behavior graph can be represented using an adjacency
list representation which in turn can be represented as a
string. For example, let H, D, P, and L be types denot-
ing behaviors and let # be a punctuation type, then Q =
#HDP#DDP#PDP##HDP#LDPLL is a reified-string self-
description where actors of all types possess behaviors D
and P while actors of type # also possess behavior H and ac-
tors of type L also possess behavior L (the repeated L marks
the end of the string). A reified-string self-description which
is also a programmable constructor for the class of reified-
strings is a reified-string quine.

Behaviors

To build a reified-string quine we must define a set of graph
rewrite rules which when grouped into behaviors H, D, P,
and L yield a Q which is a programmable constructor for
reified-strings:

H – initiates decoding phase using tip
D – copies string using grab, insert and transport
P – confers type specific behaviors by decoding string us-
ing key, lock, unlock and confer
L – initiates copying phase, assembles daughter, and ef-
fects fission using cleave.

The reified-string quine copies itself in two phases. During
the copying phase, the bond graph is copied actor-by-actor.
During the decoding phase, the adjacency list representation

X

hand

XXX

{ D }

Figure 2: Grab graph rewrite rule. An actor in the grabbing
state possessing behavior D and denoting behavior X forms
a hand bond with an unbonded actor denoting the same be-
havior in its n×n neighborhood. It then enters the inserting
state.

of the behavior graph is decoded, conferring the behaviors
specific to each type on the copies.

Copying

Copying begins at the tail of the reified-string and advances
towards the head. Grab and insert rewrite rules from behav-
ior D cause each actor to

• form a hand bond to an unbonded actor of matching type
in its n×n neighborhood (Fig. 2)

• set that actor’s state to leaving
• insert it into the reified-string nearer the head (Fig. 3).

In effect, the hand advances towards the head as each actor
in the mother cycles through the default, grabbing and in-
serting states. Meanwhile, the transport graph rewrite rule
from behavior D swaps actors in the default state with actors
nearer the tail in the leaving state, an action which quickly
moves them to the head. At the completion of the copying
phase, the copied actors (which will eventually comprise the
daughter) form a reversed chain in the leaving state attached
to the mother’s head.

Decoding

The tip graph rewrite rule from behavior H (possessed only
by actors of type #) recognizes when the head actor has
been copied and begins the decoding phase, implemented
by graph rewrite rules from behavior P. In the decoding
phase, the reified-string is interpreted as an adjacency list
representation of the behavior graph. This is accomplished
as the copied actors traverse the mother a second time (in
the reverse direction). During this traversal, each actor has
its type specific behaviors conferred on it. The key rewrite
rule causes actors denoting behaviors adjacent to actors of
type # to enter the key state. Actors in the key state unlock
adjacent actors of matching type in the locked state while

X

Y

X

{ D }

head

X

X

Y

Figure 3: Insert graph rewrite rule. An actor in the inserting
state possessing behavior D waits until its prev bond is of
maximum length. It then inserts the actor at the end of its
hand into the reified-string by bisecting the prev bond and
enters the default state. The inserted actor’s state is changed
to leaving and the state of the actor previously at the end of
the prev bond (and nearer the head) is changed to grabbing.

Ytail

X

X

Y

{ P }

{ Y }

{ }

Figure 4: Confer graph rewrite rule. An actor in the default
state possessing behavior P and denoting behavior Y con-
fers behavior Y on the actor nearer the head when that actor
is in the unlocked state. It then exchanges position with it,
moving it towards the tail.

actors in the default state confer the behaviors they denote
on adjacent unlocked actors (Fig. 4). Finally, actors in both
locked and unlocked states are moved towards the tail.

The daughter’s actors, now possessing their full comple-
ment of behaviors, are assembled into a complete reified-
string at the end of a hand bond at the mother’s tail by graph
rewrite rules from the L behavior. When an actor in the last
state sees two others denoting the same behavior as itself
at the end of its hand, it sets both its own state and that of
the nearer of the two to grabbing and deletes its hand (Fig.
5). This separates mother and daughter reified-strings and
initiates the process of self-replication in each.

Reified-Set Quine

In the reified-string quine, the behavior graph was encoded
using an adjacency list representation, which is capable of
representing arbitrary graphs. However, the reified-string
quine’s behavior graph was far from general–two behaviors

L

L

L

L

L

{ L }
mother
 tail

L

L

daughter
 tail

L

Figure 5: Cleave graph rewrite rule. When an actor in the
last state sees two others denoting the same behavior as itself
at the end of its hand, it sets both its own state and that of
the nearer of the two to grabbing and deletes its hand.

Figure 6: Reified-string quine with hand bond (drawn green)
in the middle of the copy phase. Letters indicate actor type
and colors indicate actor state.

(D and P) were possessed by all actors while the remaining
behaviors (H and L) were possessed by only a single ac-
tor each. If we restrict ourselves to behavior relations com-
prised solely of generic behaviors and specialized behaviors,
a more compact encoding scheme can be used.

A reified-set is a KA consisting of a ring of reified actors
linked by prev and next bonds. A reified-set self-description
which is also a programmable constructor for the class of
reified-sets is a reified-set quine.

Reified-set quines have one great advantage when com-
pared to reified-string quines, namely, the order of the actors
in the ring is unimportant. More precisely, there is an equiv-
alence class of bond graphs which encode a given behavior
relation. Because actors can swap positions without chang-
ing the encoded behavior relation, they can possess a behav-
ior which continually mixes their positions in the ring, en-
suring that any two actors will eventually be adjacent. This

A BX X

{ A , B }{ A }
{ K }

B A

Figure 7: Shape graph rewrite rule. An actor in the shaping
state possessing behavior K, when adjacent to its continua-
tion, confers the behavior denoted by its continuation on the
actor at the end of its hand. It then exchanges position with
its continuation and leaves it in the shaping state.

permits a much more expressive form of parallel distributed
computation than was possible with the reified-string. In-
deed, if each actor in the reified-set possesses a unique ad-
dress and a unique continuation then the reified-set can ex-
ecute sequential programs which perform one operation for
every actor. In our work, an actor’s address is just the name
of the behavior it denotes and its continuation is the name
of another behavior. In effect, the reified-set, implemented
within a reified actor model using relative addressing, can
simulate a conventional non-reified actor model with a small
absolute address space.

Behaviors

Let X denote a generic behavior and X denote a special-
ized behavior then Z = {C,K,U,S,N,R,M,Z} is a reified-
set quine with the following behaviors:

C – create daughter pinch
K – find matching actor, confer type specific behaviors
using shape, then splice it into the reified-set
U – seek continuation
S – swap positions with adjacent actor
N – nothing
R – ratchet actors past pinch bonds
M – minimize bending energy (Williams and Shah, 1992)
Z – fission.

While the reified-string quine copied itself in two consecu-
tive phases, the reified-set quine copies itself using processes
called copy-decode, export, and verify running concurrently
in mother and daughter subrings.

Copy-decode

Copy-decode is implemented by graph rewrite rules from
behaviors K and U . It is a sequential program of sixty four

C C

{ C }

daughter pinch

Figure 8: Create graph rewrite rule. An actor possessing
and denoting behavior C, in the going state, when adjacent
to another actor in the same state, forms a pinch bond with
the adjacent actor and enters the checking state (initiating
the verify program in the daughter subring). The state of the
adjacent actor is set to ready.

B

B

A mother pinch A

{ R }

next

Figure 9: Ratchet graph rewrite rule. When at the front end
of the mother’s pinch bond, and adjacent to an actor in the
going state, an actor with behavior R waits until its next bond
is of maximum length. It then moves the adjacent actor past
the pinch bond by bisecting the next bond, leaving the ex-
ported actor in the gone state.

steps which runs in the mother subring and is comprised of
two nested loops–the outer loop copies the bond graph and
the inner loop decodes the set representation of the behavior
graph. Both loops iterate over the eight actors in the reified-
set. The outer loop begins when an actor in the finding state:

• forms a hand bond to an unbonded actor of matching type
in its n×n neighborhood

• gives the daughter actor the name of its continuation (it
will be the name of the daughter actor’s also)

• enters the shaping state.

An actor in the shaping state waits for its continuation to be
adjacent. When this happens, the actor:

• confers the behavior denoted by its continuation on the
daughter actor at the end of its hand (Fig. 7)

• swaps positions with its continuation (leaving it in the
shaping state)

• enters the pending state.

Z

Z

{ Z }

mother pinch

Z

Z

daughter pinch

Figure 10: Fission graph rewrite rule. An actor possessing
and denoting the behavior Z, when in the fission state and
located at either end of a pinch bond, looks for a second
actor in the fission state in its bond graph k neighborhood
in the other subring. If one exists, the prev and next bonds
joining mother and daughter are rerouted so they coincide
with the mother and daughter pinch bonds; the actors in the
fission state enter the seeking state.

This begins the next iteration of the inner loop. The inner
loop continues until an actor in the shaping state finds itself
adjacent to its pending continuation. When this happens,
the inner loop exits and the actor enters the splicing state.
An actor in the splicing state waits until its next bond is of
maximum length. When this happens, the actor:

• inserts the actor at the end of its hand into the reified-set
by bisecting the next bond (leaving it in the going state)

• enters the seeking state.

This begins the next iteration of the outer loop. When an
actor in the seeking state possessing and denoting behavior
Z finds itself adjacent to its pending continuation the copy
program has finished, and the actor enters the fission state.
It remains in the fission state until the verify process (running
in the daughter subring) also completes.

Export

Export is implemented by a set of graph rewrite rules from
behaviors S, R and C which run concurrently with copy-
decode and verify in both mother and daughter subrings. The
swap graph rewrite rule swaps actors in the ready state with
actors in posterior positions; a second rule portages actors
around actors with hand bonds. These rules serve two pur-
poses. First, they continually mix the positions of the actors
in both the mother and daughter subrings, ensuring that any
two actors in the same subring will eventually be adjacent.
This is necessary for the copy-decode and verify programs to
make progress. Second, they cause actors in the going state
in the mother subring to move towards the gate formed by
the mother and daughter pinch bonds–bonds created by the
single rewrite rule in behavior C (Fig. 8).

Graph rewrite rules from behavior R control a gate formed
by a pair of parallel pinch bonds which separate the mother
and daughter subrings. Another graph rewrite rule swaps

pairs of actors joined by pinch bonds. This routes actors in
the subrings across the pinches, effectively short-circuiting
the mother and daughter subrings and ensuring that the
mother’s and daughter’s actors cannot mix. Indeed, the only
actors which can get past the mother’s pinch bond are actors
in the going state and they can only pass in one direction.
The actor at the front end of the mother’s pinch bond, when
adjacent to an actor in the going state, waits until its next
bond is of maximum length. It then moves the adjacent ac-
tor past the pinch bond by bisecting the next bond, leaving
the exported actor in the gone state (Fig 9). Another graph
rewrite rule performs a similar operation at the back end of
the daughter’s pinch bond, leaving the imported actor in the
ready state.

Verify

Verify ensures that the daughter has received the full com-
plement of actors before fission occurs. It is implemented
by graph rewrite rules grouped in behaviors U and Z. One
might think that fission could occur as soon as the actor
which is copied last is imported into the daughter subring.
However, because of the asynchronous nature of the export
process, there is no guarantee that the last actor copied will
be the last one imported. In fact, import order inversions are
common. For this reason, a simple eight step program (one
for each actor in the reified-set) is run in the daughter sub-
ring to verify that the full complement has been imported.

An actor in the checking state in the daughter subring
waits until it finds itself adjacent to its continuation. When
this happens, it enters the ready state and sets the state of
its continuation to checking. The one exception is the actor
representing the behavior Z–this actor is copied last and does
not seek its continuation but enters the fission state instead.

An actor possessing the behavior Z, when in the fission
state and located at either end of a pinch bond, looks for a
second actor in the fission state in its bond graph k neigh-
borhood in the other subring. If one exists, the prev and next
bonds joining mother and daughter are rerouted so that they
overlap the pinch bonds; the actors in the fission state en-
ter the seeking state, initiating the copy-decode program in
mother and daughter, now separate (Fig. 10).

Discussion

In the introduction, an analogy was made between enzymes
and actors, and it was suggested that the primary computa-
tional function of a cell’s membrane is to create an address
space within which actors can send and receive messages
without interference from the actors of other cells. The anal-
ogy is compelling. However, we have deliberately avoided
calling the movable feast an artificial chemistry. One reason
for not doing so is that we are trying to achieve with dozens
of actors what is accomplished in a biological cell by bil-
lions of enzymes. If we are to succeed then we cannot be
too literal in our imitation of the biological cell; our goal

should be to build an airplane not a bird.

Communication

Hutton (2007) states that the primary obstacle to construct-
ing an artificial cell with a complete set of enzymes of the
sort he has described is the unwieldiness of the vastly larger
genome and membrane such a cell would require. However,
a more fundamental obstacle may be the difficulty of ensur-
ing communication between enzymes and locations where
reactions need to be catalyzed.

Do the enzymes of an artificial cell need to be confined
within a 2D space bounded by a 1D membrane? Or can they
comprise the membrane itself? Both approaches isolate a
cell’s enzymes from those of other cells. The second has the
advantage that a simple mixing behavior guarantees com-
munication between enzymes and locations where reactions
need to be catalyzed.

Modularity

All quines are grounded in terms defined externally in the
host programming language. A programming language can
have terms which are elementary and general (like Lego
bricks) or complex and highly specialized (like stereo com-
ponents). The terms can have uniform interfaces (like USB
devices) or interfaces which limit reuse (like the pieces of a
jigsaw puzzle).

The terms comprising the genome of the reified-set quine
are behaviors defined outside the quine itself. A crude upper
bound on the number of reifed-set quine genomes would be
2B where B is the number of behaviors. Of course B can be
made arbitarily large initially, but wholly new behaviors can-
not evolve; evolution is limited to discovering viable combi-
nations of pre-existing behaviors.

Do these exist? Are there viable and interestingly differ-
ent reified-set quines near Z in genome space? In partial an-
swer to this question, we have constructed two additional ex-
amples of reified-set quines which use very different strate-
gies to ensure that the daughter cell has received its full com-
plement of actors. The first, X , accomplishes this by running
a second instance of copy-decode inside the daughter sub-
ring instead of verify. In effect, the daughter demonstrates
its viability by constructing the granddaughter. The second,
Y , uses a modified copy-decode program which waits until it
sees the most recently copied actor in the daughter subring
(through the pinches) before it continues.

All three reified-set quines share behaviors K, S, R and
M while two (X and Z) also share U . This demonstrates
that behaviors can possess a degree of modularity and po-
tential for reuse and can be mixed and matched meaning-
fully. While the three reified-set quines were designed and
did not evolve, the fact that they exist suggests that a future
system more like Hutton (2007), with a genome containing
reified descriptions of graph rewrite rules subject to muta-
tion, would explore a genome landscape populated by viable

Figure 11: Six reified-set quines. Letters indicate actor type
and colors indicate actor state. In the mother subring of
the topmost quine, the copy-decode program has completed,
while the verify program is still running in the daughter sub-
ring. Hand and pinch bonds are drawn green and red.

Figure 12: Exponential growth of non-competing popula-
tions of reified-string quines, Q, and reified-set quines, Z.

and interestingly different artificial cells.

Experimental Results

In each of the three experiments, approximately 11000 un-
bonded actors were randomly placed on a grid of size
512× 512 to achieve a 4% area density. Except for pairs
joined by prev or next bonds, actors were excluded from
5× 5 neighborhoods surrounding other actors. The maxi-
mum bond length equaled 4, the diffusion constant equaled
0.5, and search neighborhoods were of size 11×11.

In the first experiment, the unbonded actors were of types
comprising the genomes of the Q reified-string quine and
the Z reified-set quine. The proportion of each type matched
that of the two genomes. A single reified-string quine and
a single reified-set quine were then placed in the grid, after
which, populations of both increased exponentially, in the

Figure 13: Exponential growth of three non-competing pop-
ulations of reified-set quines. Z is the quine described at
length in this paper while X and Y use alternative strategies
to verify that the daughter has received its full complement
of actors.

Figure 14: Three populations of reified-set quines compete
for a shared resource, the K behavior. The Z quine outcom-
petes the X and Y quines.

process converting essentially all unbonded actors into ap-
proximately 300 copies of each quine (Fig. 12).

In the second experiment, the unbonded actors were of
types comprising the genomes of the X , Y , and Z reified-
set quines. As before, the proportions of each type matched
those of the genomes; types common to all three, e.g., K,
were three times as numerous as unique types, e.g., U . Sin-
gle X , Y , Z reified-set quines were then placed in the grid.
Populations of all three increased exponentially, yielding
424 copies of the Z quine, 345 copies of the Y quine, and
233 copies of the X quine (Fig. 13). The differences in
these numbers can be attributed to the fact that (after all
unbonded actors have been consumed) the final population
consists of a mixture of individuals at various points in the
self-replication process and which therefore exhibit a range
of sizes. The Z quine is the most efficient at converting un-
bonded actors into copies of itself while the X quine is the
least. This is presumably due to the fact that the X quine

requires its daughters to demonstrate their viability by con-
structing grandaughters. Consequently, the average size of
X quine intances is significantly larger than the average size
of Y or Z quine instances.

The conditions of the third experiment were nearly iden-
tical to those of the second except that the number of un-
bonded actors of type K (common to all three genomes),
was reduced by a factor of three. Consequently, populations
of X , Y , and Z quines were forced to compete for the under-
represented shared resource. The winner of the competition
was the Z quine, which succeeded in constructing nearly 400
complete individuals, while the X and Y quines succeeeded
in constructing less than 50 each (Fig. 14).

Conclusion
A highly expressive, indefinitely scalable, and asynchronous
model of parallel distributed spatial computation has been
introduced and used to define a series of self-replicating
kinematic automata. These machines assemble copies of
themselves from components supplied by diffusion and in-
crease in number exponentially until the supply of compo-
nents is depleted. Because they are both programmable con-
structors and self-descriptions, we call them reified quines.

Acknowledgements
Thanks to Dave Ackley for many helpful conversations.

References
Ackley, D. H. and Cannon, D. C. (2011). Pursue robust indefinite

scalability. In Proc. HotOS XIII, Napa Valley, CA, USA.

Brand, D. and Zafiropulo, P. (1983). On communicating finite-state
machines. J. ACM, 30:323–342.

Burks, A. (1970). von Neumann’s self-reproducing automata. In
Burks, A., editor, Essays on Cellular Automata, pages 3–64.
University of Illinois Press.

Hewitt, C., Bishop, P., and Steiger, R. (1973). A universal modular
actor formalism for artificial intelligence. In IJCAI, pages
235–245.

Hutton, T. J. (2005). Replicators that make all their own rules. In
Proc. Workshop on Artif. Chem. and Its App., 8th European
Conf. on Artif. Life.

Hutton, T. J. (2007). Evolvable self-reproducing cells in a two-
dimensional artificial chemistry. Artif. Life, 13:11–30.

Klavins, E., Ghrist, R., and Lipsky, D. (2004). Graph grammars for
self assembling robotic systems. In IEEE Conf. on Robotics
and Automation.

Langton, C. (1984). Self-reproduction in cellular automata. Phys-
ica D, 10:135–144.

Turing, A. (1936). On computable numbers, with an applica-
tion to the Entscheidung problem. Proc. London Math. Soc.,
2(42):230–265.

Williams, D. and Shah, M. (1992). A fast algorithm for active con-
tours and curvature estimation. CVGIP: Image Understand-
ing, 55(1):14–26.

