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A Comparison of Measures for Detecting Natural Shapes
in Cluttered Backgrounds
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Abstract. We propose a new measure of perceptual saliency and quantitatively compare its ability to detect natural
shapes in cluttered backgrounds to five previously proposed measures. As defined in the new measure, the saliency
of an edge is the fraction of closed random walks which contain that edge. The transition-probability matrix defining
the random walk between edges is based on a distribution of natural shapes modeled by a stochastic motion. Each
of the saliency measures in our comparison is a function of a set of affinity values assigned to pairs of edges. Although
the authors of each measure define the affinity between a pair of edges somewhat differently, all incorporate the
Gestalt principles of good-continuation and proximity in some form. In order to make the comparison meaningful,
we use a single definition of affinity and focus instead on the performance of the different functions for combining
affinity values. The primary performance criterion is accuracy. We compute false-positive rates in classifying edges
as signal or noise for a large set of test figures. In almost every case, the new measure significantly outperforms
previous measures.
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1. Introduction

The goal of segmentation is to partition a set of image
measurements (e.g., edges) into equivalence classes
corresponding to distinct objects. In this paper, we con-
sider a somewhat simpler grouping problem which (fol-
lowing Shashua and Ullman, 1988) we call thesaliency
problem.The goal of the saliency problem is to assign
a value to each edge which is correlated with whether
that edge belongs to a shape or is background noise.
Given the distribution of saliency values, it is then of-
ten possible to choose a threshold which will segment
the edges into shape and noise classes.

Each of the saliency measures proposed in the liter-
ature is a function of a set of affinity values assigned to
pairs of edges. Although the authors of each measure

∗This paper describes research performed while the first author was
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define the affinity between a pair of edges somewhat
differently, all incorporate the Gestalt principles of
good-continuation and proximity in some form. A
saliency functionmaps the set of affinities between
all pairs of oriented or directed edges (i.e., theaffinity
matrix) to a saliency vector. In this paper, we have
chosen to compare the definitions of saliency—not affi-
nity. The differences in the authors’ definitions of affin-
ity prevents a direct comparison since each requires its
own set of parameters. The choice was either to (1)
optimize the performance of each measure over its
required parameters and compare the different mea-
sures with each using its optimal parameter setting; or
(2) replace the individual affinity functions with a sin-
gle function and compare performance using a single
parameter setting. Apart from requiring an impracti-
cal amount of work, the first approach has the disad-
vantage of confounding the definitions of affinity and
saliency so that the relative merits of each are difficult to
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disentangle. The shortcoming of the second approach
(which is the one we adopted) is that while provid-
ing the best comparison of the saliency functions, it
says nothing about the relative merits of the affinity
functions. Although unlikely, it also ignores possible
dependencies between the specific affinity and saliency
functions used in a given measure.

The affinity functions can be divided into three
classes. Functions in the first class are based on co-
circularity (Guy and Medioni, 1996; H´erault and
Horaud, 1993; Parent and Zucker, 1989; Ullman,
1976). The disadvantage of these functions is that
they are non-generic—a circle does not have sufficient
degrees of freedom to smoothly join two arbitrary
positions and orientations in the plane. They are also
difficult to motivate using arguments based on the
statistics of natural shapes. Functions in the second
class are based on curves of least energy (Horn, 1981;
Shashua and Ullman, 1988). The affinity between
two directed edges is inversely related to the energy,∫
0

ds(ακ2(s)+β), in the curve of least energy join-
ing the two edges. Functions in the third class are based
on an explicit prior probability distribution of natu-
ral shapes modeled by a stochastic motion (Mumford,
1994; Thornber and Williams, 1996; Williams and
Jacobs, 1997). A particle travels with constant speed
in the directionθ(t). Change in direction is a normally
distributed random variable with zero mean. Conse-
quently, θ(t) is a Brownian motion. The variance of
the random variable reflects the prior expectation of
smoothness. In addition, a constant fraction of particles
decay per unit time. The half-life reflects the prior ex-
pectation of shortness. The affinity between two edges,
i and j , is defined as the sum of the probabilities over
all paths joining the two edges, i.e.,P′( j | i ). Curves
of least energy and stochastic motions are closely re-
lated. In fact, it is possible to show that the energy
of the curve of least energy is a linear function of the
log-likelihood of the maximum likelihood stochastic
motion (Mumford, 1994; Williams and Jacobs, 1997).
It follows that the functionP′( j | i )behaves very simi-
liarly to exp[−∫

0
dt (ακ2(t) + β)] when0 is a curve

of least energy. This is because the probability associ-
ated with0 (and curves of similiar shape) dominates
the probabilities summed over all paths.

To facilitate the exposition, we will introduce a sin-
gle nomenclature for describing all of the saliency
measures. One of the major differences between the
measures is whether they are formulated using orienta-
tions or directions. Every edge has a single orientation

Figure 1. Every edge has a singleorientationand two distinctdi-
rections. Its orientation,θ , is an angular quantity in the range, 0 toπ .
Its directions areθ andθ +π . Left: A vector,y, with n components,
can be used to associate a single value,yi , with each ofn edges.
Right: A vector,x, of length 2n, can be used to associate two values,
xi andx ī , with each ofn edges. These values correspond to the two
distinct directions.

Figure 2. The vectors,x andx̄, are identical except for a permuta-
tion which exchanges the values associated with opposite directions.
That is,xi = x̄ ī andxī = x̄i .

and two distinct directions. Its orientation,θ , is an
angular quantity in the range, 0 toπ . Its directions
are θ and θ + π . We will usex to represent a vec-
tor of values associated with edge directions andy to
represent a vector of values associated with edge ori-
entations. If a stimulus containsn edge segments then
the vector,x, has 2n components while the vector,y,
hasn components (see Fig. 1). The vectorsx andx̄ are
identical except for a permutation which exchanges the
values associated with opposite directions, i.e.,xi = x̄ ī
andx ī = x̄i . For example, ifxi is a value associated
with an edge of direction,θ , thenx̄i is a value associ-
ated with the same edge, but in the opposite direction,
θ +π (see Fig. 2).

All of the saliency measures in our comparison asso-
ciate an affinity value with a pair of oriented or directed
edges. We will use then× n matrixA to represent the
affinities between all pairs of oriented edges and the
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Figure 3. Left: Then×nmatrixA can be used to represent the affin-
ity values between all pairs of oriented edges. Right: The 2n× 2n
matrix,P, is needed to represent the affinity values between all pairs
of directed edges. While the affinity oriented edgei has for j equals
the affinity that oriented edgej has fori , this does not (generally)
hold for directed edges. Basically,Ai j = Aji (i.e., A = AT ) but
in general,Pi j 6= Pji . Although not symmetric,P exhibits another
kind of symmetry. If we use the subscriptī to denote the oppo-
site direction toi then Pi j = Pj̄ ī and Pji = P̄i j̄ . This is termed
time-reversalsymmetry.

2n×2nmatrixPto represent the affinity values between
all pairs of directed edges (see Fig. 3). An important
distinction between saliency measures based on orien-
tation and those based on direction involves the symme-
try (or non-symmetry) of the affinity matrices. While
the affinity oriented edgei has for j equals the affinity
that oriented edgej has fori , this does not (generally)
hold for directed edges. Basically,Ai j = Aji (i.e.,
A = AT) but in general,Pi j 6= Pji .

Although not symmetric,P exhibits another kind of
symmetry. If we use the subscriptī to denote the op-
posite direction toi then Pi j = Pj̄ ī and Pji = P̄i j̄ .

This is termedtime-reversalsymmetry. For the pur-
poses of our comparison, we will defineAi j to be
max(Pi j , P̄i j , Pi j̄ , P̄i j̄ ), that is, the affinity between
two orientations is defined to be the maximum of the
affinities among all combinations of directions.

2. Saliency Measures

In the following section, we provide short synopses of
the saliency measures used in the comparison.

2.1. Shashua and Ullman (SU)

Shashua and Ullman (1988) were the first to use the
term saliency in the sense that it is being used in this
paper. Building on earlier work by Montanari (1971),
they described a saliency measure which could be

computed by a local parallel network.1 Using our
nomenclature, the saliency of a network element (one
for each position and direction) at timet + 1 is related
to the saliencies of neighboring elements at timet by
the following update equation:

x(t+1)
i = 1+max

j
Pi j x

(t)
j

Recently, Alter and Basri (1996) have done an ex-
tensive analysis of Shashua and Ullman’s method and
give expressions for the saliency measure for the case
of continuous curves.2 The saliency of a directed edgei
equals the maximum of the saliencies of all continuous
curves,0, which begin at that edge:

8(i ) = max
0∈C(i )

8(0)

The saliency of a continuous curve,0, is given by the
following expression:

8(0) =
∫ sn

s1

dsσ(s) · ρ
∫ s

s1
dt (1−σ(t)) · e−

∫ s
s1

dt κ2(t)

whereσ(.) is an indicator function which equals one
where the curve lies on an edge element (and equals
zero elsewhere),ρ is a parameter in the interval [0, 1)
which controls the rate of convergence, andκ2(.) is the
square of the curvature. The overall effect is that the
Shashua-Ullman measure favors long smooth curves
containing only a few short gaps. For the special case
of a curve threading a sequence ofn edges of negligible
length, we have the following simplification:

8(0) =
n∑

i=1

e−
∫ si

s1
dt (κ2(t)−ln ρ)

We observe that the first two terms of this series will
dominate all subsequent terms unless the radius of cur-
vature is large and the curve is densely sampled.3 Con-
sequently, for visual patterns consisting of a sparsely
sampled curve in a background of noise, the Shashua
and Ullman measure becomes local and greedy. We
will see that this seriously limits its performance on
such patterns in the presence of correlated noise.

2.2. H́erault and Horaud (HH)

Hérault and Horaud (1993) cast the problem of seg-
menting a set of oriented edges into figure and ground
as a quadratic programming problem which is solved by
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simulated annealing. The objective function consists
of two terms,−Esaliency− Econstraint:

min
y

(
−1

2
yTHy − bTy

)
for y ∈ {−1,+1}n

whereHi j = Ai j − α andbi =
∑

j (Ai j − α). The
affinity function used by H´erault and Horaud is based
on co-circularity, smoothness and proximity. H´erault
and Horaud say only thatα is a parameter related to the
signal-to-noise ratio but do not say how it is chosen or
provide the value they used in their experiments. Ex-
perimentally, we have found that their method is very
sensitive to the choice of this parameter. Ifα is too
large, the solution consists of all−1’s (i.e., all ground)
while if it is too small it consists of all+1’s (i.e., all
figure). Determining the proper value ofα makes the
job of fairly comparing Hérault-Horaud with measures
lacking a comparable parameter difficult. Therefore
(for the comparison) we decided to maximizeEsaliency

over 0–1 solution vectors with exactlym components
equal to 1:

max
y

yTAy for y ∈ {0, 1}n andyTy = m

wherem is the number of figure edges andn is the total
number of edges. Although in a real application, we
would generally not know the value ofm, we do know
this value for all of our test patterns. For this reason,
the modified problem should provide a lower bound
on the false-positive rate for the H´erault-Horaud mea-
sure.

2.3. Sarkar and Boyer (SB)

Sarkar and Boyer (1996) describe a saliency measure
and apply it to the problem of distinguishing developed
and undeveloped land in aerial images. Although this
is a somewhat different application than the one con-
sidered in this paper, the similarity between Sarkar and
Boyer’s computation and our own makes a compari-
son worthwhile. In addition to good-continuation and
proximity, Sarkar and Boyer’s affinity function incor-
porates pairwise measures useful for detecting clusters
of buildings such as parallelism and perpendicularity.
The affinity function we used in the comparison is the
same one we used with the other methods (i.e., equiva-
lent to only a subset of the relations proposed by Sarkar
and Boyer). Given an affinity matrix,A, Sarkar and
Boyer propose that the saliency vector,y, maximizes

the Raleigh Quotient:

yTAy
yTy

WhenA is symmetric, the Raleigh Quotient is maxi-
mized by the eigenvector,y, associated with the largest
positive real eigenvalue ofA:

λy = Ay

This measure can also be optimized using the following
recurrence equation:

y(t+1)
i =

∑
j Ai j y(t)j∑

j

∑
k Ajk y(t)k

which has been independently proposed as a saliency
computation by Yen and Finkel (1996) and by Perona
and Freeman (1998). From linear algebra, we know
that the vectory will converge to the eigenvector as-
sociated with the largest positive real eigenvalue ofA.
Viewed this way, we see thatA is being used as a lin-
ear relaxation labeling operator and that maximizing
the Raleigh Quotient is equivalent to solving a linear
relaxation labeling problem as defined by Rosenfeld,
Hummel and Zucker (1976).

2.4. Guy and Medioni (GM)

Guy and Medioni (1996) describe a saliency compu-
tation which involves the summation of vector voting
patterns based on co-circularity and proximity. The
distribution of votes which accumulate at a point in the
plane is represented by its 2× 2 covariance matrix.
The predominant orientation at a point is determined
by the eigenvector of the covariance matrix with largest
eigenvalue. Neglecting the clever device of represent-
ing the vote distributions by their covariance matrices,
it is possible to interpret Guy and Medioni’s voting
patterns as representing the correlation between orien-
tations at different locations in the image plane. In our
nomenclature, the saliency at an edge would be the sum
of the voting patterns due to all other edges:

yi =
∑

j

Ai j

which is essentially one iteration of linear relaxation la-
beling using the operatorA and a constant input vector.
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2.5. Williams and Jacobs (WJ)

Williams and Jacobs (1997) describe a method for com-
puting a representation of illusory contours and oc-
cluded surface boundaries which they call astochastic
completion field. The magnitude of the stochastic com-
pletion field at(u, v, φ) is the probability that a particle
following a stochastic motion (representing the prior
distribution of boundary completion shapes) will pass
through(u, v, φ) on a path joining two boundary frag-
ments. Although not portrayed as a saliency measure,
it is easy and natural to use this method to compute
saliency. The saliency of an edge is defined to be the
probability that a particle following a stochastic motion
will pass through that edge on a path joining two others.
The saliency vector is given by the (component-wise)
product ofx andx̄ where each component ofx is:

xi =
∑

j

Pi j

The value ofxi is the probability that a particle will
reach directed edgei from some other edgej . The
saliency ofi is justxi multiplied by x̄i (i.e., the proba-
bility that a particle will reach the same edge but with
opposite direction). From time-reversal symmetry, we
see that this equals the probability that a particle start-
ing at any edge will pass through edgei and eventually
reach another edge.4

3. A New Measure (WT)

We define the salience of an edge to be the relative
number of closed random walks which visit that edge.
By random walk, we mean a sequence of edges visited
by a particle with edge-to-edge transition probabili-
ties given by the matrix,P. By closed random walk,
we mean a random walk which begins and ends at the
same edge. Although it is important to distinguish be-
tween (1) random walks; and (2) the paths in the plane
followed by a particle whenθ(t) is a Brownian mo-
tion, these two notions are intimately related. This is
because the probability that a particle located at edge
i at time-stept will be at edge j at time-stept + 1
is defined to be the sum over the probabilities of all
paths betweeni and j , i.e., Pj i ≡ P′( j | i ). It follows
that the distribution of random walks of lengtht + 1
is related to the distribution of random walks of length
t through multiplication by the matrix,P. If x(t)i rep-
resents the fraction of random walks of lengtht which
end at directed edgei , thenx(t+1)

i (i.e., the fraction of

lengtht + 1 random walks), is given by the following
recurrence equation:

x(t+1)
i =

∑
j Pi j x(t)j∑

j

∑
k Pjk x(t)k

The
∑

j

∑
k Pjk x(t)k term in the denominator is a nor-

malization factor. Without the normalization after each
step, the vectorx would quickly approach zero, be-
cause random walks of increasing length have decreas-
ing probability. In the steady-state, this normalization
factor equalsλ:

λx = Px

where the eigenvector,x, represents the fraction of ran-
dom walks located at any given edge and the eigen-
value,λ, represents the ratio of the number of random
walks which reach one more edge to the number which
drift off or die in every step of the random process.5 In
the steady-state, the variation of the eigenvalue equals
zero (i.e.,δλ/δx = 0) and the eigenvalue itself is given
by the following equation:

λ = x̄TP x
x̄Tx

While there are other expressions forλ, the above ex-
pression is significant because it makes explicit the re-
lationship between error inx and error inλ.6 However,
unlike the Raleigh Quotient for symmetric matrices,x
does not maximize this expression. Furthermore, al-
thoughx is a fixed-point, there is no guarantee that a
process which starts at a random vector and repeatedly
applies the recurrence equation will converge tox.7

Recall that our stated goal was to compute the rel-
ative number of closed random walks through every
edge. We defined a closed random walk to be a ran-
dom walk which begins and ends at the same edge.
Unfortunately, becauseP is not a Markov matrix, the
eigenvector with largest positive real eigenvalue does
not represent a distribution of closed random walks—
only a small subset of the random walks contributing
to x are actually closed. The problem which concerns
us is how to characterize this subset.

To begin, we observe that any random walk of in-
finite length beginning and ending at edgei can be
exhaustively decomposed into an infinite number of
closed random walks each of which visits edgei ex-
actly once. Because (after cyclic permutation) any visit
to edgei is also the beginning and ending state of an
infinite length random walk, we conclude that the re-
lative number of closed random walks which visit edge
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i and the relative number of random walks of infinite
length which begin and end at edgei are in one-to-
one correspondence. The following expression gives
the relative number of random walks of infinite length
which begin and end at edgei :

ci = lim
t→∞

Pt
i i∑

j Pt
j j

To evaluate the above expression, we first divideP by
its largest real positive eigenvalue,λ, and distribute the
limit over the numerator and denominator, which yields

ci =
lims→∞

(P
λ

)s
i i

limt→∞
∑

j

(P
λ

)t
j j

To evaluate the numerator and denominator, we ob-
serve thatPcan be written asXDX̄T where the columns
of X arexµ/(x̄T

µxµ)
1
2 , the right eigenvectors ofP andD

is diagonal with the corresponding eigenvalues,µ, on
the diagonal. From time-reversal symmetry,λx=Px
impliesλx̄=PTx̄. Consequently, the columns ofX̄ are
x̄µ/(x̄T

µxµ)
1
2 , the left eigenvectors ofP. Hence, fort

sufficiently large,

lim
t→∞

(
P
λ

)t

= lim
t→∞X

(
D
λ

)t

X̄T

= lim
t→∞

∑
µ

xµ
(
µ

λ

)t
x̄T
µ

x̄T
µxµ

= xλx̄T
λ

x̄T
λxλ

This is becauseλ is the largest real positive eigenvalue
of Pand thereforeλ > |µ| for all eigenvalues,µ, except
µ = λ. Applying this result to the denominator of the
expression forci yields

lim
t→∞

∑
j

(
P
λ

)t

j j

=
∑

j

(xx̄T) j j

x̄Tx
= 1

Consequently, the relative number of closed random
walks through edgei is given by the numerator

ci = lim
s→∞

(
P
λ

)s

i i

= (xx̄T)i i

x̄Tx
= xi x̄i∑

j x j x̄ j

To within a constant factor, this is simplyxi x̄i . The
whole distribution is given by the (component-wise)

product ofx andx̄. In effect, at each edge we are con-
structing the cartesian product of the set of random
walks bridging edges in all past-times and the set con-
sisting of their time-reversed counterparts.8 This forms
a set of closed random walks.

4. Directionality and Tangent Continuity

In the Yen and Finkel (1996) saliency computation, the
support for oriented edgei due to all other oriented
edgesj is given by the linear relaxation labeling up-
date step,y(t+1)

i = ∑
j Aji y(t)j /

∑
j

∑
k Ajk y(t)k . Be-

cause Yen and Finkel’s intention was to model the
visual cortex, they(t) vector represents a fixed lat-
tice of discrete positions and orientations. The update
step can be viewed as convolution with a large ker-
nel filter followed by normalization.9 The symmetry
of the A matrix manifests itself in the plane as mir-
ror image symmetry in the kernel (see Fig. 4). The
state of the computation at any given time is summa-
rized byy(t), which represents a distribution of random
walks of lengtht . In general, this iteration will con-
verge to the eigenvector,y, associated with the largest
positive real eigenvalue ofA, i.e., it computes the SB
measure.

For illustrative purposes, it is worth considering
a network analogous to that described by Yen and
Finkel, but based on a lattice of discrete positions
and directions (i.e.,x(t) instead ofy(t)) and using a

Figure 4. In the Yen and Finkel (1996) saliency computation,
the support for oriented edgei due to all other oriented edgesj
is given by the linear relaxation labeling update step,y(t+1)

i =∑
j Aji y(t)j /

∑
j

∑
k Ajk y(t)k . Because Yen and Finkel’s intention

was to model the visual cortex, they(t) vector represents a fixed lat-
tice of discrete positions and orientations. The update step can be
viewed as convolution with a large kernel filter followed by normali-
zation. The symmetry of theA matrix manifests itself in the plane as
mirror image symmetry in the kernel. In general, this iteration will
converge to the eigenvector,y, associated with the largest positive
real eigenvalue ofA, i.e., it computes the SB measure.
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Figure 5. Hypothetical saliency network is based on a lattice of
discrete positions and directions (i.e.,x(t) instead ofy(t)) and uses a
non-symmetric linear relaxation labeling operator (i.e.,P instead of
A). In this network, the support for directed edgei due to all other
directed edgesj is given by the linear relaxation labeling update
step,x(t+1)

i =∑ j Pji x(t)j /
∑

j

∑
k Pjk x(t)k . BecauseP is not sym-

metric, this iteration is not guaranteed to converge. The salience of
edgei is given by the product ofxi andx̄i wherex is the eigenvector
associated with the largest positive real eigenvalue ofP. This quan-
tity represents the relative number of closed random walks through
edgei .

non-symmetric linear relaxation labeling operator (i.e.,
P instead ofA), see Fig. 5. In this network, the sup-
port for directed edgei due to all other directed edges
j is given by the linear relaxation labeling update step,
x(t+1)

i = ∑ j Pji x(t)j /
∑

j

∑
k Pjk x(t)k . As before, the

state of the computation at any given time is summa-
rized byx(t), which represents a distribution of random
walks of lengtht . However, becauseP is not symmetric,
there is no guarantee that this process will converge to
x, the eigenvector with largest positive real eigenvalue.
Furthermore, althoughx is a fixed-point,x alone does
not represent a distribution of closed random walks.
The salience of edgei is given by the product of the
ith components of the right and left eigenvectors,xi

and x̄i . It is the product which represents the relative
number of closed random walks through edgei .

We observe that the use of directions and a non-
symmetric linear relaxation operator is essential—even
for visual patterns consisting of non-directional ele-
ments, e.g., Gabor patches of even phase. While the in-
termediate states of both networks at timet (i.e.,y(t) and

x(t)) can be interpreted as distributions of random walks
of lengtht , the random walks of the Yen and Finkel net-
work containcusps(i.e., reversals in direction). The
fundamental problem is that without representing di-
rections in the state vector, the linear relaxation label-
ing process cannot remember the direction of travel
of the random walk in the previous time-step—it only
knows its orientation. Because the linear relaxation la-
beling operator is symmetric, at the next time-step, the
random walk is equally likely to continue in either di-
rection. One of these directions preserves tangent con-
tinuity. The other introduces a cusp. This is illustrated
in Fig. 6. After the initial iteration, this process tends
to increase the salience of the noise edges as much as
the signal edges. It explains why the performance of
Guy and Medioni’s saliency computation (essentially
one iteration of linear relaxation labeling using the op-
eratorA and a constant input vector) is superior to that
of Sarkar and Boyer. It also explains why WT outper-
forms both.

The importance of directionality in enforcing tan-
gent continuity in computations involving contours
seems not to be generally recognized in the human
vision community. See for example, the paper of Field
et al. (1993), which suggests that the phenomenon
of “pop-out” of salient contours is evidence for an

Figure 6. The explicit representation of two directions (i.e.,x and
x̄) and the use of anon-symmetriclinear relaxation labeling operator
(i.e.,P) is essential if the intermediate states of the relaxation labeling
process (i.e.,x(t), x(t+1), etc.) are to be interpreted as distributions of
random walks which are continuous in tangent. Repeated application
of asymmetriclinear relaxation labeling operator (i.e.,A) to a vector
of saliencies associated with orientations (i.e.,y) yields distribu-
tions of random walks which can reverse direction at edge locations
(left). After the initial iteration, this process tends to increase the
salience of the noise edges as much as the signal edges. This ex-
plains why the performance of Guy and Medioni’s saliency compu-
tation (essentially one iteration of linear relaxation labeling using the
operatorA and a constant input vector) is superior to that of Sarkar
and Boyer. It also explains why WT outperforms both.
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“association field” which looks very much like Fig. 4.
A notable exception is the “bipole” cell of the bound-
ary contour system of Grossberg and Mingolla (1985),
which (like our model) combines inputs from opposite
directions.

5. Contour Saliency

To develop some intuition for the meaning of the eigen-
value, it will be useful to consider an idealized situation.
We know from linear algebra that the eigenvalues ofP
are solutions to the equation det(P − λI ) = 0. Now,
consider a closed path,0, threadingm directed edges.
The probability that a particle following this path will
reach directed edge,0(i modm)+1, given that it is lo-
cated at directed edge,0i , equalsP′(0(i modm)+1|0i ).
Assuming that the probability of a particle traveling
from directed edge0i to 0 j when0 j does not im-
mediately follow0i on the closed path is negligible
(i.e., Pji = P′(0 j |0i ) when j = (i mod m) + 1 and
Pji = 0 otherwise) then:

λ(0) =
(

m∏
i=1

P′
(
0(i modm)+1

∣∣ 0i
))1/m

satisfies det(P − λI ) = 0. This is thegeometric
meanof the transition probabilities in the closed path.10

Normally long contours have very low probability:∏m
i=1 P′( 0(i modm)+1| 0i ). However, the properties of

the geometric mean are such that smoothness and clo-
sure are favored and long contours suffer no penalty. It
is useful to compare this to the saliency which Shashua
and Ullman assigns to a curve, which is given by the
following geometric series:

8(0) =
∞∑
j=1

j∏
i=1

P′( 0i+1 | 0i )

Shashua and Ullman desired a saliency measure
which favored long, smooth contours yet converged
to a finite value for contours of infinite length (i.e.,
for closed contours). Unfortunately, the rate at which
this series converges depends critically on the values
of the P′( 0i+1 | 0i ). If the transition probabilities
are too small, the series will converge too rapidly (and
the measure becomes local and greedy). Conversely, if
they are too large, the series will converge too slowly.
In summary, we see that the geometric mean has the
properties Shashua and Ullman wanted but lacks other
undesirable properties.

6. Results

6.1. Saliency Maps for Simple Patterns

In order to gain some insight into the strengths and
weaknesses of the various measures, it will be useful to
apply them to a simple test pattern consisting of edges
from a circle (either thirty, twenty, or ten uniformly
spaced samples) in a background of one hundred edges
of random position and orientation.11 The three test
patterns are shown in Fig. 7(a–c).

We will first look at the performance of the Shashua
and Ullman (SU) measure. In order to visualize the
saliencies assigned to each edge, the edges are dis-
played as rectangles with lengths and widths propor-
tional to the raw saliency values. The raw saliency map
for the thirty edge circle is shown in Fig. 8(a). It is
clear that the SU measure assigns significantly higher
saliencies to the edges of the circle than to the back-
ground edges. This would allow the circle to be seg-
mented from its background simply by choosing an
appropriate saliency threshold. The raw saliency map
for the twenty edge circle is shown in Fig. 8(b). In this
case, the saliencies of the circle edges are compara-
ble to those of the background, making segmentation
of the circle by thresholding impossible. Note also
that one of the two most salient edges belongs to the
background. This is an edge, which, simply through
chance, lies almost exactly on the circle with the correct

Figure 7. (a) Thirty edge circle in a background of one hundred
noise edges; (b) twenty edge circle and (c) ten edge circle.

Figure 8. (a) Raw saliencies computed by SU for thirty edge circle;
(b) raw saliencies computed by SU for twenty edge circle and (c) raw
saliencies computed by SU for ten edge circle.
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Figure 9. (a) Figure edges computed by HH for thirty edge circle;
(b) figure edges computed by HH for twenty edge circle and (c) figure
edges computed by HH for ten edge circle.

orientation (approximately at the 10 o’clock position).
It is unreasonable to expect any measure to be able to
distinguish this edge from the edges of the circle. Fi-
nally, the performance of the SU measure on the ten
edge circle (see Fig. 8(c)) is also poor.

We next applied the segmentation method of H´erault
and Horaud (HH) to the same three test patterns. It
is important to note that we are solving the modified
optimization problem described previously. That is, we
are optimizingyTAy over all vectors,y ∈ {0, 1}n and
|y| = m wheren is the total number of edges and
m is the number of figure edges. Because it is given
the number of figure edges, HH possesses a consid-
erable advantage over the other measures and these
results should be interpreted accordingly. The segmen-
tation for the thirty and twenty edge circles are shown
in Fig. 9(a) and (b). With the exception of omitting
one circle edge at 1 o’clock to permit inclusion of the
spurious 10 o’clock edge, HH computes a perfect seg-
mentation. However, the results on the ten edge circle
(see Fig. 9(c)) show that the method has failed to seg-
ment the circle from its background.

In order to better visualize the large range of saliency
values computed by the method of Sarkar and Boyer
(SB), the lengths and widths of the rectangles are drawn
proportional to log(1.0 + 106 · xi ), where xi is the
saliency of edgei . Figure 10(a) shows the log salien-
cies for the thirty edge circle computed using the SB
method. In general, the edges of the circle are assigned

Figure 10. (a) log Saliencies computed by SB for thirty edge circle;
(b) log saliencies computed by SB for twenty edge circle and (c) log
saliencies computed by SB for ten edge circle.

greater saliencies than the edges of the background.
However, we observe that the saliency values on the
upper left portion of the circle are significantly larger
than those on the lower right. If the eigenvector with
largest positive real eigenvalue is interpreted as a limi-
ting distribution of random walks between the edges,
we see that this distribution is dominated by random
walks (with reversals in direction) through the spuri-
ous edge at the 10 o’clock position. Because the SB
measure does not enforce tangent continuity or clo-
sure, the effect of a single unfortuitously placed edge
can be profound. In Fig. 10(b) and (c) the asymmetry
becomes very pronounced as the sampling of the circle
becomes less frequent. The consequence is that the SB
measure has failed to isolate the circle from its back-
ground, even in a case where a very simple method like
WJ has little problem (see Fig. 13(b)).12

Figure 11(a–c) shows the raw saliency values for the
three circles computed using the method of Guy and
Medioni (GM). Like the SU measure, the GM measure
assigns significantly higher saliency values to the edges
of the thirty edge circle than to the background edges.
However, also like the SU measure, the GM meaure
performs more poorly on the twenty and ten edge cir-
cles. Overall, the similiarities between the saliencies
computed by the SU measure and those computed by
the GM measure are quite striking. We speculate that,
for contours defined by relatively few edges of neg-
ligible length separated by large gaps, the largestPi j

are relatively small (e.g., approximately 0.1). Conse-
quently, the geometric series computed by SU is dom-
inated by its first term, which equals maxj Pi j . In turn,
because the spatial attenuation of the affinity function is
rapid,

∑
j Pi j ≈ maxj Pi j , i.e., the sum of the affinities

from all edges is dominated by the maximum affinity
from all edges.

Given the similiarity of the saliencies computed by
the SU and GM measures on the thirty, twenty, and ten
edge circles, it is useful to include an example where
the saliency values computed using the two methods are

Figure 11. (a) Raw saliencies computed by GM for thirty edge
circle; (b) raw saliencies computed by GM for twenty edge circle
and (c) raw saliencies computed by GM for ten edge circle.
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Figure 12. (a) An incomplete circle with twenty three edges; (b)
raw saliency values computed using the SU measure and (c) raw
saliency values computed using the GM measure.

very different. Figure 12(a) shows an incomplete cir-
cle with twenty three edges. There are no noise edges.
Figure 12(b) shows the raw saliency values computed
using the SU measure. Edges near the two ends of the
incomplete circle are assigned the highest saliencies,
and edges far from the ends are assigned the small-
est saliencies. In this figure, the magnitude ofPi j for
adjacenti and j is greater than one. Consequently,∑22

n=1 Pn
i j À

∑11
n=1 Pn

i j . This explains the difference in
relative saliency. Figure 12(c) shows the raw saliency
values computed using the GM measure. Except for the
edges on the ends, which are assigned somewhat lower
values, most edges are assigned comparable saliencies.

Figure 13(a) and (b) show the log saliency maps
for the thirty and twenty edge circles computed us-
ing the method of Williams and Jacobs (WJ). With the
exception of the spurious 10 o’clock edge, all of the
background edges are assigned saliencies of negligi-
ble magnitude. The contrast between the saliencies
computed by WJ and those computed by GM is quite
striking. The difference in discrimination power is due
solely to the use of directionality (i.e.,P andx vs. A
andy) and the (component-wise) multiplication of the
vectorx by the vector̄x in WJ. This multiplication en-
forces the constraint that an edge must form a bridge be-
tween two others. The result is saliencies with a greater
range of magnitudes than possessed by the components
of x or x̄ alone. However, this constraint is not enough

Figure 13. (a) Log saliencies computed by WJ for thirty edge circle;
(b) log saliencies computed by WJ for twenty edge circle and (c) log
saliencies computed by WJ for ten edge circle.

Figure 14. (a) Log saliencies computed by WT for thirty edge cir-
cle; (b) log saliencies computed by WT for twenty edge circle and
(c) log saliencies computed by WT for ten edge circle.

to discriminate edges of the ten edge circle from those
of the background. The log saliency map computed
by the WJ measure for the ten edge circle is shown in
Fig. 13(c). A significant number of background edges
have saliencies comparable to those assigned to edges
of the circle. Consequently, segmentation of the circle
from its background using thresholding is not possible.

Finally, Fig. 14(a–c) show the log saliency maps for
the three circles computed using the WT measure. With
the exception of the spurious 10 o’clock edge, all of the
background edges are assigned saliencies of negligible
magnitude. This holds even for the ten edge circle—
which no other measure was able to segment from the
background.

6.2. False Positive Rates for Simple Patterns

The first quantitative comparison used test patterns
which consisted of short oriented edges spaced uni-
formly around the perimeter of a circle in a background
of edges with random positions and orientations (see
Fig. 15(a)). We computed the saliency of both shape and
noise edges using each of the six measures: SU, HH,
SB, GM, WJ, and WT. The edges were then sorted in
ascending order based on their saliencies. The salience
of the most salient edge isφ1 and the salience of the
least salient edge isφn. Givenm shape edges, we de-
fine a false-positive as a noise edge which is assigned
a salience larger thanφm+1. The false-positive rate
for each measure was computed for patterns consist-
ing of different numbers of shape and noise edges. The
false-positive rate for each combination (e.g., 20 shape
edges and 70 noise edges) was estimated by averaging
the false-positive rate for ten trials using different noise
patterns.13 The right half of Fig. 15(a) is a plot of the
percentage false-positives versus the number of noise
edges for the twenty-edge circle.

All of the measures perform reasonably well (less
than 10% false-positive rate) at the low noise-levels (40
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Figure 15. (a) Twenty edge circle; (b) ten edge sine curve; (c) twenty edge circle (dipole noise) and (d) ten edge circle. All patterns are shown
at a noise-level of fifty.
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noise edges or less). At higher noise-levels, the perfor-
mance of the measures begins to diverge. It is interest-
ing that GM significantly outperforms SB, since GM
is essentially one iteration of SB. We speculate that the
false-positive rate is increased by additional relaxation-
labeling steps using the non-directional operator. We
also observe that GM performs comparably to HH—
even though the HH measure is significantly more
expensive to compute. Finally, at the lower signal-
to-noise ratios, WJ and WT have significantly lower
false-positive rates.

The second comparison was identical to the first ex-
cept that the shape edges formed an open-ended sine
curve (see Fig. 15(b)). The right half of Fig. 15(b) is a
plot of the percentage false-positives versus the number
of noise edges for the ten-edge sine curve. The rela-
tively poor performance of the WT measure compared
to the other measures can be attributed to its explicit
reliance on closure. Nevertheless, it still outperforms
the SB measure for higher signal-to-noise ratios and
has an error rate comparable to that of SB (i.e., within
5%) at lower signal-to-noise ratios. As in the previous
comparison, the performance of GM and HH are nearly
identical. The false-positive rates of these measures is
somewhat larger than that of the WJ measure. The SU
measure had the best performance.

In the third comparison, we used a background con-
sisting of correlated (i.e., dipole) noise (see Fig. 15(c)).
A dipole consists of two collinear edges separated by
a gap of size equal to the distance between successive
edges of the circle. Because the two edges forming
a dipole are collinear, the affinity between the edges
forming a dipole is greater than between adjacent cir-
cle edges. Consequently, it is impossible to distinguish
noise edges from shape edges using purely local mea-
sures. Indeed, all of the measures but WJ and WT have
nearly a 100% false-positive rate. In the case of the
SU measure, this is because (for gaps of this size) the
geometric series is dominated by the first two terms.14

In the fourth comparison (see Fig. 15(d)), we used a
ten-edge circle. This is a challenging pattern because
the sampling rate is so low—only one edge per 36 de-
grees of circumference. Most of the measures perform
poorly, even at relatively high signal-to-noise ratios.
For a noise-level of 80, the GM, SU and HH measures
are performing almost at chance, or 90% false-positive
rate. The SB and WJ measures perform slightly bet-
ter, with false-positive rates of 80% and 70%, respec-
tively. In contrast, the false-positive rate for WT is
under 5%.

6.3. Fruit and Texture Patterns

Our intention in the last comparison was to test the
saliency measures on a collection of “real images” but
to do so in a way which would allow meaningful error
rates to be estimated. In the past, when new grouping
methods have been proposed, their performance has not
been systematically compared to others from the lite-
rature. Although the proposed methods are typically
demonstrated on two or three “real images,” because
the computational goal is often not well defined, per-
formance is impossible to gauge. Consequently, it is
unclear whether or not the methods represent genuine
improvements in the state of the art.

We decided to construct test patterns from pairs of
real images in such a way that performance on the
saliency problem could be objectively measured. Nine
different fruits and vegetables were placed in front of
a uniformly colored background (three of these are
shown in Fig. 16(a–c)). This allowed their silhouettes

Figure 16. (a–c) Banana, pear, red onion, (d–f), banana edges, pear
edges, red onion edges, (g–i) terrain, brick, water and (j–l) terrain
edges, brick edges, water edges.
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to be extracted using straightforward methods. The ori-
entation at points uniformly spaced along the silhouette
was then estimated using a robust line fitting technique
(see Fig. 16(d–f)). Because the fruits and vegetables
varied widely in size, the maximum of thex and y
dimensions of the silhouette was determined (i.e., the
bounding square) and the set of edges was rescaled to
an absolute size of 32× 32.

To serve as background, we selected nine images
of natural texture from the MIT Media Lab texture
database (three of these are shown in Fig. 16(g–i)). The
Canny edge detector was applied to a 64× 64 block
from each texture and the resulting edges were filtered
on contrast to create a set of nine masking patterns con-
sisting of approximately 800 edges each (see Fig. 16
(j–l)). Test patterns were constructed by insetting the
fruit and vegetable silhouettes into the center 32× 32
regions of the size 64×64 natural textures. Figure 17(a)
displays the banana with terrain background, Fig. 17(b)
displays the pear with brick background, and Fig. 17(c)
displays the red onion with water background. Because
the actual fruits and vegetables varied widely in size,
the distances between adjacent edges of their silhou-
ettes after rescaling is also somewhat variable. For ex-
ample, because the banana was somewhat larger than
the pear, the edges of its silhouette are more closely
spaced after rescaling. This explains why some meth-
ods perform consistently better on one test pattern than
on another.

The raw saliency maps computed by the SU measure
for the three fruit and texture test patterns are shown
in Fig. 18(a–c). The figure edges computed by HH are
shown in Fig. 19(a–c). The log saliency maps com-
puted by the SB measure for the three fruit and tex-
ture test patterns are shown in Fig. 20(a–c). The raw
saliency maps computed by the GM measure are shown
in Fig. 21(a–c). The log saliency maps computed by
the WJ measure are shown in Fig. 22(a–c). Finally, the
log saliency maps computed by the WT measure are

Figure 17. (a) Banana with terrain mask; (b) pear with brick mask
and (c) red onion with water mask.

Figure 18. (a) Raw saliencies computed by SU for banana with
terrain mask; (b) raw saliencies computed by SU for pear with brick
mask and (c) raw saliencies computed by SU for red onion with water
mask.

Figure 19. (a) Figure edges computed by HH for banana with ter-
rain mask; (b) figure edges computed by HH for pear with brick mask
and (c) figure edges computed by HH for red onion with water mask.

Figure 20. (a) Log saliencies computed by SB for banana with
terrain mask; (b) log saliencies computed by SB for pear with brick
mask and (c) log saliencies computed by SB for red onion with water
mask.

Figure 21. (a) Raw Saliencies computed by GM for banana with
terrain mask; (b) raw saliencies computed by GM for pear with brick
mask and (c) raw saliencies computed by GM for red onion with
water mask.

shown in Fig. 23(a–c). We observe that, qualitatively,
the performance of the various measures on the fruit
and texture test patterns is similiar to that observed for
the circle test patterns.
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Figure 22. (a) Log saliencies computed by WJ for banana with
terrain mask; (b) log saliencies computed by WJ for pear with brick
mask and (c) log saliencies computed by WJ for red onion with water
mask.

Figure 23. (a) Log saliencies computed by WT for banana with
terrain mask; (b) log saliencies computed by WT for pear with brick
mask and (c) log saliencies computed by WT for red onion with
water mask.

For a quantitative comparison, edges from the nine
fruit and vegetable silhouettes (signal) and nine natural
texture masking patterns (noise) were combined to con-
struct a set of 405 test patterns. The texture edges are
undersampled to achieve a given signal-to-noise ra-
tio. These patterns represent all 81 silhouette and tex-
ture combinations at five different signal-to-noise ratios
(see Fig. 16(m–o)).15 Each of the six saliency measures
was run on all of the test patterns and false-positive
rates were computed as before. The results are plotted
in Fig. 24. For a signal-to-noise ratio of 0.2, the false-

Figure 24. False-positive rate for fruit and vegetable silhouettes
with natural texture backgrounds.

positive rate for the SB measure is 72% (i.e., 8% better
than chance performance). The false-positive rates for
SU, GM, HH and WJ are all approximately 50%. In
contrast, the false-positive rate for the WT measure is
20% (i.e., 60% better than chance performance). Fur-
thermore, after the signal-to-noise ratio is reduced by a
factor of two, the false-positive rate for the WT measure
remains under 50%.

7. Conclusion

In this paper, we introduced a new measure of percep-
tual saliency and quantitatively compared its ability to
detect natural shapes in cluttered backgrounds to five
previously proposed measures. The saliency measure
is based on the distribution of closed random walks
through the edges. We computed false-positive rates in
classifying edges as signal or noise for a large set of
test figures. In almost every case, the new measure sig-
nificantly outperforms previous measures. We observe
that the explicit representation of two edge directions
and a non-symmetric affinity matrix are necessary to
enforce tangent continuity in salient contours. Apart
from our method (WT), only the method of Shashua
and Ullman (SU) possesses this property. However,
unlike our method, the SU method does not expli-
citly enforce contour closure. Since smooth, closed
contours are judged to be more salient by human ob-
servers (Field et al., 1993; Kovacs and Julesz, 1993),
we conjecture that these two reasons underly the im-
proved performance of our method relative to previous
methods.

Appendix

In this Appendix, we give the analytic expression
for the affinity function used in the comparisons (see
(Thornber and Williams, 1996) for its derivation).16 We
define the affinity,Pji , between two directed edges,i
and j , to be:

Pj i ≡ P′( j | i ) =
∫ ∞

0
dt P( j | i ; t) ≈ F P( j | i ; topt)

whereP( j | i ; t) is the probability that a particle which
begins its stochastic motion at(xi , yi , θi ) at time 0 will
be at(xj , yj , θ j ) at time t . The affinity between two
edges is the value of this expression integrated over
stochastic motions of all durations,P′( j | i ). This in-
tegral is approximated analytically using the method of
steepest descent. The approximation is the product ofP
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evaluated at the time at which the integral is maximized
(i.e.,topt), and an extra factor,F . The expression forP
at timet is:

P( j | i ; t) = 3 exp
[− 6

T t3 (at2− bt + c)
] · exp

(−t
τ

)√
π3T 3 t7/2

where

a= [2+ cos(θ j − θi )] / 3

b= [xji (cosθ j + cosθi )+ yji (sinθ j + sinθi )]/γ

c= (x2
j i + y2

j i

)/
γ 2

for xji = xj −xi andyji = yj − yi . The parametersT ,
τ andγ determine the distribution of shapes (whereT is
the diffusion coefficient,τ is particle half-life andγ is
speed). In all of our experiments,T = 0.002,τ = 5.0
andγ = 1. The expression forP should be evaluated
at t = topt, wheretopt is real, positive, and satisfies the
following cubic equation:

−7 t3/4+ 3(at2− 2bt + 3c)/T = 0

If more than one real, positive root exists, then the root
maximizing P( j | i ; t) is chosen.17 Finally, the extra
factor F is:

F =
√

2π t5
opt

12(3c− b topt)/T + 7t3
opt

/
2

For our purposes here, we ignore the exp(−t/τ) factor
in the steepest descent approximation fortopt. We note
that by increasingγ , the distribution of contours can
be uniformly scaled.
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Notes

1. In our nomenclature, Montanari’s update equation isx(t+1)
i =

min(−ln Pi j + x(t)j ). After t time-steps,x(t)i equals the energy
of the minimum energy curve of lengtht beginning at edgei .

In general, this quantity will not converge to a finite value ast
goes to infinity.

2. Anyone who is interested in understanding the Shashua and
Ullman saliency computation in greater detail is encouraged to
read Alter and Basri’s very helpful paper.

3. A typical value for exp(−∫ si
s1

dt (κ2(t) − ln ρ)) is 0.1, so that
8(0) = 1+0.1+0.01+· · · = 1.11. In such cases, ninety-nine
percent of the saliency is contributed by the first two terms.

4. It is also worth noting that the WJ measure can be computed
very efficiently using a multi-resolution method. See (Williams
et al., 1997)

5. Unlike a Markov process,λ is usually very small—the great ma-
jority of particles never reach another edge. In a Markov process,
the probabilities in every column of the transition-probability
matrix must sum to one. Consequently, the largest eigenvalue
also equals one.

6. Specifically, it shows that ifx were in error byδx, the calculated
λ would be in error by onlyδx squared.

7. For this reason, in all of our experiments, we compute the eigen-
vector with largest positive real eigenvalue using EISPACK.

8. Those random walks which visit edges of opposite direction and
in reverse order.

9. Probably the best example of this style of visual computation is
the Parent and Zucker (1989) network, which uses (non-linear)
relaxation labeling to improve local measurements of contour
tangent and curvature. The relaxation labeling operator repre-
sents constraints between discrete tangent and curvature labels
at all locations in the plane. Although the Parent and Zucker
network and the Yen and Finkel network are similiar at an algo-
rithmic level, they compute very different functions. Indeed, the
goal of the former is more accurately described as “sharpening”
than “saliency.”

10. Equivalently, minus one times the logarithm of the eigen-
value equals theaverage transition energy: − ln λ(0) =
−∑m

i=1 ln P′( 0(i modm)+1 | 0i )/m.
11. The radius of the circle equals 16 and the noise edges are uni-

formly distributed within a square of size 64.
12. It is worth pointing out (again) that Sarkar and Boyer did not

design their method for problems of this sort. Their inten-
tion was to segment aerial photos of construction sites. It is
likely that tangent continuity and closure are less important for
that domain. However, Yen and Finkel (1996) and Perona and
Freeman (1998) describe the same measure and demonstrate it
using simple test patterns very much like the ones shown here.

13. We wanted to ensure that HH was not unfairly penalized be-
cause of the inherent difficulty of solving the combinatorial op-
timization problem. We therefore computed the value ofyTAy
for the perfect segmentation and accepted a trial only when
the simulated annealing procedure returned a greater or equal
value. After ten failed attempts, we restarted that trial with a
new noise-pattern.

14. For the thirty-edge circle, the geometric series converges more
slowly. Presumably, SU would continue to improve (relative to
the other measures) as the size of the gaps decreases.

15. The original fruit and texture images and files containing
the silhouette and texture edges can be downloaded from
http://www.cs.unm.edu/∼williams/saliency.html.

16. For a derivation of a related affinity function, see the recent
paper of Sharon, Brandt and Basri (1997).

17. For a discussion on solving cubic equations, see Press et al.,
1988.
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