Homework set 4: Grammars, regular languages, and context-free languages — due Monday 5 February

Total number of points available on this homework is 150. Full credit is equivalent to 100 points.

1. (20 pts.) What is the language generated by the grammar \(S \rightarrow SSS | a \)?

2. (20 pts.) Write a grammar for the language of the regular expression \(((a+b^*c)d)^*\).

3. (30 pts.) Give examples of languages that satisfy the following conditions:

 (a) \(L_1 \) is regular and infinite, \(L_2 \) is not regular, and \(L_1 \subseteq L_2 \).

 (b) \(L_3 \) is regular, \(L_4 \) is not regular, and \(L_4 \subseteq L_3 \).

4. (30 pts.) The reverse of a string \(x \) is denoted \(x^R \), and is defined recursively as follows: \(\varepsilon^R = \varepsilon \), and for \(\sigma \in \Sigma \), \((\sigma x)^R = \sigma x^R \).

 Consider the following grammar \(G \) over \(\Sigma = \{a, b\} \):

 \[
 S \rightarrow aSa \\
 S \rightarrow bSb \\
 S \rightarrow \varepsilon
 \]

 Prove that it is possible to derive from \(S \) any string of the form \(xSx^R \), where \(x \) is any string over \(\{a, b\} \).

5. (50 pts. - extra credit) Show that English is not context-free.

If you wish to study formal languages beyond the brief introduction we were able to do in class, here are some good books, ordered from more theoretical to more applied: