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Abstract

This paper describes the evolution of the Portals mes-
sage passing architecture and programming interface from
its initial development on tightly-coupled massively paral-
lel platforms to the current implementation running on a
1792-node commodity PC Linux cluster. Portals provides
the basic building blocks needed for higher-level protocols
to implement scalable, low-overhead communication. Por-
tals has several unique characteristics that differentiate it
from other high-performance system-area data movement
layers. This paper discusses several of these features and
illustrates how they can impact the scalability and perfor-
mance of higher-level message passing protocols.

Keywords–messagepassing,network protocol, os by-
pass,workstationcluster, massively parallel

1. Intr oduction

The advent of cluster computingover the last several
yearshasmotivatedmuch researchinto messagepassing
APIsandprotocolstargetedfor deliveringlow-latency high-
bandwidthperformanceto parallelapplications.Relatively
inexpensiveProgrammablenetwork interfacecards(NICs),
likeMyrinet [2], havemadelow-levelmessagepassingpro-
tocols and programminginterfacesa popular areaof re-
search[33, 34, 26, 22, 14, 9, 28]. Most of theseresearch
activitieshavebeenfocusedondeliveringlatency andband-
width performanceascloseto the hardwarelimitations as
possible.

To someextent, the researchon clustersof PCs with
gigabit networking hardware is addressingmany of the
sameproblemsthat proprietarydistributed-memorymes-
sagepassingparallel machinesof the early 1990’s faced.
Despitethe differencesin hardware architecturebetween
custom-built parallel machinesand today’s PC cluster,
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many of theissueswith respectto deliveringmessagepass-
ing performanceto parallelapplicationsaresimilar.

Researchinto high-performancemessagepassingproto-
cols and interfaceswasbegun at SandiaNationalLabora-
toriesin collaborationwith the Universityof New Mexico
nearlytenyearsago.This researchaddressedthepoorper-
formanceand scalability of applicationsrunning on mas-
sively parallel machinescontainingthousandsof proces-
sors. This researchculminatedin the Cougarlightweight
kernel, which was deployed on the 9000+ processorIn-
tel ASCI/Redmachineinstalledat Sandiain early 1997.
Laterthatsameyear, webegantheComputationalPlant[4]
(CplantTM) project, which was an evolution of our system
softwareresearchfrom custom,vendor-suppliedsystemsto
Linux-basedPCclusters.

A key componentof this evolution is the Portalsdata
movementlayer. This paperdiscussesthe developmentof
Portalsfrom the lightweight kernel researchthrough the
currentimplementationin useon our 1792-nodeCplantTM

cluster. We will show thatPortalsprovidesaninterfacefor
implementingmany of thefeaturesrequiredfor low-latency,
high-bandwidth,low-overhead,scalablemessagepassing
on massively paralleldistributed-memorycomputingplat-
forms.

The restof this paperis organizedas follows. We be-
gin with an introductionto Portalsasthey wereshapedby
our lightweightkernelresearchin Section2. Section3 de-
scribesthe challengeswith implementingPortalson a PC
runningtheLinux operatingsystems.We continuein Sec-
tion 4 by discussingthecurrentPortalsAPI andsemantics.
Weoutlineseveralbenefitsof thisAPI ascomparedto other
similar researchprojectsin Section5. We concludein Sec-
tion 6 with a summaryof this paperandoutline our plans
for futurework in Section7.

2. PumaPortals

Portalswere an outcomeof early researchinto high-
performancemessagepassingin the Sandia/University of
New Mexico OperatingSystem(SUNMOS)[17] on the



nCUBEandIntel Paragonmachines.Portalswereinitially
designedand implementedin the successorto SUNMOS,
called Puma,to addressthe needfor zero-copy message
passing,where incoming messagesare delivereddirectly
into an application’s addressspacewithout intermediate
bufferingby theoperatingsystem[18]. ThePumaoperating
system[31] implementedthe secondgenerationof Portals
(now calledPortals2.0), which extendedthe functionality
of theoriginaldesignandprovidedthebasicbuilding blocks
for varioushigh-level message-passinglayers.

Pumawasdesignedto take full advantageof the hard-
ware architectureof computenodeson the Intel Paragon
andASCI/Red. Computenodesarecomposedof two pro-
cessors,memory, anda high-speednetwork interfaceinte-
gratedon thememorybus. ThePumakerneldeliversmes-
sagesdirectly from the network into an application’s ad-
dressspacewith no intermediatebuffering. The network
interfaceis able to performDMAs directly betweenuser-
spaceandthenetwork.

Portalsin Pumaaredatastructuresin anapplication’sad-
dressspacethatdeterminehow thekernelshouldrespondto
message-passingevents.Portalsallow messagestobedeliv-
ereddirectly to theapplicationwithout any interventionby
the applicationprocess.In particular, the applicationpro-
cessneednotbethecurrentlyscheduledprocessor perform
any messageselectionoperations,suchastagmatching,to
processincomingmessages.We referto this featureasap-
plication bypass, sincetheapplicationis not involvedin the
datatransferonceit hasbeensetup. We will discussthe
benefitsof applicationbypassin greaterdetail in Section
5.1.

Thefundamentalcharacteristicsandsemanticsof Portals
canbe attributed to their origin on thesemassively paral-
lel distributedmemorymachines.In particular, Portalsare
connectionlessandprovide protected,reliable,in-orderde-
livery. They weredesignedto supportmultiple communi-
catingprocessespernodeandcommunicationbetweenpro-
cessescreatedfrom differentexecutables.Portalswerealso
designedto efficiently supportmultipleprotocolswithin the
sameprocess. Since the only way to communicatewith
a processon a computenode is via Portals,they had to
supportnot only applicationmessagepassing,but alsoI/O
protocolsto a remotefilesystem,andprotocolsbetweenthe
componentsof theparallelruntimeenvironment.

SincePortalspre-datedthedevelopmentof theMPI stan-
dard[20], multiple application-level messagepassingAPIs
wereimplementedontopof Portals,suchasIntel’sNX [27]
interfaceandnCUBE’s Vertex [23] interface.TheMPI im-
plementationfor Portalsin Puma[7] alsoutilized a high-
performancecollective communicationlibrary [1] imple-
menteddirectly on Portalsandcontaineda preliminaryim-
plementationof theMPI-2 [21] one-sidedfunctions.

3. Portals in Linux

Despiteour experiencewith the poor performanceand
scalability of full-featured UNIX kernels that motivated
the researchon lightweight kernels,the effort requiredto
port and maintain thesekernelson commodity PC hard-
warefor theCplantTM projectwasextensive. In usingLinux
on CplantTM, we hopedto leverageits portability andopen
sourcemodel. Linux allows us to have an operatingsys-
temthat runswell on thevery latestcommodityhardware,
andthesourcecodeavailability givesustheopportunityto
manipulatethe standardkernel to createan operatingsys-
tem that exhibits the importantcharacteristicsof our past
lightweightkernels.

Our initial planwasto port Portals2.0 to Linux, first as
a Linux kernelmoduleandthenasa Myrinet ControlPro-
gram(MCP) runningon the Myrinet NIC. We hopedthat
themoduleimplementationwould allow for a rapidport of
the parallelruntimeenvironmentandthat the MCP imple-
mentationwould eventuallyallow us to realizethe perfor-
mancebenefitsof applicationbypassthat Portalsin Puma
provide.

Portals2.0 in Linux was implementedvia two kernel
modulesthatwork with a Sandia-developedMCP thatruns
on theLANai processoron theMyrinet interfacecard.The
Portals2.0 moduleis responsiblefor determininghow in-
coming messagesare processed.It readsthe application
process’memoryandinterpretsthePortalsdatastructures.
ThePortalsmodulecommunicatesinformationaboutmes-
sagedelivery to the RTS/CTSmodule,which is responsi-
ble for packetizationandflow control. TheRTS/CTSmod-
ule communicatespacket delivery informationto theMCP,
which is essentiallya packet delivery device. Outgoing
messagedatais copiedinto kernelmemory, thencopiedinto
the Myrinet NIC. On the receive side, packetsarecopied
from the Myrinet NIC into kernelmemory, andthenfrom
kernelmemoryinto theapplication’s memory. All of these
memorycopiesareoverlapping,so we areableto achieve
reasonablebandwidthdueto packet pipelining. But since
the moduleimplementationwasnot our endgoal, we put
little effort into furtheroptimizingthis approach.

Soonafter beginning the implementationof the Portals
2.0kernelmodule,wediscoveredseveralproblemswith our
approach.Most of theseproblemswerea resultof thelack
of a functionalAPI for Portals2.0 andour limited knowl-
edgeof the internalsof the Linux kernel. We discusstwo
of theseproblemsbelow. For amorein-depthdiscussionof
theselimitations,see[6].

The lack of an API preventedus from moving Portals-
relateddata structuresout of user-space. Ideally, these
datastructuresshouldbeableto exist in user-space,kernel-
space,or NIC-space– whichever providesthehighestper-
formancefor theunderlyingnetwork hardware.



Thelackof anAPI alsodoesnotallow for pre-validation
of user-spaceaddresses.Becausethereis noAPI, theappli-
cationprocesshasno way to give thePumakernela desti-
nationaddressbeforea matchingmessagearrives. There-
fore, addressesof messagedestinationsarevalidatedwhen
themessagearrivesandtheappropriateuser-spacebuffer is
located. This strategy works well for Puma,which usesa
physicallycontiguousmemorymanagementschemewhere
addressvalidationis a simpleboundscheckandthe trans-
lation from virtual to physicalis simply anoffset from the
basephysicaladdress.

However, Linux only validatesaddressesfor the cur-
rently running process,usually via a systemcall. Linux
kernelsbeyondversion2.1assumethatagivenuseraddress
is valid and perform the reador write operation. Should
theaddressnot bevalid, thehardwarewill generatea page
fault, andthe kernelwill gracefullyrecover. This method
optimizesfor thecommoncasewheretheaddressis valid,
andtakesa significantperformancehit whentheaddressis
notvalid. Thiscreatesmany problemsfor Portals2.0,since
addressvalidation is not donefrom a systemcall for the
currentlyrunningprocess.

It becameclearthatPortals2.0wasdesignedto takead-
vantageof thehighly specializedfeaturesof thePumaker-
nel and that we would never be able to reachour perfor-
mancegoalswith a Portals2.0 MCP implementationfor
Linux. We decidedto try to developa functionalAPI that
would allow for thekey message-passingdatastructuresto
exist in themostoptimumaddressspacewhile still provid-
ing thekey messagepassingfeaturesof Portals2.0.

In Decemberof 1999, we releasedthe first versionof
the Portals3.0 messagepassinginterface[5]. We imple-
menteda referenceimplementationoverTCP/IP, aswell as
an implementationthat works with the existing RTS/CTS
module for Myrinet. We have a port of MPICH version
1.2.0 over Portals3.0, a port of MPI Software Technol-
ogy’s MPI/ProR
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and the componentsof the CplantTM parallel runtime sys-
tem[3] have beenportedto usePortals3.0aswell. Portals
3.0hasbeenin productionuseonourlargeCplantTM clusters
sinceAugustof 2000. Our largestCplantTM clusteris cur-
rently 1792nodes,andhasdemonstrated706 gigaFLOPS
on theLinpackbenchmark,placingit at number30 on the
November2001list of theTop 500 fastestsupercomputers
in theworld [24].

We believe the Portals3.0 API will allow us to achieve
the functionality and relative performancefor Linux and
Myrinet that Portals2.0 provided for Pumaon ASCI/Red.
A Portals3.0MCPimplementationis currentlyin progress,
andis achieving lessthan20 � secfor a zero-lengthping-
ponglatency test.

4. An Overview of the Portals API

Our primarygoal in developingthePortals3.0 API was
to supportan implementationon CplantTM. However, Por-
tals3.0 is anAPI thatallows for differentimplementations
on many differenttypesof networking hardware. Someof
this hardwareis bettersuitedto our performanceandscal-
ability goals than others. In this section,we provide an
overview of theAPI, semantics,andcharacteristicsthatwe
believeareimportantfor ahigh-performance,scalablemes-
sagepassinglayer. See[5] for a morecompletedescription
of theAPI andsemantics.

4.1. Scalability

The primary goal in the designof Portalsis scalability.
Portalsaredesignedspecificallyfor an implementationca-
pableof supportinga parallel job runningon the orderof
ten thousandnodes. Performanceis critical only in terms
of scalability. That is, the level of messagepassingperfor-
manceis characterizedby how far it allows an application
to scaleandnotby how it performsin atwo-nodeping-pong
benchmark.

Portalsaredesignedto allow for scalability, but do not
guaranteeit. Portalscannotovercometheshortcomingsof
a poorly designedapplicationprogramor overcomelimita-
tionsin anunderlyingnetwork transportlayer. Applications
thathave inherentscalabilitylimitations,eitherthroughde-
signor implementation,will not betransformedby Portals
into scalableapplications.Scalabilitymustbeaddressedat
all levels.Portalsaredesignedto not limit scalability.

To supportscalability, the Portalsinterfacemaintainsa
minimal amountof state.Portalsprovide reliable,ordered
delivery of messagesbetweenpairs of processes. They
areconnectionless:a processis not requiredto explicitly
establisha point-to-pointconnectionwith anotherprocess
in order to communicate. Moreover, all buffers usedin
thetransmissionof messagesaremaintainedin user-space.
The target processdetermineshow to respondto incom-
ing messages,andmessagesfor which thereareno buffers
arediscarded.That is, Portalsarebasedon expectedmes-
sages.Higher-level messagepassinglayersthat needsup-
port for unexpectedmessages,such as MPI, needto set
asidea certainamountof spaceto receiveunexpectedmes-
sages.For many messagepassingsystems,suchasVIA [9],
the amountof memoryrequiredfor unexpectedmessages
grows linearly with thenumberof connections.Portalsal-
low for theamountof memoryusedfor unexpectedmessage
buffersto bebasedon theneedsandbehavior of theappli-
cationratherthanbasedsimply on thenumberof processes
in a paralleljob.



4.2. Communication Model

Portalscombinethecharacteristicsof bothone-sideand
two-sidedcommunication.They definea “matchingput”
operationanda “matchingget” operation.Thedestination
of a put (or send)is not an explicit address;instead,each
messagecontainsa setof matchbits thatallow thereceiver
to determinewhereincomingmessagesshouldbe placed.
Thisflexibility allowsPortalsto supportbothone-sidedop-
erationsandtraditionaltwo-sidedsend/receiveoperations.

Portalsallows thetargetto determinewhetherincoming
messagesareacceptable.A targetprocesscanchooseto ac-
ceptmessageoperationsfrom any specificprocessor can
chooseto ignoremessageoperationsfrom any specificpro-
cess.

4.3. Data Movement

A Portal representsan openingin the addressspaceof
a process.Otherprocessescan usea Portal to read(get)
or write (put) thememoryassociatedwith thePortal.Every
datamovementoperationinvolvestwo processes,theinitia-
tor andthe target. Theinitiator is theprocessthatinitiates
thedatamovementoperation.Thetargetis theprocessthat
respondsto theoperationby eitheracceptingthedatafor a
putoperation,or replyingwith thedatafor a getoperation.

In this discussion,activities attributedto a processmay
referto activities thatareactuallyperformedby theprocess
or on behalf of the process. The inclusivenessof our ter-
minologyis importantin thecontext of application bypass.
In particular, whenwe notethat the targetsendsa reply in
thecaseof a get operation,it is possiblethat reply will be
generatedby anothercomponentin the system,bypassing
theapplication.

Figures1 and2 presentgraphicalinterpretationsof the
Portaldatamovementoperations:put andget. In thecase
of aput operation,theinitiator sendsaput requestmessage
containingthe datato the target. The target translatesthe
Portaladdressinginformationin the requestusingits local
Portalstructures.Whentherequesthasbeenprocessed,the
targetoptionallysendsanacknowledgmentmessage.

Transmission
Data

Translation

Optional
Acknowledgement

Portal

TargetInitiator

Figure 1. Por tal Put (Send)

In the caseof a get operation,the initiator sendsa get
requestto the target. As with the put operation,the target

translatesthe Portaladdressinginformation in the request
usingits local Portalstructures.Onceit hastranslatedthe
portal addressinginformation,the targetsendsa reply that
includestherequesteddata.

Translation
Portal

Transmission
Data

Request

Initiator Target

Figure 2. Por tal Get

We shouldnotethatPortaladdresstranslationsareonly
performedon nodesthat respondto operationsinitiatedby
other nodes. Acknowledgmentsand repliesto get opera-
tionsbypassthePortalsaddresstranslationstructures.

4.4. Portal Addr essing

One-sideddata movementmodels (e.g., shmem[10],
ST [32], MPI-2 [21]) typically usea triple to addressmem-
ory on a remotenode. This triple consistsof a processid,
memorybuffer id, andoffset. Theprocessid identifiesthe
targetprocess,thememorybuffer id specifiestheregion of
memoryto beusedfor theoperation,andtheoffsetspecifies
anoffsetwithin thememorybuffer.

In additionto thesestandardaddresscomponents,a por-
tal addressincludesa set of matchbits. This addressing
modelis appropriatefor supportingone-sidedoperationsas
well as traditional two-sidedmessagepassingoperations.
Specifically, thePortalsAPI providestheflexibility needed
for an efficient implementationof the send/receive opera-
tionsin MPI, whichdefinestwo-sidedoperationswith one-
sidedcompletionsemantics1.

Figure3 presentsagraphicalrepresentationof thestruc-
turesusedby a target in the interpretationof a Portalad-
dress. The processid is usedto route the messageto the
appropriatenodeandis not reflectedin this diagram. The
memorybuffer id, called the portal id, is usedas an in-
dex into the Portal table. Eachelementof the Portaltable
identifiesa matchlist. Eachelementof thematchlist spec-
ifies two bit patterns:a setof “don’t care” bits, anda set
of “must match”bits. In additionto the two setsof match
bits, eachmatchlist elementhasa list of memorydescrip-
tors. Eachmemorydescriptoridentifiesa memoryregion
andanoptionaleventqueue.Thememoryregion specifies
thememoryto beusedin theoperationandtheeventqueue
is usedto recordinformationabouttheseoperations.

1The ProgressRule in MPI mandateslocal completionsemanticsfor
thestandardnon-blockingtwo-sidedmessagepassingoperations
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Figure 3. Por tal Addressing Structures

Figure4 illustratesthestepsinvolvedin translatingaPor-
tal address,startingfrom thefirst elementin a matchlist. If
the matchcriteria specifiedin the matchlist entry aremet
andthefirst entry in thememorydescriptorlist acceptsthe
operation,theoperation(put or get) is performedusingthe
memoryregion specifiedin thememorydescriptor. (Note,
while the matchlist is searchedfor a matchingentry, only
thefirst elementin thememorydescriptorlist is considered
for theoperation.)If thememorydescriptorspecifiesthatit
is to beunlinkedaftera successfuloperation,it is unlinked
from the list of memorydescriptors.Next, if the memory
descriptoris unlinkedandthisemptiesthememorydescrip-
tor list, the matchentry will alsobe unlinked if its unlink
flag hasbeenset. Finally, if thereis aneventqueuespeci-
fiedin thememorydescriptor, theoperationis loggedin the
eventqueue.
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Figure 4. Por tals Address Translation

If thematchcriteriaspecifiedin thematchlist entryare
notmetor thememorydescriptorassociatedwith thematch
list entry rejectstheoperation,theaddresstranslationcon-
tinueswith thenext matchlist entry. If theendof thematch
list hasbeenreached,theaddresstranslationis abortedand
theincomingrequestis discarded.

4.5. AccessControl

A processcancontrol accessto its Portalsusingan ac-
cesscontrol list. Eachentryin theaccesscontrol list speci-
fiesaprocessid andaPortaltableindex. Theaccesscontrol
list is actuallyanarrayof entries.Eachincomingrequestin-
cludesan index into theaccesscontrol list (i.e., a “cookie”
or hint). If theid of theprocessissuingtherequestdoesn’t
matchtheid specifiedin theaccesscontrol list entryor the
Portaltableindex specifiedin therequestdoesn’t matchthe
Portaltableindex specifiedin the accesscontrol list entry,
therequestis rejected.

ProcessidentifiersandPortaltableindexesmayinclude
wildcard valuesto increasethe flexibility of this mecha-
nism. Whenthe accesscontrol list is initialized, the entry
with index zeroenablesaccessto all Portalsfor all processes
in thesameparallelapplicationandtheentrywith index one
enablesaccessto all Portalsfor all systemprocesses.The
remainingentriesaresetto disableall otheraccess.

Two aspectsof thisdesignmerit furtherdiscussion.First,
themodelassumesthattheinformationin amessageheader,
thesender’sid in particular, is trustworthy. In mostcontexts,
weassumethattheentity thatconstructstheheaderis trust-
worthy;however, usingcryptographictechniques,wecould
easilydevisea protocolthat would ensurethe authenticity
of thesender.

Second,becausethe accesscheckis performedby the
receiver, it is possiblethatamaliciousprocesswill generate
thousandsof messagesthat will be deniedby the receiver.
This couldsaturatethenetwork and/orthe receiver, result-
ing in a denial of service attack. Moving the checkto the
senderusing capabilities,would remove the potential for
this form of attack. However, the solution introducesthe
complexities of capabilitymanagement(exchangeof capa-
bilities, revocation,protections,etc).

4.6. The Semanticsof MessageTransmission

The PortalsAPI usesfour typesof messages:put re-
quests,acknowledgments,get requests,andreplies. In this
section,we describetheinformationpassedon thewire for
eachtypeof message.We alsodescribehow this informa-
tion is usedto processincomingmessages.

Information Description
operation Indicatesa put request
initiator Localprocessid
target Targetprocessid
portal index TargetPortaltableentry
cookie Accesscontroltableentry
matchbits Matchingcriteria
offset Offsetwithin thetargetmemory
memorydesc Localmemoryregion for anack
length Lengthof thedata
data Payload

Table 1. Information Passed in a Put Request



4.7. SendingMessages

Table1 summarizesthe information that is transmitted
for a put request. Most information that is transmittedis
obtaineddirectly from the put operation. Notice that the
handlefor thememorydescriptorusedin theput operation
is transmittedeventhoughthis valuecannotbe interpreted
by the target. A processcanalsosignify that no acknowl-
edgmentis requestedby usingaspecialflag.

Information Description
operation Indicatesanacknowledgment
initiator Acking processid
target Targetprocessid
portal index Echoed
matchbits Echoed
offset Echoed
memorydesc Echoed
requestedlength Echoed
manipulatedlength Obtainedfrom theoperation

Table 2. Information Passed in an Ackno wl-
edgment

Table2 summarizestheinformationtransmittedin anac-
knowledgment.Most of the informationis simply echoed
from theput request.Noticethattheinitiator andtargetare
obtaineddirectly from the put request,but areswappedin
generatingtheacknowledgment.Theonly new pieceof in-
formationin theacknowledgmentis themanipulatedlength,
which is determinedastheput requestis satisfied.

Information Description
operation Indicatesagetoperation
initiator Localprocessid
target Targetprocessid
portalindex TargetPortaltableentry
cookie Accesscontroltableentry
matchbits Matchingcriteria
offset Offsetwithin targetmemory
memorydesc Localmemoryregion for reply
length Lengthof requesteddata

Table 3. Information Passed in a Get Request

Table3 summarizesthe information that is transmitted
for a get request.Like the informationtransmittedin a put
request,mostof theinformationtransmittedin agetrequest
is obtaineddirectly from the get operation.Unlike put re-
quests,get requestsdo not includetheeventqueuehandle.
In this case,the reply is generatedwhenever the operation
succeedsandthe memorydescriptormustnot be unlinked
until thereply is received.As such,thereis noadvantageto
explicitly sendingtheeventqueuehandle.

Table4 summarizesthe informationtransmittedin a re-
ply. Like an acknowledgment,mostof the information is
simplyechoedfrom thegetrequest.Theinitiator andtarget
areobtaineddirectly from theget request,but areswapped
in generatingtheacknowledgment.Theonly new informa-
tion in theacknowledgmentarethemanipulatedlengthand
thedatawhicharedeterminedasthegetrequestis satisfied.

Information Description
operation Indicatesanacknowledgment
initiator Replyingprocessid
target Targetprocessid
portalindex Echoed
matchbits Echoed
offset Echoed
memorydesc Echoed
requestedlength Echoed
manipulatedlength Lengthof requesteddata
data Payload

Table 4. Information Passed in a Reply

4.8. Receiving Messages

Whenan incomingmessagearriveson a network inter-
face,theruntimesystemfirst checksthat thetargetprocess
identifiedin therequestis avalid processthathasinitialized
thenetwork interface(i.e.,thatthetargetprocesshasavalid
Portaltable). If this testfails, the runtimesystemdiscards
themessageandincrementsthedroppedmessagecountfor
the interface.The remainderof theprocessingdependson
thetypeof theincomingmessage.Putandgetmessagesare
subjectto accesscontrol checksandtranslation(searching
a matchlist), while acknowledgmentand reply messages
bypasstheaccesscontrolchecksandthetranslationstep.

Acknowledgmentmessagesinclude a handle for the
eventqueuewheretheeventshouldberecorded.Uponre-
ceiptof anacknowledgment,theruntimesystemonly needs
to confirmthattheeventqueuestill exists.Shouldtheevent
queueno longerexist, themessageis simply discardedand
thedroppedmessagecountfor theinterfaceis incremented.
Otherwise,the runtimesystembuilds an acknowledgment
eventfrom theinformationin theacknowledgmentmessage
andaddsit to the event queue.Event queuesarecircular,
which preventsindexing out of bounds. The higher level
protocol needsto insurethat thereareenoughevent slots
andthe rateof event consumptionis ableto keepup with
therateof eventproductionto avoid missingevents.

Receptionof reply messagesis also relatively straight-
forward. Eachreply messageincludesa handlefor a mem-
ory descriptor. If this descriptorexists,it is usedto receive
themessage.A reply messagewill bedroppedif themem-
ory descriptoridentifiedin therequestdoesn’t exist or if the
event queuein the memorydescriptorhasno spaceandis
notnull. In eitherof thesecases,thedroppedmessagecount
for theinterfaceis incremented.Thesearetheonly reasons
for droppingreply messages.Every memorydescriptorac-
ceptsand truncatesincoming reply messages,eliminating
theotherpotentialreasonsfor rejectinga replymessage.

Thecritical stepin processinganincomingputor getre-
questinvolvesmappingtherequestto amemorydescriptor.
This stepstartsby using the Portal index in the incoming
requestto identify a list of matchentries.This list of match
entriesis searchedin order until a match entry is found
whosematchcriteriamatchesthematchbits in the incom-



ing requestandwhosefirst memorydescriptoracceptsthe
request.

Becauseacknowledgeandreply messagesaregenerated
in responseto requestsmadeby theprocessreceiving these
messages,thechecksperformedby theruntimesystemfor
acknowledgmentsandrepliesareminimal. In contrast,put
andgetmessagesaregeneratedby remoteprocessesandthe
checksperformedfor thesemessagesare more extensive.
Incomingput or getmessagesmayberejectedbecause:the
Portalindex suppliedin therequestis not valid; thecookie
suppliedin the requestis not a valid accesscontrol entry;
the accesscontrol entry identifiedby the cookie doesnot
matchthe identifier of the requestingprocess;the access
controlentryidentifiedby theaccesscontrolentrydoesnot
matchthePortalindex suppliedin therequest;or, thematch
bits suppliedin the requestdo not matchany of thematch
entrieswith amemorydescriptorthatacceptstherequest.In
all cases,if themessageis rejected,the incomingmessage
isdiscardedandthedroppedmessagecountfor theinterface
is incremented.

A memorydescriptormayrejectanincomingrequestfor
any of the following reasons:the memorydescriptorhas
not beenenabledfor theincomingoperation;or, thelength
specifiedin therequestis toolongfor thematchingmemory
descriptorandthetruncateoptionhasnot beenenabled;

5. Benefitsof Portals

We believe that the PortalsAPI providesmany benefits
over other messagepassinginterfacesdesignedfor clus-
tersaswell asproprietarydistributedmemoryparallelplat-
forms. In thissectionwe outlineseveralof thesebenefits.

5.1. Zero Copy, OS-Bypassand Application Bypass

In traditionalsystemarchitectures,network packetsar-
riveat thenetwork interfacecard,arepassedthroughoneor
moreprotocollayersin theoperatingsystem,andeventually
copiedinto theaddressspaceof theapplication.As network
bandwidthbeganto approachmemorycopy rates,reduction
of memorycopiesbecamea critical concern.This concern
leadto thedevelopmentof zero-copy messagepassingpro-
tocolsin which messagecopiesareeliminatedor pipelined
to avoid thelossof bandwidth.

A typical zero-copy protocol has the NIC generatean
interruptfor theCPUwhena messagearrivesfrom thenet-
work. Theinterrupthandlerthencontrolsthetransferof the
incomingmessageinto theaddressspaceof theappropriate
application. The interrupt latency, the time from the initi-
ation of an interruptuntil the interrupthandleris running,
is fairly significant.To avoid this cost,somemodernNICs
haveprocessorsthatcanbeprogrammedto implementpart
of a messagepassingprotocol. Givena properlydesigned

protocol, it is possibleto programthe NIC to control the
transferof incomingmessages,withoutneedingto interrupt
theCPU.Becausethisstrategy doesnotneedto involvethe
OS on every messagetransfer, it is frequentlycalled OS-
bypass. ScheduledTransfer(ST) [32], Virtual InterfaceAr-
chitecture(VIA) [9], FM [16], GM [22], and Portalsare
examplesof APIs and/orprotocolsthatsupportOS-bypass.

However, many protocolsthat supportOS-bypassstill
requirethat the applicationactively participatein the pro-
tocol for datato betransferred.This is especiallytruein the
caseof active messagearchitectures,suchasAM [34] and
FM [26]. The fundamentalconceptof active messagesis
to integratecomputationandcommunication.Conversely,
the fundamentalconceptof Portalsis to decouplethe host
processorfrom thenetwork andallow datato flow with vir-
tually no applicationprocessing.

Portalsareaimedat significantlyreducingreceive over-
head,whichhasbeenshown to haveagreaterimpactonap-
plicationperformance[35, 19] thanlatency andbandwidth.
Most studiesthatanalyzereceive overheadalsodo not ac-
countfor thenecessaryprotocolprocessingthathigher-level
protocolssuchasMPI mustdo aswell.

5.2. MPI Progress

The limitationsof OS-bypasswith respectto overlapof
computationand communicationare most evident in im-
plementationsof higher-levelprotocols,suchasMPI. Since
MPI is typically the main messagepassinginterfacethat
OS-bypassprotocolsare targeting, it is interestingto ana-
lyze theeffectivenessof OS-bypassprotocolsin supporting
overlapfor implementationsof MPI.

MPI has asynchronoussendand receive calls that al-
low highqualityimplementationstheopportunityto overlap
computationand communication. MPI also definesrules
for how asynchronouscommunicationoperationsmake
progress. The Standardstates: “A communicationis en-
abled oncea sendandamatchingreceivehavebeenposted
by two processes.The progressrule requiresthat oncea
communicationis enabled,theneither the sendor the re-
ceive will proceedto completion. ... In particular, if the
matchingsendis nonblocking,thenthe receive completes
evenif nocomplete-sendcall is madeonthesenderside....
Similarly, a call ... thatcompletesa sendeventuallyreturns
if a matchingreceivehasbeenstarted,evenif no complete-
receivecall is madeon thereceiving side.”

Every OS-bypassMPI implementationdescribedin cur-
rent literature[15, 29, 25, 11] requiresapplicationprocess-
ing to move data. Theseimplementationstypically usea
two-level protocol,whereshortmessagesaresenteagerly
and long messagesare sentusing a rendezvous protocol.
The shorteagermessagesarebufferedat the receiver and
copiedby theapplicationinto theappropriatereceivebuffer



aftercontext andtagmatchingoccur. In therendezvouspro-
tocol,thesendersendsarequestto thereceiver. Thisrequest
is recognizedby theapplication,thecontext andtagmatch-
ing occur, andwhentheappropriatereceivebuffer is found,
a messageis sentbackto senderindicatingtheexact loca-
tion in memorywherethedatacanbedelivered.However,
becausetheapplicationmustbeinvolvedin thesetransfers,
theopportunityfor significantoverlapis lost.

The semanticsof Portals 3.0 support the necessary
progressenginefor an MPI implementationwithout the
needfor explicit applicationintervention. Portals3.0 pro-
videsthenecessarybuilding blocksfor protocolsto be im-
plementedon NICs in a way thatis not specificto MPI and
is generalenoughto supportseveralotherhigher-level data
movementinterfaces.

5.3. Demonstration of Application Bypass

In order to demonstratethe benefits of application-
bypass,we conductedan experimentusinga simple MPI
programrunningon two nodes.Table5 outlinesthe basic
experiment. Both nodesiterateover this outline although
only onenodeperforms“work.”

pre-postseveralnon-blockingreceives;
barrier;
postabatchof sends;
work (fixedloop iterations);
gettime A;
wait for thebatchof messages;
getTimeB;
repeat;

Figure 5. Testing For Application Bypass

In our experiment,a batchconsistsof ten equalsized
messagesand timings wereaveragedby repeatingthe ex-
perimentseveral times.Also, thework, or fixednumberof
loop iterations,establishesa “work interval” duringwhich
parallelor concurrentmessagehandlingmayproceedif al-
lowed by the MPI implementation. We varied the work
interval andtimed how muchof the messagehandlingre-
mainedto bedoneafterthework interval.

We ran this applicationbypassteston a 500MHz Pen-
tium III with aLANai 7.2Myrinet NIC runningGM 1.4and
MPICH/GM 1.2..7.WealsoranthetestonaCplantTM clus-
ter running the Portals3.0 and RTS/CTSkernel modules
with ourPortals3.0port of MPICH 1.2.0.

Figure 6 presentsthe duration of waiting for mes-
sagesas a function of work interval for MPICH/GM and
MPICH/Portals3.0for 50KB messages.MPICH/GM does
not make any progresson messagepassinguntil we either
wait for the messagesor make other calls to the MPI li-
brary. In relatedtestingnotshown here,weintroducedthree
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callsto MPI Testduringthework interval andMPICH/GM
couldthenmakesignificantprogressbeforethecall to wait.

In contrast,thePortalsimplementationhasa greaterde-
gree of applicationbypassand makes progressindepen-
dently of the applicationmaking library calls. Given a
large enoughwork interval, Portalscanvirtually complete
messagehandlingwhereasMPICH/GM makes very little
progress.We ran the sameexperimenton MPICH/Portals
with thework interval having threetestcalls. Theresulting
graphof Portalsdatais essentiallythesamecurveasshown
in Figure6.

This issueis notonly specificto implementationsof MPI
onclustersusingMyrinet [30], but havealsobeenanalyzed
on proprietaryparallelplatformsaswell [13]. The funda-
mentalproblem is the protocolsunderlying the MPI im-
plementationthat requiretheMPI library to bedirectly in-
volvedin themessageselectionactivities. Thereareseveral
waysto accomplishthis,assuggestedmostrecentlyin [30]:
aseparatethreadcanhandleMPI progress,interruptscanbe
usedto run MPI handlerroutines,or MPI-awarefirmware
canbe placedon the NIC. However, the mostpopularap-
proachis to ignore the progressrule and simply require
the applicationto make frequentcalls to the MPI library.
This methodallows the MPI library to continually check
for outstandingcommunicationoperationsand attemptto
completethem.

Usinga separatethreadto facilitatetheoverlapof com-
putationandcommunicationhasseveraldisadvantages.The
implementationof MPI mustbedesignedto takeadvantage
of usinga separatethreadfor progress.Unfortunately, the
most popular implementationof MPI, MPICH [12], was
not. Caremustbe taken to reducethe amountof interfer-
encethat a separatecommunicationthreadcreates.Since
nearlyall messagepassingsystemsdo not allow threadsto
bescheduledin responseto messageevents,someoverhead
is incurredon thehostprocessor.



Using interruptsto run MPI handlerroutinesalso has
many drawbacks. Interruptsandcontext switchingcanbe
very expensive. In fact,it is this costthatmotivatedtheOS
Bypassapproachin thefirst place.

Requiring the applicationto make frequentMPI calls
in order to guaranteeprogressdirectly conflicts with the
progressrule. In fact, this is the very situation that the
progressrule intendedto avoid. Someimplementationsex-
plicitly statethis limitation [8], but mostdonot. Along with
theillegality of thisapproach,it alsohasseveralimplemen-
tationdrawbacks.Primarily, it forcesnon-portabilityof ap-
plications. Applicationsthat are MPI compliantmust be
sprinkledwith superfluousMPI calls in orderfor commu-
nicationsto make progress. The most effective placesto
insertcalls arehighly dependenton the underlyingimple-
mentation.More importantly, someoperationsareatomic
andMPI callscannotbe insertedat all. For example,post-
ing a receive just beforecalling a BLAS library routineor
calling anI/O operation.TheBLAS library or I/O routines
would needto becompiledto occasionallymake unneces-
saryMPI calls.Thesearetheverytypesof operationswhere
overlapis mostdesirableandwould bemosteffective.

Finally, implementingMPI-awarefirmwareon the NIC
alleviatesmany of theproblemswith theotherapproaches.
The NIC is able to make progresson MPI messageop-
erationsindependentlyfrom the applicationprocess,thus
providing the opportunity to efficiently overlap computa-
tion andcommunication.However, this methodis specific
to MPI constructsandsemantics.Ideally, the opportunity
for overlap should be exploitable by all high-level mes-
sagepassinginterfaces. The PortalsAPI allows for NIC
firmwareto implementMPI semanticswithout beingspe-
cific to MPI, so that otherhigher-level protocolscan also
reapthe benefitsof applicationbypassand reducedover-
head.

The particular implementationof Portals 3.0 that we
usedfor theabove experimentis interrupt-driven,so it has
the samedrawbacksthat an interrupt-driven implementa-
tion of MPI would have. However, the NIC-basedimple-
mentationof Portalswill addresstheselimitationsandstill
providethedesiredbenefitsof applicationbypass.

6. Summary

This paperhas describedthe evolution of the Portals
messagepassingarchitectureand programminginterface
from its initial developmenton tightly-coupledmassively
parallel platforms to the current implementationrunning
on a 1792-nodecommodity Linux cluster. The current
generationPortalsAPI providesthe basicbuilding blocks
necessaryfor higher-level protocolsto implementscalable,
high-performancecommunication.Theavailability of pro-
grammableNICs with significantprocessingpower makes

it possibleto implementPortalsin sucha way asto signif-
icantly reducereceive overhead,evenfor higher-level mes-
sagepassinglayerssuchasMPI.

7. Future Work

As mentionedpreviously, work on the PortalsMCP for
Myrinet is currentlyunderway. We expectto completethis
work in early2002andbeableto demonstratethefull per-
formanceadvantagesof theprogramminginterface.Weare
alsoworkingonportsto othernetworkinghardware,specif-
ically Quadricsandprogrammablegigabit Ethernetcards.
We arealsoconsideringportingPortals3.0 into theCougar
lightweightkernelto validateour approachon a massively
paralleltightly coupledplatform.

We have alsoconsideredaddinga few featuresto Por-
tals sincethe initial releaseof the API. We would like to
extendtheAPI to supportgather/scatteroperationsmoreef-
ficiently, andwe have hadrequestsfrom filesystemimple-
mentorsto extend the functionality of memorydescriptor
processingto moreeasilyaccommodateanin-kernelimple-
mentation.
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