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Abstract

We survey the biochemical constraints useful for the design

of DNA code words for DNA computation. We define the

DNA/RNA Code Constraint problem and cover biochemistry

topics relevant to DNA libraries. We examine which biochemi-

cal constraints are best suited for DNA word design.

1 Introduction

Most DNA1 computation models assume that com-
putation is error-free. For example, Adleman [2]
and Lipton [3] used randomly generated DNA strings
in their experiments because they assumed that er-
rors due to false positives are rare. However, it has
been experimentally shown that randomly generated
codes are inadequate for accurate DNA computation
as the size of the problem grows [4], since a poorly
chosen set of DNA strands can cause errors. There-
fore for many types of DNA computers, it may be
practical or even necessary to create a ‘library’ or
‘pool’ of DNA word codes suitable for computa-
tion.2

A properly constructed library would help to min-
imize errors so that DNA computation is more prac-
tical, reliable, scalable, and less costly in terms of
materials and laboratory time. The construction of a
library is non-trivial for two reasons. First, there are
4N unique DNA strings of lengthN; thus the num-

1Even though we describe most of the constraints in terms of
DNA, RNA computers also exist (for an example see [1]) and
all of the constraints are also relevant to RNA.

2For an overview of library design see [5]. For a survey of
algorithms that have been used to solve the DNA/RNA Code
Design Problem see [6].

ber of candidate molecules grows exponentially in
the length of the DNA string. Second, the constraints
used to find a library are complex since they are sub-
ject to the laws of biochemistry as well as the spe-
cific algorithm and computation style. Deaton states
that it is likely that the construction of a library “is
as difficult [i.e., NP-hard or harder] as the combi-
natorial optimization problems they are intended to
solve” [7].

We examine the biomolecular constraints typically
used to choose a set of DNA strings suitable for com-
putation. A combination of these constraints are a
possible solution to the DNA Code Constraint Prob-
lem. Given an algorithm for a type of DNA com-
puter, the DNA Code Constraint Problem is to find a
set of constraints that the DNA strands must satisfy
to minimize the number of errors due to the choice
of DNA strands. The constraints are determined by
the physical reality of performing the algorithm in
the laboratory and the specific algorithm and compu-
tation style.

2 Positive And Negative Design

Even though there are many types of DNA comput-
ers, most share similar biochemical requirements be-
cause they use the same fundamental biochemical
processes for computation. The fundamental compu-
tation step for most DNA computers occurs through
the bonding (hybridization) and unbonding (denatu-
ration) of oligonucleotides (short strands of DNA).
A single strand of DNA is composed of a sequence
of nucleotides. Each nucleotide contains a sugar (de-
oxyribose or ribose), a phosphate group, and one of
four bases, adenine (A), thymine (T), guanine (G),



or cytosine (C). RNA is composed similarly except
that thymine is replaced by the closely related uracil
(U). The nucleotides only form stable bonds in cer-
tain combinations: A hydrogen-bonds to T or U, and
G hydrogen-bonds to C. Thus A is the Watson-Crick
complement of T/U, and G is the Watson-Crick com-
plement of C. In addition, the “wobble pair”, G and
U, can form weak bonds. Hybridization or annealing
occurs when a sequence of nucleotides bonds to the
nucleotides of another sequence, starting from the
5’ end (the ribose end) of one sequence and the 3’
end (the phosphate end) of the other sequence. For
more comprehensive information about DNA chem-
istry, see [8,9].

Creating an error-free library typically requires
that planned hybridizations and denaturations (be-
tween a word and its Watson-Crick complement) do
occur and unplanned hybridizations and denatura-
tions (between all other combinations of code words
and their complements) do not occur. The former
situation is referred to as thepositive design prob-
lemand the latter is referred to as thenegative design
problem[6,10].

The positive design problem requires that there ex-
ists a sequence of reactions that produces the desired
outputs starting from the given inputs. Thus, positive
design attempts to “optimize affinity for the target
structure” [10]. These reactions must occur within
a reasonable amount of time for feasible concentra-
tions. Usually the strands must satisfy a specified
secondary structure criterion (e.g., the strand must
have a desired secondary structure or have no sec-
ondary structure at all). Since a strand is typically
identified by hybridization with its perfect Watson-
Crick complement, the positive design problem re-
quires that each Watson-Crick duplex is stable. In
addition, for computation styles that use denatura-
tion, the positive design problem often requires all
of the strands in the library to have similar melting
temperatures, or melting temperatures above some
threshold. In short, positive design tries to maximize
hybridization between perfect complements.

The negative design problem requires that (1) no
strand has undesired secondary structure such as
hairpin loops, (2) no string in the library hybridizes
with any string in the library, and (3) no string in
the library hybridizes with the complement of any
string in the library. Thus negative design attempts

to “optimize specificity for the target structure” [10].
Unplanned hybridizations can cause two types of
potential errors: false positives and false negatives.
False negatives occur when all (except an unde-
tectable amount) of DNA that encodes a solution is
hybridized in unproductive mismatches. Since mis-
matched strands are generally less stable than per-
fectly matched strands, false negatives can be con-
trolled by adjusting strand concentrations. Deaton
experimentally verified the occurrence of false pos-
itives, which happen when a mismatched hybridiza-
tion causes a strand to be incorrectly identified as a
solution [4]. False positives can be prevented by en-
suring that all unplanned hybridizations are unstable.
In short, negative design problem tries to minimize
non-specific hybridization.

Positive design often uses GC-content and energy
minimization as heuristics (see below). Negative de-
sign uses combinatorial methods (such as Hamming
distance, reverse complement Hamming distance,
shifted Hamming distance, and sequence symmetry
minimization), and thermodynamic methods (such
as minimum free energy). Constraints which incor-
porate both positive and negative design are prob-
ability, average incorrect nucleotides, energy gap,
probability gap, and energy minimization in combi-
nation with sequence symmetry minimization. The
best-performing models for designing single-strand
secondary structure use simultaneous positive and
negative design and significantly outperform either
method alone; however, kinetic constraints must be
considered separately since low free energy does not
necessarily imply fast folding [10]. We believe that
this same principle holds for designing hybridiza-
tions between pairs of strands.

3 Structure

Structure calculations attempt to predict which re-
actions will occur (i.e., which bonds will form and
which will break). The tendency of the atoms in
a molecule to bond together is referred to as the
molecule’s stability. Stability is affected by the se-
quence of bases, as well as environmental factors
such as temperature, pH, the time given to allow re-
action to complete, salt concentration, and the con-
centrations of the chemical components; temperature



is the most significant of these environmental factors.
The DNA folding problem refers to the prediction of
the structure and folding energy of a given sequence.
The inverse of this problem is the selection of a se-
quence with a given structure.

DNA and RNA can fold back upon itself into loops
or other irregular complex twisted shapes. The re-
maining sections can be a combination of different
types of loop structures, which are single-stranded
sections bounded by bonded base pairs (stem sec-
tions). A strand that has no stems is considered to
have no secondary structure. Loops can be classified
into several categories, Figure 1. A hairpin loop is
a loop with a single stem. Internal loops are loops
with single bases on both sides of the stem. Bulging
loops are loops with single bases on only one side of
the stem. Loops with three or more stems are called
branching loops.

Hairpin Loop Bulge Loop Internal LoopStem Branching Loop

Figure 1: DNA loops. Solid areas represent double
stranded sections. Lines represent single stranded
sections.

The structure of DNA is categorized in a four-level
hierarchy. The primary structure refers to the se-
quence of bases. The secondary structure describes
which individual molecules bond to each other.
Tertiary structure refers to the three-dimensional
folding—the actual positions of the molecules within
a single chain in three-dimensional space. Quater-
nary structure describes the three-dimensional inter-
action between two or more chains. The structure
of DNA and RNA can be fairly accurately predicted
from just the secondary structure because the tertiary
interactions are much weaker than the secondary in-
teractions. This assumption is particularly appropri-
ate for random sequences since they have a low prob-
ability of having tertiary structures [11]. In contrast,
sequences selected by evolution are likely to have
tertiary interactions; however, even though the ap-
proximation will be less accurate, the structure and
folding energy of non-random sequences can still be
approximated from just the secondary structure [11].
Unfortunately, there is an exponential number (ap-

proximately 1.8N) of possible secondary structures
for a sequence of lengthN [11,12].

The stability of a DNA structure is a result of the
change in free energy owing to bonding. The sim-
plest explanation of free energy is that “free energy
is energy that has the ability to do work” [8]. When
a spontaneous reaction occurs (at constant tempera-
ture and pressure), there is a decrease in free energy.
This decrease in free energy is equal to the maximum
amount of work that the system can do on its sur-
roundings. Conversely, for a non-spontaneous reac-
tion, the free energy is the amount of work that must
be done to cause the reaction to occur. The change
in free energy is denoted∆G. If ∆G< 0, the reaction
is spontaneous in the forward direction. If∆G = 0,
the reaction is at equilibrium. If∆G > 0, the reac-
tion is spontaneous in the reverse direction. When a
bond between atoms forms, stronger bonds produce
bigger changes in free energy; consequently, atoms
that bond strongly together are more likely to exist
in bonded form.

Thus DNA is more stable when it has lower free
energy and in most cases it will fold into the struc-
ture that has the minimum free energy. However, his
structure is not necessarily the most likely structure
to form. In fact, the equilibrium structure may not
be a single structure at all; “what actually occurs,
on the time scale of most enzymatic reactions rele-
vant for biological function, is rather an ensemble of
related structures interchanging more or less rapidly
with one another” [13]. For example, the structure of
the DNA of the bacterial virus T4 has several forms
in solution including a tight coil and an extended
form [14].

The most widely used method to estimate the free
energy of DNA is thenearest neighbor model, which
predicts the free energy of a duplex as the sum of
the free energy of each nearest neighbor pair plus a
few correction factors. The model is valid for sin-
gle strands, Watson-Crick complementary duplexes,
and mismatched duplexes, and it can be adjusted
for various temperature, pH, and salt conditions.
Nearest neighbor parameters have been measured for
several different types of nearest neighbors includ-
ing matched pairs, internal mismatched pairs, dan-
gling ends, internal loops, hairpin loops, and bulge
loops. However, the fastest algorithms assume that
the structure has no pseudoknots. (A pseudoknot is



an occurrence of two pairs of bonded bases at posi-
tions(i,k) and( j, l) such thati < j < k < l .) Proba-
bilistic measurements of free energy can also be de-
rived from the nearest neighbor model to predict the
most likely structure. Algorithms also exist which
predict the energy landscape of the structures that a
strand can form [15].

For a summary of nearest-neighbor thermodynam-
ics see [11]. For more information about nucleotide
structures see [12, 16]. For more information about
structure prediction algorithms see [17].

3.1 Secondary Structure of Single Strands

Most DNA computation styles need strands with no
secondary structure (i.e., no tendency to hybridize
with itself). There are, on the other hand, cases
where specific secondary structures are desired, such
as for deoxyribozyme logic gates [18]. Even there,
structures different from the desired must be elimi-
nated. Figure 2 shows the desired structure.
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Figure 2: Example of secondary structure in Sto-
janovic and Stefanovic’s DNA automaton [18] as
computed by Mfold [19–21] using 140 mM Na+,
2 mM Mg++, and 25◦C. The strand has three hair-
pin loops, which is the desired secondary structure.
∆G is−12.3 kcal/mol.

There are several heuristics that are used to pre-
vent secondary structure. Sometimes, repeated sub-

strings and complementary substrings within a sin-
gle strand which are non-overlapping and longer than
some minimum length are forbidden to prevent stem
formation; this heuristic is often calledsequence
symmetry minimization[10] or substring uniqueness.
Another heuristic is to forbid particular substrings;
theseforbidden substringsare usually strings known
to have undesired secondary structure. Alternatively,
strands are designed using only athree-letter alpha-
bet (A, C, T for DNA, A, C, U for RNA) to elim-
inate the potential for GC pairs which could cause
unwanted secondary structure [22].

In order to design a strand with a desired sec-
ondary structure, the nucleotides at positions which
bond together must be complementary. This sim-
ple approach can be improved by also requiring the
strands to satisfy some free-energy-based criteria,
such as those described below from Dirks et al. [10].

Theminimum free energyconstraint, which can be
calculated inO(N3) time for structures with no pseu-
doknots [23], is used to choose sequences such that
the target structure is the structure with the minimum
free energy. This method, however, does not ensure
that there are no other structures that the sequence
is likely to form. Algorithms exist which test that
a given set of singly-stranded DNA strands have no
unspecific hybridizations for word sets based on the
minimum free energy constraint [24,25].

The energy minimizationconstraint is used to
choose sequences which have a low free energy in
the target structure, but not necessarily the mini-
mum free energy. To design strands with this con-
straint, first generate a random strings that satis-
fies the complementary requirements of the desired
secondary structure. For each step (Dirks used 106

steps) choose a random one-point mutation. Lets′

be the sequence with this random one-point muta-
tion (and a mutation in the corresponding base re-
quired by the structure constraint, if any). Accept the
mutation by replacingswith s′ if:

e−
∆G(s′)−∆G(s)

RT ≥ ρ

whereρ ∈ [0,1] is a random number drawn from a
uniform distribution. Thus this equation always ac-
cepts any mutations which result in no change or a
decrease in free energy, and accepts with some prob-
ability any mutations which increase the free energy.



The free energy of a structure can be calculated in
O(N) time.

Sequences can also be chosen which maximize
theprobability of sampling the target structure. The
probability p(s) that every nucleotide in the sequence
σ exactly matches the target structuresat thermody-
namic equilibrium is calculated by:

p(s) =
1
Q

e−
∆G(s)

RT

where∆G(s) is the free energy of sequenceσ in sec-
ondary structures. The partition function,Q, is:

Q = ∑
s∈Ω

e−
∆G(s)

RT

whereΩ is the set of all secondary structures that se-
quenceσ can form in equilibrium. Ifs∗ is the target
secondary structure andp(s∗) ≈ 1 thenσ has a high
affinity and high specificity fors∗. An optimal dy-
namic programming algorithm calculatesp(s∗) for
structures with no pseudoknots inO(N3) time [13].
p(s∗) for secondary structures with pseudoknots can
be calculated inO(N5) time.

Additionally, sequences can be chosen to mini-
mize theaverage number of incorrect nucleotides,
n(s), over all equilibrium secondary structuresΩ.
For 1≤ i ≤ N and 1≤ j ≤ N, the structure matrix
S(s) for the sequenceσ of lengthN in structures is:

S(s)i, j =

{

1, if basei is paired with basej in s
0, otherwise

S(s)i,N+1 =

{

1, if basei is unpaired ins
0, otherwise

S(s) can be thought of as a matrix with elements that
are 0 or 1. The sum of each row ofS(s) is 1. For
1≤ i ≤ N and 1≤ j ≤ N, the probability matrixP(s)
is:

P(s)i, j = ∑
s∈Ω

p(s)S(s)i, j

whereP(s)i, j is the probability of forming a base pair
between the nucleotides at positioni and j. P(s)i,N+1

is the probability that basei is unpaired. P(s) can
be thought of as a matrix with elements that are
real numbers in[0,1], and the sum of each row of
P(s) is 1. n(s) is the average number of incorrect

nucleotides over the equilibrium ensemble of sec-
ondary structuresΩ. If s∗ is the target structure then:

n(s∗) = N−

N

∑
i=1

N+1

∑
j=1

P(s)i, j S(s∗)i, j

n(s∗) can be calculated inO(N3) time in structures
with no pseudoknots andO(N5) in structures with
pseudoknots.

The best-performing models are probability, aver-
age incorrect nucleotides, and energy minimization
in combination with sequence symmetry minimiza-
tion for the substrings that are not constrained by the
desired secondary structure. The middle-performing
models are the negative design methods (minimum
free energy, and sequence symmetry minimization
alone). The worst performing model is energy min-
imization (a positive design method). Surprisingly,
minimum free energy performs similarly to sequence
symmetry minimization. These results show that free
energy measurements do not guarantee good design;
an effective search must use both positive and nega-
tive design methods.

3.2 Secondary Structure of Duplexes

The Watson-Crick complement of a strand is ob-
tained by reversing it and then complementing each
base. ‘Perfectly matched’ strands are Watson-Crick
complements of each other. In general, two DNA
strands that are Watson-Crick complementary tend
strongly to bind together. However different se-
quences have relatively stronger or weaker tenden-
cies to bind with their perfect complements. In addi-
tion, some mismatched pairs of strands can also form
stable structures, and different mismatched pairs can
also have stronger or weaker tendencies to bond.
In general, mismatched strands are less stable than
Watson-Crick-complementary sequences.

DNA has two types of bonds that determine its
secondary structure. The nucleotides in a single
strand are held together by phosphodiester bonds.
Hydrogen bonds form between nucleotides of sep-
arate chains. The change in free energy when a per-
fectly matched duplex forms is often estimated by
either (1) the type of hydrogen bonds, AT vs. GC,
expressed as the percentage of nucleotides that are G
and C bases in a strand or duplex, which is known



as GC-content; or (2) both the hydrogen and the
phosphodiester bonds, which is the nearest-neighbor
model.

Since GC base pairs are held together by three hy-
drogen bonds and AT base pairs are held together
by only two hydrogen bonds, double-stranded DNA
with a high GC content isoften more stable than
DNA with a high AT content. Many DNA li-
brary searches require each strand to have a 50% GC-
content to balance the requirement of stable matched
hybridizations for identification purposes with the re-
quirements of denaturation. The advantage of using
the GC-content heuristic is that it is simple to cal-
culate; only the length and the number of GC bases
are needed, where the length refers to the number
of nucleotide base pairs. However a disadvantage
is that the nearest-neighbor heuristic is more accu-
rate than the GC-content heuristic because the near-
est neighbor base stacking energies account for more
of the change in free energy than the energy of the
hydrogen bonding between nucleotide bases. Thus
the GC-content measure is a coarse heuristic for in-
directly estimating the stability of a duplex, whereas
the nearest-neighbor model attempts to approximate
the actual change in free energy.

Digital codes and DNA are similar because codes
are used to store information in digital strings, and
DNA can be thought of as their biological equiv-
alent. Thus, many early attempts to describe the
differences between two DNA strings used results
from coding theory. Requiring all pairs of strings
in the library to have at least a given minimumHam-
ming distance(i.e., the number of characters in cor-
responding places which differ between two strings),
is intended to satisfy the requirement that no pair of
strings in the library should hybridize. Other exten-
sions to Hamming distance have been developed in
the literature. For example, thereverse complement
Hamming distanceis the number of corresponding
positions which differ in the complement ofs1 and
the reverse ofs2 (wheres1 and s2 are not Watson-
Crick complementary). This constraint is used to re-
duce the false positives that occur from hybridization
between a word and the reverse of another word in
the library. For more information on algorithms for
strings see [26].

The advantage of Hamming distance (and its vari-
ations) is its theoretical simplicity and the vast body

of extant work in coding theory. Many bounds have
been calculated on the optimal size of codes with
various Hamming-distance-based constraints [27].
Many early search algorithms used only Hamming
distance as a constraint to develop combinatorial al-
gorithms based on the results from coding theory.
However, Hamming distance alone appears to be a
problematic constraint.

One problem with Hamming-distance-based
heuristics is that this measure assumes that position
i of the first string is aligned with positioni of the
second string. However, since duplexes can be
formed with dangling ends and loops, this is not the
only possible alignment. VariousHamming distance
slides, substring uniqueness[28], partial words [29],
and H-measure [30] constraints have been developed
to fix the alignment problem.

Another problem with heuristics based on Ham-
ming distance is that the percentage of matching base
pairs necessary to form a duplex is not necessarily
known. Melting temperature can be used to approx-
imate what the minimum Hamming distance should
be.3 However, for a given temperature and word set,
there can be significant variation in the required min-
imum distance, because the necessary distance de-
pends on the reaction conditions, especially the tem-
perature.

Now that accurate free-energy information is
available for all but the most complicated sec-
ondary structures (e.g., branching loops), the nearest-
neighbor model is a much more accurate method to
use than the constraints based on Hamming distance.
One possible way of using free-energy-based cal-
culations as a constraint to prevent mismatched du-
plexes is to maximize the gap between the free en-
ergy of the weakest specific hybridization and the
free energy of strongest nonspecific hybridization,
which we refer to as theenergy gap; this approach
was used by Penchovsky [31]. A metric also exists
which calculates the maximum number of bonded
base pairs formed from two strands using the nearest
neighbor model [32]. The probability,p(s∗), mea-

3Deaton estimates the melting temperature of mismatched
duplexes by decreasing 1◦C per 1% mismatch between oligonu-
cleotides [4]. Since this calculation is outdated (see Section 4), if
this heuristic is used for a library search, it is recommended that
the melting temperature should be estimated from free energy
calculations.



surement could also be applied to duplexes. A rea-
sonable heuristic would be to maximize the gap be-
tween the lowest probability of the desired specific
hybridizations and the highest probability of unde-
sired non-specific hybridizations, which we refer to
as theprobability gap. Algorithms exist which calcu-
late the probability,p(s∗), for all possible combina-
tions of single and double stranded foldings between
a pair of strands [33]. Various equilibrium thermo-
dynamic approaches have been used [34–38]. Com-
putational incoherence,ξ , predicts the probability of
error hybridization per-structure based on statistical
thermodynamics [34,39].

The physically-based models can be divided into
categories based on the level of chemical detail [40].
Techniques which model single molecules include
molecular mechanics models such as Monte Carlo
minimum free energy simulations and molecular dy-
namics which models the change of the system with
time. Techniques which average system behavior,
or mass action approaches, are less accurate but
more computationally feasible. Molecular mechan-
ics (which models the movement of the system to
the lowest energy), chemical kinetics, melting tem-
perature, and statistical thermodynamics are all mass
action approaches.

4 Melting Temperature

Melting temperature is typically used as a constraint
in DNA paradigms that use multiple hybridization
and denaturation steps to identify the answer, for an
example see [1]. When DNA is heated considerably
above physiological temperatures, to 100◦C, the hy-
drogen bonds that bind two bases together tend to
break apart, and the strands tend to separate from
each other. The probability that a bond will break in-
creases with temperature. This probability can be de-
scribed by the melting temperature, which is the tem-
perature in equilibrium at which 50% of the oligonu-
cleotides have hybridized to their perfect comple-
ments and 50% of the oligonucleotides are separated.
Since temperature control is often used to help dena-
ture the strands in between steps, it is advantageous
for these paradigms to require all of the strands in
the library to have similar melting temperatures or
melting temperatures above some threshold.

The melting temperature of a perfectly matched
duplex can be roughly estimated from the 2–4 rule
[5] which predicts the melting temperature as twice
the number of AT base pairs plus 4 times the num-
ber of GC base pairs. Another rough estimate of the
change in melting temperature due to mismatched
duplexes can also be obtained by decreasing the
melting temperature of a corresponding matched du-
plex by 1◦C per 1% mismatch; unfortunately, the in-
accuracy is typically greater than 10◦C [11]. Nei-
ther method is recommended. A better method
is to use the nearest-neighbor model regardless of
whether the duplex is perfectly matched or mis-
matched. This method produces more accurate re-
sults because melting temperature is closely related
to free energy and can be predicted from the nearest-
neighbor model. Melting temperature has been used
to characterize the hybridization potential of a du-
plex [41,42], but this measure cannot be used to pre-
dict whether two strands are bound at a given temper-
ature and the melting temperatures of different du-
plexes do not necessarily correspond to relative rank-
ings of stability.

5 Reaction Rates

Once the structure of candidate strands is known, the
next logical question to ask is how fast do these re-
actions occur and what concentration is needed. Ki-
netics deals with the rate of change of reactions. For
some implementations of DNA computers, the rate
of the reaction could be an additional search con-
straint. System-level simulation software has been
described for this purpose [43].

6 Evaluating a Set of DNA Strands
for DNA Computation

Of the heuristics previously mentioned, the most ap-
propriate method for obtaining an estimate of the ab-
solute or relative rate of hybridization error is ther-
modynamics and statistical thermodynamics. For ex-
ample, p(s∗), n(s∗), pair probabilities, and free en-
ergy have been used to evaluate whether a singly
stranded sequence will have the desired secondary
structure,s∗ [10]. Statistical thermodynamics (the



partition function of all hybridized configurations)
has been used to evaluate the set of strands used
in Adleman’s original Hamiltonian Path problem by
predicting the error rate [44]. Computational inco-
herence [34,39],ξ , could also be used for evaluation.
In addition, the energy gap or probability gap could
be used for evaluation. The final evaluation criterion
must be how the strands perform in the laboratory,
since this is what the library is ultimately designed
for.

7 DNA Prediction Software

RNA free energy nearest neighbor parameters are
available from the Turner Group [45]. MFold [19],
Hyther [20, 46, 47], the Vienna Package [48], NU-
PACK [49, 50], EdnaCo [51], NucleicPark [38],
RNAstructure [45], Dynalign [52], and RNAsoft [53]
are DNA/RNA structure prediction software which
is available on the web. Visual OMP (Oligonu-
cleotide Modeling Platform; DNA Software Inc.)
[54] is commercially available software. Kinfold
[55] is software for kinetic simulation.

8 Conclusion

Structure prediction can be separated into two prob-
lems. The first is to understand how DNA folds in
nature. The second is to understand how comput-
ers should fold DNA strands to obtain the structure.
Since nature has the advantage of parallel process-
ing and the proximity of the molecules in space, the
way nature finds the solution to the folding prob-
lem should not necessarily be the same as the way a
computer finds the solution. Early algorithms to find
DNA word sets focused on the Hamming distance
constraint or variations thereof to achieve a theoreti-
cal abstraction of the constraints, which allowed the
use of combinatorial algorithms and proofs of com-
pleteness (i.e., that the size of the pool is optimal
or near optimal). However, in the process the con-
straints are simplified so much that they no longer ac-
curately predict DNA structure. Current algorithms
tend to use a more complex combination of the con-
straints. However, since these constraints are diffi-
cult to abstract, more recent programs resort to ge-
netic algorithms, random search, exhaustive search,

and local stochastic search algorithms.
Thermodynamics, melting temperature and kinet-

ics are best at predicting DNA structure and reaction
rates. Calculating thermodynamics and kinetics can
be costly, however. According to the requirements
mentioned for the negative design problem, check-
ing that a library of sizeM meets specifications re-
quiresO(M2) string comparisons, where each com-
parison of a pair of strings of lengthN is potentially
polynomial inN. However, this does not mean that
the weaker combinatorial and heuristic predictors are
useless. Many of these alternative structure heuris-
tics could be used to quickly filter a candidate set
of library molecules, and then the free energy model
could be used to more accurately check this set. If
this approach is adopted, the correlation between
these alternative heuristics and free energy measure-
ments should be explored. Alternatively, free en-
ergy or probability approximation algorithms could
be used. This approach has the advantage that tech-
niques from randomized algorithm analysis could be
used to prove the correctness of the approximation.

Research in DNA libraries has two main goals:
(1) to further understand DNA chemistry, and (2) to
understand search techniques useful for constructing
sets of DNA codes. Although there is a growing con-
sensus that DNA computers will never be as practical
or as fast as conventional computers, biological com-
puters have the advantage that their style of compu-
tation is closer to natural processes. Successful re-
search in DNA libraries will help to reduce errors in
DNA computation and may discover new informa-
tion about how DNA interacts with itself. Although
current DNA computers are simplistic in compari-
son to natural biochemical processes, DNA computa-
tion may help to develop alternative theories for how
cells work or could have evolved [56]. In addition,
research in DNA design also pertains to DNA nan-
otechnology, PCR-based applications, and DNA ar-
rays. Breakthroughs in this field will add to the cur-
rent knowledge of DNA chemistry as well as DNA
computers.
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