Homework set 9: \(\lambda \)-calculus — due Monday 5 March

Total number of points available on this homework is 100. Full credit is equivalent to 100 points.

1. (30 pts.) Show that the following terms have a normal form:
 (a) \((\lambda y. yyy)((\lambda a. b) I) (SS)\)
 (b) \((\lambda z. zy)((\lambda x. xxx)(\lambda x. xxx))(\lambda w. I)\)
 (c) \(SSSSSSSS\)

2. (40 pts.) For each of the following \(\lambda \)-expressions either find its normal form or show that it has no normal form:
 (a) \((\lambda x. xx)(\lambda x. x)\)
 (b) \((\lambda x. xx)(\lambda x. xx)\)
 (c) \(Y\) (see below)
 (d) \(Y(\lambda y. y)\)

3. (30 pts.) A \(\lambda \)-expression \textbf{Fix} with the property that \(\text{Fix} E = E(\text{Fix} E) \) for any \(E \) is called a fixed-point operator (or combinator). One well known fixed-point operator is \(Y \), defined as \(Y \equiv \lambda f. (\lambda x. f(xx))(\lambda x. f(xx)) \). Show that \(Y \) is a fixed-point operator.