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Abstract ber of candidate molecules grows exponentially in
the length of the DNA string. Second, the constraints
We survey the biochemical constraints useful for the desigised to find a library are complex since they are sub-
of DNA code words for DNA computation. We define thgect to the laws of biochemistry as well as the spe-
DNA/RNA Code Constraint problem and cover biochemistrgific algorithm and computation style. Deaton states
topics relevant to DNA libraries. We examine which biochemthat it is likely that the construction of a library “is

cal constraints are best suited for DNA word design. as difficult [i.e., NP-hard or harder] as the combi-
natorial optimization problems they are intended to

) solve” [7].
1 Introduction We examine the biomolecular constraints typically

1 ] used to choose a set of DNA strings suitable for com-
Most DNA" computation models assume that comy 1ation - A combination of these constraints are a

putation is error-free. For example, Adleman [ ssiple solution to the DNA Code Constraint Prob-
gnd Ll_pton [3]_used randomly generated DNAStrings ., Given an algorithm for a type of DNA com-

in their experiments because they assumed that & the DNA Code Constraint Problem is to find a
rors due to false positives are rare. However, it hag; of constraints that the DNA strands must satisfy

been experimentally shown that randomly generatgfinimize the number of errors due to the choice

codes are inadequate for accurate DNA computatigfipna strands. The constraints are determined by
as the size of the problem grows [4], since a poorlye physical reality of performing the algorithm in

chosen set of DNA strands can cause errors. Thejgs jahoratory and the specific algorithm and compu-
fore for many types of DNA computers, it may bg,iion style.

practical or even necessary to create a ‘library’ or
‘pool’ of DNA word codes suitable for computa- o ] )
tion 2 2 Positive And Negative Design

A properly constructed library would help to min-

imize errors so that DNA computation is more pra&Ven though there are many types of DNA comput-

tical, reliable, scalable, and less costly in terms 8fS, most share similar biochemical requirements be-
materials and laboratory time. The construction ofcgUse they use the same fundamental biochemical
library is non-trivial for two reasons. First, there arB'OCESSes for computation. The fundamental compu-

4N unique DNA strings of lengtiN; thus the num- fation step for most DNA computers occurs through

the bonding (hybridization) and unbonding (denatu-
1Even though we describe most of the constraints in termsreftion) of oligonucleotides (short strands of DNA).

DNA, RNA computers also exist (for an example see [1]) ang single strand of DNA is composed of a sequence

all of the constraints are also relevant to RNA. - - .
> X . . qf nucleotides. Each nucleotide contains a sugar (de-
For an overview of library design see [5]. For a survey o

algorithms that have been used to solve the DNA/RNA Co@XYribose or ribose), a phosphate group, and one of
Design Problem see [6]. four bases, adenine (A), thymine (T), guanine (G),




or cytosine (C). RNA is composed similarly excepb “optimize specificity for the target structure” [10].
that thymine is replaced by the closely related uratinplanned hybridizations can cause two types of
(U). The nucleotides only form stable bonds in cepotential errors: false positives and false negatives.
tain combinations: A hydrogen-bonds to T or U, anfdlalse negatives occur when all (except an unde-
G hydrogen-bonds to C. Thus A is the Watson-Crig¢kctable amount) of DNA that encodes a solution is
complement of T/U, and G is the Watson-Crick contvybridized in unproductive mismatches. Since mis-
plement of C. In addition, the “wobble pair”, G andnatched strands are generally less stable than per-
U, can form weak bonds. Hybridization or annealinfgctly matched strands, false negatives can be con-
occurs when a sequence of nucleotides bonds to ttedled by adjusting strand concentrations. Deaton
nucleotides of another sequence, starting from tleperimentally verified the occurrence of false pos-
5" end (the ribose end) of one sequence and theitBies, which happen when a mismatched hybridiza-
end (the phosphate end) of the other sequence. fan causes a strand to be incorrectly identified as a
more comprehensive information about DNA chensolution [4]. False positives can be prevented by en-
istry, see [8,9]. suring that all unplanned hybridizations are unstable.
Creating an error-free library typically require$n short, negative design problem tries to minimize
that planned hybridizations and denaturations (b®en-specific hybridization.
tween a word and its Watson-Crick complement) do Positive design often uses GC-content and energy
occur and unplanned hybridizations and denaturainimization as heuristics (see below). Negative de-
tions (between all other combinations of code word#gn uses combinatorial methods (such as Hamming
and their complements) do not occur. The formeistance, reverse complement Hamming distance,
situation is referred to as thgositive design prob- shifted Hamming distance, and sequence symmetry
lemand the latter is referred to as thegative design minimization), and thermodynamic methods (such
problem[6, 10]. as minimum free energy). Constraints which incor-
The positive design problem requires that there gyerate both positive and negative design are prob-
ists a sequence of reactions that produces the desubility, average incorrect nucleotides, energy gap,
outputs starting from the given inputs. Thus, positiysrobability gap, and energy minimization in combi-
design attempts to “optimize affinity for the targatation with sequence symmetry minimization. The
structure” [10]. These reactions must occur withimest-performing models for designing single-strand
a reasonable amount of time for feasible concentgecondary structure use simultaneous positive and
tions. Usually the strands must satisfy a specifie@égative design and significantly outperform either
secondary structure criterion (e.g., the strand muséthod alone; however, kinetic constraints must be
have a desired secondary structure or have no semasidered separately since low free energy does not
ondary structure at all). Since a strand is typicallyecessarily imply fast folding [10]. We believe that
identified by hybridization with its perfect Watsonthis same principle holds for designing hybridiza-
Crick complement, the positive design problem réeons between pairs of strands.
quires that each Watson-Crick duplex is stable. In
addition, for computation styles that use denatura-
tion, the positive design problem often requires & Structure
of the strands in the library to have similar melting
temperatures, or melting temperatures above soS8teucture calculations attempt to predict which re-
threshold. In short, positive design tries to maximiztions will occur (i.e., which bonds will form and
hybridization between perfect complements. which will break). The tendency of the atoms in
The negative design problem requires that (1) momolecule to bond together is referred to as the
strand has undesired secondary structure suchmagecule’s stability. Stability is affected by the se-
hairpin loops, (2) no string in the library hybridizegjuence of bases, as well as environmental factors
with any string in the library, and (3) no string irsuch as temperature, pH, the time given to allow re-
the library hybridizes with the complement of angction to complete, salt concentration, and the con-
string in the library. Thus negative design attemptentrations of the chemical components; temperature



is the most significant of these environmental factogsroximately 18V) of possible secondary structures
The DNA folding problem refers to the prediction ofor a sequence of lengtk [11, 12].
the structure and folding energy of a given sequenceThe stability of a DNA structure is a result of the
The inverse of this problem is the selection of a sehange in free energy owing to bonding. The sim-
qguence with a given structure. plest explanation of free energy is that “free energy
DNA and RNA can fold back upon itself into loopss energy that has the ability to do work” [8]. When
or other irregular complex twisted shapes. The ra-spontaneous reaction occurs (at constant tempera-
maining sections can be a combination of differeture and pressure), there is a decrease in free energy.
types of loop structures, which are single-stranddthis decrease in free energy is equal to the maximum
sections bounded by bonded base pairs (stem smmount of work that the system can do on its sur-
tions). A strand that has no stems is consideredrtundings. Conversely, for a non-spontaneous reac-
have no secondary structure. Loops can be classifiiesh, the free energy is the amount of work that must
into several categories, Figure 1. A hairpin loop lse done to cause the reaction to occur. The change
a loop with a single stem. Internal loops are loops free energy is denoteiG. If AG < 0, the reaction
with single bases on both sides of the stem. Bulgimgspontaneous in the forward direction.AG = 0,
loops are loops with single bases on only one sidetbe reaction is at equilibrium. WG > 0, the reac-
the stem. Loops with three or more stems are callgon is spontaneous in the reverse direction. When a
branching loops. bond between atoms forms, stronger bonds produce
bigger changes in free energy; consequently, atoms
- 5 that bond strongly together are more likely to exist
=0 — in bonded form.
Thus DNA is more stable when it has lower free

Figure 1: DNA loops. Solid areas represent doub?gergy and in most cases it will fold into the struc-

. . . éuga that has the minimum free energy. However, his
stranded sections. Lines represent single stran e : . :
sections sfructure is not necessarily the most likely structure

to form. In fact, the equilibrium structure may not
be a single structure at all; “what actually occurs,
The structure of DNA is categorized in a four-levedn the time scale of most enzymatic reactions rele-

hierarchy. The primary structure refers to the seant for biological function, is rather an ensemble of
guence of bases. The secondary structure descritedated structures interchanging more or less rapidly
which individual molecules bond to each othewith one another” [13]. For example, the structure of
Tertiary structure refers to the three-dimensiontile DNA of the bacterial virus T4 has several forms
folding—the actual positions of the molecules withim solution including a tight coil and an extended
a single chain in three-dimensional space. Quatéyrm [14].
nary structure describes the three-dimensional inter-The most widely used method to estimate the free
action between two or more chains. The structuemergy of DNA is thenearest neighbor modelvhich
of DNA and RNA can be fairly accurately predictegredicts the free energy of a duplex as the sum of
from just the secondary structure because the tertistng free energy of each nearest neighbor pair plus a
interactions are much weaker than the secondary fiew correction factors. The model is valid for sin-
teractions. This assumption is particularly appropigle strands, Watson-Crick complementary duplexes,
ate for random sequences since they have a low prabhd mismatched duplexes, and it can be adjusted
ability of having tertiary structures [11]. In contrastfor various temperature, pH, and salt conditions.
sequences selected by evolution are likely to haMearest neighbor parameters have been measured for
tertiary interactions; however, even though the apeveral different types of nearest neighbors includ-
proximation will be less accurate, the structure amuly matched pairs, internal mismatched pairs, dan-
folding energy of non-random sequences can still geng ends, internal loops, hairpin loops, and bulge
approximated from just the secondary structure [11¢ops. However, the fastest algorithms assume that
Unfortunately, there is an exponential number (afite structure has no pseudoknots. (A pseudoknot is

Stem Hairpin Loop Bulge Loop Internal Loop Branching Loop



an occurrence of two pairs of bonded bases at pasiings and complementary substrings within a sin-
tions (i,k) and(j,l) such thai < j < k < .) Proba- gle strand which are non-overlapping and longer than
bilistic measurements of free energy can also be d@me minimum length are forbidden to prevent stem
rived from the nearest neighbor model to predict tfiermation; this heuristic is often calledequence
most likely structure. Algorithms also exist whiclksymmetry minimizatiof10] or substring uniqueness
predict the energy landscape of the structures thaAmother heuristic is to forbid particular substrings;
strand can form [15]. theseforbidden substringare usually strings known
For a summary of nearest-neighbor thermodynate-have undesired secondary structure. Alternatively,
ics see [11]. For more information about nucleotidgrands are designed using onlyheee-letter alpha-
structures see [12, 16]. For more information abobet (A, C, T for DNA, A, C, U for RNA) to elim-

structure prediction algorithms see [17]. inate the potential for GC pairs which could cause
unwanted secondary structure [22].
3.1 Secondary Structure of Single Strands In order to design a strand with a desired sec-

ondary structure, the nucleotides at positions which
Most DNA computation styles need strands with nsond together must be complementary. This sim-
secondary structure (i.e., no tendency to hybridipge approach can be improved by also requiring the
with itself). There are, on the other hand, casefands to satisfy some free-energy-based criteria,
where specific secondary structures are desired, sggbh as those described below from Dirks et al. [10].
as for deoxyribozyme logic gates [18]. Even there, Theminimum free energgonstraint, which can be
structures different from the desired must be elim¢alculated irO(N®) time for structures with no pseu-
nated. Figure 2 shows the desired structure. doknots [23], is used to choose sequences such that
the target structure is the structure with the minimum
/G/A/G\A\*\ free energy. This method, however, does not ensure
that there are no other structures that the sequence
is likely to form. Algorithms exist which test that
N e a given set of singly-stranded DNA strands have no
-% unspecific hybridizations for word sets based on the
i minimum free energy constraint [24, 25].
;8Cc, The energy minimizationconstraint is used to
choose sequences which have a low free energy in
the target structure, but not necessarily the mini-
Sy o mum free energy. To design strands with this con-
C;To/ N e e straint, first generate a random strisghat satis-
e A7, fies the complementary requirements of the desired
‘ secondary structure. For each step (Dirks use€t 10
steps) choose a random one-point mutation. 4 et
Asra-T ™ % Dbe the sequence with this random one-point muta-
tion (and a mutation in the corresponding base re-

Figure 2: Example of secondary structure in stguired by the structure constraint, if any). Accept the

janovic and Stefanovic’s DNA automaton [18] ad'utation by replacing with s’ if:
computed by Mfold [19-21] using 140 mM Na

o0—-4—0

O—>—

_ AG(d)-AG(s)
2mM Mg*t, and 25C. The strand has three hair- e R >p
pin loops, which is the desired secondary structure. _
AGis —12.3 kcal/mol. wherep € [0,1] is a random number drawn from a

uniform distribution. Thus this equation always ac-

cepts any mutations which result in no change or a

There are several heuristics that are used to pdecrease in free energy, and accepts with some prob-
vent secondary structure. Sometimes, repeated salhitity any mutations which increase the free energy.



The free energy of a structure can be calculatednncleotides over the equilibrium ensemble of sec-
O(N) time. ondary structure®. If s* is the target structure then:
Sequences can also be chosen which maximize

the probability of sampling the target structure. The o NONEL P
probability p(s) that every nucleotide in the sequence (8 = N- i; J; P(S)i,i S8 )i
o exactly matches the target structgrat thermody-
namic equilibrium is calculated by: n(s") can be calculated i®(N3) time in structures
1 ses with no pseudoknots an@(N°®) in structures with
p(s) = 0 e R’T pseudoknots.

The best-performing models are probability, aver-
whereAG(s) is the free energy of sequengen sec- age incorrect nucleotides, and energy minimization
ondary structura. The partition function@, is: in combination with sequence symmetry minimiza-
tion for the substrings that are not constrained by the
Q= %e‘ RT desired secondary structure. The middle-performing

se models are the negative design methods (minimum

whereQ is the set of all secondary structures that sE€€ €nergy, and sequence symmetry minimization
guenceo can form in equilibrium. Ifs* is the target f’;\lo_ne)_. The WOI’_SF perfor_mlng model is e”ergy_ min-
secondary structure anis’) ~ 1 theno has a high |m_|z_at|on (a positive design met_ho_d). Surprisingly,
affinity and high specificity fos*. An optimal dy- Minimum fre_e energy performs similarly to sequence
namic programming algorithm calculategs®) for symmetry minimization. These results show thatfrge
structures with no pseudoknots @(N3) time [13]. energy measurements do not guarantgt_a good design;
p(s') for secondary structures with pseudoknots c4ff €ffective search must use both positive and nega-
be calculated i©O(N®) time. tive design methods.

Additionally, sequences can be chosen to mini-
mize theaverage number of incorrect nucleotiges3.2 Secondary Structure of Duplexes
n(s), over all equilibrium secondary structur€x
For 1<i <N and 1< j <N, the structure matrix
S(s) for the sequence of lengthN in structuresis:

AG(s)

The Watson-Crick complement of a strand is ob-

tained by reversing it and then complementing each

base. ‘Perfectly matched’ strands are Watson-Crick

Ss) { 1, if basei is paired with basé in s complements of each other. In general, two DNA
L) —

0, otherwise strands that are Watson-Crick complementary tend
strongly to bind together. However different se-
1, if basei is unpaired irs guences have relatively stronger or weaker tenden-
SNt = { 0, otherwise cies to bind with their perfect complements. In addi-

tion, some mismatched pairs of strands can also form
§(s) can be thought of as a matrix with elements thstable structures, and different mismatched pairs can
are 0 or 1. The sum of each row 8fs) is 1. For also have stronger or weaker tendencies to bond.
1<i<Nand 1< j <N, the probability matriXP(s) In general, mismatched strands are less stable than
is: Watson-Crick-complementary sequences.
DNA has two types of bonds that determine its
P(s)i,j = Zzp(s)s(s)i»i secondary structure. The nucleotides in a single
> strand are held together by phosphodiester bonds.
whereP(s); j is the probability of forming a base paiHydrogen bonds form between nucleotides of sep-
between the nucleotides at positicend j. P(s); n+1 arate chains. The change in free energy when a per-
is the probability that baseis unpaired. P(s) can fectly matched duplex forms is often estimated by
be thought of as a matrix with elements that amither (1) the type of hydrogen bonds, AT vs. GC,
real numbers ir0,1], and the sum of each row ofexpressed as the percentage of nucleotides that are G
P(s) is 1. n(s) is the average number of incorrecand C bases in a strand or duplex, which is known



as GC-content or (2) both the hydrogen and theof extant work in coding theory. Many bounds have
phosphodiester bonds, which is the nearest-neighbeen calculated on the optimal size of codes with
model. various Hamming-distance-based constraints [27].
Since GC base pairs are held together by three Wany early search algorithms used only Hamming
drogen bonds and AT base pairs are held togetlistance as a constraint to develop combinatorial al-
by only two hydrogen bonds, double-stranded DNgorithms based on the results from coding theory.
with a high GC content iften more stable than However, Hamming distance alone appears to be a
DNA with a high AT content. Many DNA li- problematic constraint.
brary searches require each strand to have a 50% GGne problem with Hamming-distance-based
content to balance the requirement of stable matcheslristics is that this measure assumes that position
hybridizations for identification purposes with the ra-of the first string is aligned with positionof the
quirements of denaturation. The advantage of usisgcond string. However, since duplexes can be
the GC-content heuristic is that it is simple to cafermed with dangling ends and loops, this is not the
culate; only the length and the number of GC basesly possible alignment. Varioudamming distance
are needed, where the length refers to the numkédes substring uniqguened&8], partial words [29],
of nucleotide base pairs. However a disadvantaged H-measure [30] constraints have been developed
is that the nearest-neighbor heuristic is more acauo-fix the alignment problem.
rate than the GC-content heuristic because the nearanother problem with heuristics based on Ham-
est neighbor base stacking energies account for mafiag distance is that the percentage of matching base
of the change in free energy than the energy of thairs necessary to form a duplex is not necessarily
hydrogen bonding between nucleotide bases. Thiwn. Melting temperature can be used to approx-
the GC-content measure is a coarse heuristic for jmate what the minimum Hamming distance should
directly estimating the stability of a duplex, wheredse3 However, for a given temperature and word set,
the nearest-neighbor model attempts to approximftere can be significant variation in the required min-
the actual change in free energy. imum distance, because the necessary distance de-
Digital codes and DNA are similar because codgends on the reaction conditions, especially the tem-
are used to store information in digital strings, angerature.
DNA can be thought of as their biological equiv- Now that accurate free-energy information is
alent. Thus, many early attempts to describe th@ailable for all but the most complicated sec-
differences between two DNA strings used resulidary structures (e.g., branching loops), the nearest-
from coding theory. Requiring all pairs of stringseighbor model is a much more accurate method to
in the library to have at least a given minimam- yse than the constraints based on Hamming distance.
mlng diStanCE(i.e., the number of characters in COIHne possib|e way of using free_energy_based cal-
responding places which differ between two stringulations as a constraint to prevent mismatched du-
is intended to SatiSfy the reC]Uirement that no pair Qfexes is to maximize the gap between the free en-
strings in the library should hybridize. Other extersrgy of the weakest specific hybridization and the
sions to Hamming distance have been developediie energy of strongest nonspecific hybridization,
the literature. For example, thieverse complementyhich we refer to as thenergy gap this approach
Hamming distances the number of correspondingyas used by Penchovsky [31]. A metric also exists
positions which differ in the complement ef and which calculates the maximum number of bonded
the reverse of; (wheres, ands; are not Watson- pase pairs formed from two strands using the nearest

Crick complementary). This constraint is used to reighbor model [32]. The probabilityp(s*), mea-
duce the false positives that occur from hybridization

between a word and the reverse of another word inDeaton estimates the melting temperature of mismatched

the library. For more information on algorithms fofluplexes by decreasingQ@ per 1% mismatch between oligonu-
strings see [26] choUdesl [4}. $|nce this calf:ulatlon is outc!aFed (seeiBed), if

’ . . . this heuristic is used for a library search, it is recommeinthat
The advantage of Hamming distance (and its Vafiie melting temperature should be estimated from free gnerg

ations) is its theoretical simplicity and the vast bodalculations.




surement could also be applied to duplexes. A rea-The melting temperature of a perfectly matched
sonable heuristic would be to maximize the gap béuplex can be roughly estimated from the 2—4 rule
tween the lowest probability of the desired specifif] which predicts the melting temperature as twice
hybridizations and the highest probability of undgéhe number of AT base pairs plus 4 times the num-
sired non-specific hybridizations, which we refer tber of GC base pairs. Another rough estimate of the
as theprobability gap Algorithms exist which calcu- change in melting temperature due to mismatched
late the probability,p(s*), for all possible combina- duplexes can also be obtained by decreasing the
tions of single and double stranded foldings betweerelting temperature of a corresponding matched du-
a pair of strands [33]. Various equilibrium thermoplex by C per 1% mismatch; unfortunately, the in-
dynamic approaches have been used [34—38]. Cameuracy is typically greater than °XD [11]. Nei-
putational incoherencé,, predicts the probability of ther method is recommended. A better method
error hybridization per-structure based on statistidalto use the nearest-neighbor model regardless of
thermodynamics [34, 39]. whether the duplex is perfectly matched or mis-
The physically-based models can be divided intoatched. This method produces more accurate re-
categories based on the level of chemical detail [48)ilts because melting temperature is closely related
Technigues which model single molecules include free energy and can be predicted from the nearest-
molecular mechanics models such as Monte Carieighbor model. Melting temperature has been used
minimum free energy simulations and molecular dye characterize the hybridization potential of a du-
namics which models the change of the system wijttex [41,42], but this measure cannot be used to pre-
time. Techniques which average system behavidict whether two strands are bound at a given temper-
or mass action approaches, are less accurate ddute and the melting temperatures of different du-
more computationally feasible. Molecular mechaiexes do not necessarily correspond to relative rank-
ics (which models the movement of the system togs of stability.
the lowest energy), chemical kinetics, melting tem-

perature, and statistical thermodynamics are all mass .
action approaches. 5 Reaction Rates

Once the structure of candidate strands is known, the

4 Médting Temperature next logical question to ask is how fast do these re-
actions occur and what concentration is needed. Ki-

Me|ting temperature is typ|ca||y used as a Constraiﬂetics deals with the rate of change of reactions. For

in DNA paradigms that use multiple hybridizatiosome implementations of DNA computers, the rate

and denaturation steps to identify the answer, for @hthe reaction could be an additional search con-

example see [1]. When DNA is heated considerapjfaint. System-level simulation software has been

above physiological temperatures, to 100the hy- described for this purpose [43].

drogen bonds that bind two bases together tend to

break apart, and the strands tend to separate frgm .

each other. The probability that a bond will break ir? Evaluating a Set of DNA Strands

creases with temperature. This probability can be de- for DNA Computation

scribed by the melting temperature, which is the tem-

perature in equilibrium at which 50% of the oligonu©f the heuristics previously mentioned, the most ap-

cleotides have hybridized to their perfect compl@ropriate method for obtaining an estimate of the ab-

ments and 50% of the oligonucleotides are separatsdlute or relative rate of hybridization error is ther-

Since temperature control is often used to help demaedynamics and statistical thermodynamics. For ex-

ture the strands in between steps, it is advantageausple, p(s*), n(s*), pair probabilities, and free en-

for these paradigms to require all of the strands éngy have been used to evaluate whether a singly

the library to have similar melting temperatures @tranded sequence will have the desired secondary

melting temperatures above some threshold. structure,s* [10]. Statistical thermodynamics (the



partition function of all hybridized configurations)and local stochastic search algorithms.

has been used to evaluate the set of strands useThermodynamics, melting temperature and kinet-
in Adleman’s original Hamiltonian Path problem bycs are best at predicting DNA structure and reaction
predicting the error rate [44]. Computational incaates. Calculating thermodynamics and kinetics can
herence [34,39, could also be used for evaluationbe costly, however. According to the requirements
In addition, the energy gap or probability gap coulghentioned for the negative design problem, check-
be used for evaluation. The final evaluation criteridng that a library of sizevl meets specifications re-
must be how the strands perform in the laboratoryiresO(M?) string comparisons, where each com-
since this is what the library is ultimately designegarison of a pair of strings of lengti is potentially

for. polynomial inN. However, this does not mean that
the weaker combinatorial and heuristic predictors are
useless. Many of these alternative structure heuris-
tics could be used to quickly filter a candidate set

RNA free energy nearest neighbor parameters g;(allbrary molecules, and then the free energy model

available from the Turner Group [45]. MFold [lg]could be used to more accurately check this set. If

Hyther [20, 46, 47], the Vienna Package [48], NJ_hIS approach_ is adopt(_ad, the correlation between
these alternative heuristics and free energy measure-

PACK [49, 50], EdnaCo [51], NucleicPark [38], ts should b lored.  Alt tvely. f
RNAstructure [45], Dynalign [52], and RNAsoft [53]men S S Oli) b'I'? explored. i ernla Ivig’ ree e|2
are DNA/RNA structure prediction software whicf§ 9 OF Probabiiity approximation algoriihms cou

is available on the web. Visual OMP (Oligonupe used. This approach has the advantage that tech-

cleotide Modeling Platform; DNA Software Inc.)niques from randomized algorithm analysis .COUIQ be
[54] is commercially available software. Kinfoldused to prove? the corrgctngss of the appro>_<|mat|on.
[55] is software for kinetic simulation. Research in DNA libraries has tvyo main goals:
(1) to further understand DNA chemistry, and (2) to
understand search techniques useful for constructing
8 Conclusion sets of DNA codes. Although there is a growing con-
sensus that DNA computers will never be as practical
Structure prediction can be separated into two prar-as fast as conventional computers, biological com-
lems. The first is to understand how DNA folds iputers have the advantage that their style of compu-
nature. The second is to understand how comptition is closer to natural processes. Successful re-
ers should fold DNA strands to obtain the structureearch in DNA libraries will help to reduce errors in
Since nature has the advantage of parallel proceB&A computation and may discover new informa-
ing and the proximity of the molecules in space, thivn about how DNA interacts with itself. Although
way nature finds the solution to the folding proteurrent DNA computers are simplistic in compari-
lem should not necessarily be the same as the wagba to natural biochemical processes, DNA computa-
computer finds the solution. Early algorithms to finlon may help to develop alternative theories for how
DNA word sets focused on the Hamming distaneglls work or could have evolved [56]. In addition,
constraint or variations thereof to achieve a theoretesearch in DNA design also pertains to DNA nan-
cal abstraction of the constraints, which allowed thgechnology, PCR-based applications, and DNA ar-
use of combinatorial algorithms and proofs of comays. Breakthroughs in this field will add to the cur-
pleteness (i.e., that the size of the pool is optimaint knowledge of DNA chemistry as well as DNA
or near optimal). However, in the process the cosemputers.
straints are simplified so much that they no longer ac-
curately predict DNA structure. Current algorithms
tend to use a more complex combination of the co®- Acknowledgments
straints. However, since these constraints are diffi-
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7 DNA Prediction Software
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