© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society.
The ﬁm&u@p&m&e&%ﬁm&m&&s@mm&gﬁﬁmﬂ Retehereldord@das Attribution License
(http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution,

and reproduction in any medium, provided the original work is properly cited. For commercial re-use,

please contact journals.permissions @oup.com.
doi:10.1093/comjnl/bxs129

A Movable Architecture for
Robust Spatial Computing

DaviD H. AcKLEY*, DANIEL C. CANNON AND LANCE R. WILLIAMS

Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
*Corresponding author: ackley@cs.unm.edu

For open-ended computational growth, we argue that: (i) instead of hardwiring and hiding component
spatial relationships, computer architecture should soften and expose them; and (2) instead of
relegating reliability to hardware, robustness must climb the computational stack toward the end
users. We suggest that eventually all truly large-scale computers will be robust spatial computers—even
if intended neither for spatial tasks nor harsh environments. This paper is an extended introduction
for the spatial computing community to the Movable Feast Machine (MFM), a computing model in
the spirit of an object-oriented asynchronous cellular automata. We motivate the approach and then
present the model, touching on robustness mechanisms such as redundancy, compartmentalization
and homeostasis. We provide simulation data from prototype movable elements such as self-healing
wire for data transport and movable ‘membrane’ rings for spatial segregation, and illustrate how
some larger computations like sorting or evaluating a lambda expression can be reconceived for
robustness and movability within a spatial computing architecture.

Keywords: spatial computing; computer architecture; robustness; movable feast machine; globally
asynchronous locally synchronous; functional programming

Received 21 December 2011, revised 26 June 2012
Handling editor: Jacob Beal

INTRODUCTION

The solitary ‘central’ processor, similarly, focuses program-

1.1. Scaling beyond serial determinism

Over the last 70 years, ever more powerful computers have
revolutionized the world, but their common architectural
assumptions—of CPU and RAM, and deterministic program
execution—are now all hindrances to continued computational
growth.

Deterministic execution means that program outputs are
completely and solely determined by the inputs. It allows
programmers to ignore system errors and focus solely on
program correctness, but also limits cost-effective scalability.
An architecture promising determinism can employ error
correction and fault tolerance, but must kill the entire program
if any component failure—no matter how local or transient—
escapes those mechanisms. Scaling up a deterministic machine
thus increases both the chance of failure and the work at risk,
and the expected loss grows with their product. For example,
as the high-performance computing community contemplates
the move to exascale computers, the cost of preserving
determinism via ‘fail stop’ error processing is increasingly seen
as untenable [1].

mers on computation without communication or coordination—
but CPU scalability depends heavily on now-dwindling
increases in clock speed. Finally, the presumption of uniform
cost ‘random access’ memory focuses programmers on disem-
bodied logical function—but light speed and the inescapable
geometry of physical space allow only a finite set of locations
to fit within the unit time access of a finite processor.

For those reasons, we argue, any truly serious approach
to scalable computing will be a robust spatial computer.
Resilience, survivability, and graceful degradation will be
required, both in the hardware and upwards through the
computational stack. The assignment of function to spatial
location—the literal architecture of computation—will be
dynamic, adaptive and problem-dependent, and von Neumann-
style serial determinism will hold only locally, if at all.
Substantial computations will be spatially distributed, and they
or their major components will be space-aware and aggressively
fault tolerant.

This paper, expanded from [2], is an introduction for the
spatial computing community to the Movable Feast Machine
(MFM). In the rest of this section, we motivate our approach

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

2 D.H. ACKLEY et al.

using the notion of indefinite scalability, and place the work
into broader computational contexts. Section 2 then presents
model details and Section 3 addresses possible implementations
and qualitative performance considerations. Then, to illustrate
some of the motifs and techniques we have explored, Section 4
describes robust MFM approaches to basic tasks such as
density regulation, point-to-point data transfer and spatial
segregation, while Section 5 briefly describes two larger MFM
computations, one for robust stochastic sorting and the other
demonstrating serial expression evaluation within a distributed
virtual machine. Finally, Section 6 concludes with a brief
critique and a suggestion that robust spatial computing is a
route to truly profound computational growth, and we as a
community should begin fleshing out its body of knowledge in
earnest.

1.2. Research context

We have presented [3] a research case for indefinitely scalable
computer architectures which, by definition, support open-
ended computational growth without re-engineering. Indefinite
scalability rejects all internal limits—such as single-source
clocking, or fixed-width global addresses for memory or
processors—so machine size is limited only by external costs
such as real estate, materials and construction, and power and
cooling.

The physical realities of finite light speed and non-zero
minimum device size mean that indefinite scalability implies
spatial computing. Processors and memory must be distributed,
and communication latencies can be no better than linear in
the machine’s physical extents. We argued that an indefinitely
scalable machine is an up-to-three-dimensional spatial tiling
of configurable elements that are initially interchangeable,
communicate only locally via relative spatial addresses and
execute asynchronously, at least above some granularity.

Indefinite scalability is a computational abstraction very
different from serial determinism, but both styles admit a
wide range of implementations. A conservative, coarse-grained
approach to indefinite scalability could employ conventional
computers with IP networking, avoiding the finiteness of IPv6
addresses via the aggressive use of anycasting [4, 5]—which
offers indefinite spatial scaling in exchange for a finite set
of interprocessor request types. For more exotic, longer-term
strategies, emerging biochemical and nanoscale computing
mechanisms (e.g. [6, 7]) might one day yield fine-grained robust
spatial computers in which billions of devices are cost-effective,
or ultimately even ‘pourable computers’ with devices by the
mole.

The MFM employs an intermediate granularity, designed
to offer flexible and expressive programmability for research
explorations, while still possessing properties—such as regular
structure, short spatial dependencies and error tolerance—
to offer development and optimization opportunities for
implementations in both existing and novel media.

1.3. Spatial computing

Spatial computing, described as ‘computation distributed in
space such that position and distance metrics matter to the
computation’ [8], is receiving increasing research attention (e.g.
[9-14]); also, [15] is a good survey focusing on languages
for spatial computing. Our particular point of entry—indefinite
scalability—is distinct from, but largely compatible with, other
motivations for spatial computing, falling perhaps most readily
into the ‘computationally intense’ aspect of the Dagstuhl
framework [8].

Although a spatial computer embedded within an external
spatial task can offer choice low-hanging fruit, we focus
more on architectural uses of space when computations are
either not inherently spatial, or are spatialized differently
from the machine itself. Of course, any machine design for
indefinite scale must consider its physical embodiment, and
its computations will typically employ spatial representations
at multiple levels. Among the cross-cutting issues identified
at Dagstuhl, fault tolerance and robustness are central to this
enterprise, and are discussed below.

Compared to spatial computing languages framed in
continuous or amorphous spaces such as Proto [16], or all-in
‘vertical’ models such as ‘blob’ machines [17], the MFM style
of spatial computing is discrete, reified and designed bottom-up.
We presume discrete sites in space and time, and employ a
new form of asynchronous cellular automata (see section 1.4.3)
that has a neighborhood far too large to allow construction of a
state transition table. Instead of transition tables, we propose
to use modified versions of familiar programming language
constructs—such as sequential code, pointers, objects and
classes—to specify state transitions. But despite those unusual
elements, itis clear that the MFM approach is deeply compatible
with other spatial computing approaches (e.g. [18]), and that is
the motivation for [2] and this paper.

1.4. Architectural criteria

Taking indefinite scalability as the backbone requirement brings
other principles to the forefront. Here we touch on three:
robustness, movability and asynchronous design.

1.4.1. Robustness

Von Neumann [19] argued that ‘future’ computers would be
more robust than his namesake approach, yet more than a half
century later, here we are, still rooting around in CPU+RAM
designs. We are now deploying millions of such machines per
week, and connecting them to vast personal information and
economic value—and in many ways, this is a disaster waiting
to happen. The fragility that von Neumann discussed—the long
chains of logic with no allowance for error—remains embedded
in our approach to computing today. The very notion of a central
processing unit—in which all instructions, regardless of origin,
execute at the exact same physical location—is a key to our

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 3

current security nightmare in which single software flaws can,
and regularly do, compromise entire machines.

The present work emerges from a belief that it is likely better
if von Neumann’s call for robustness came true sooner rather
than later. Robustness can be a slippery concept, though, in part
because the question ‘Robust to what?’” can ramify endlessly
as we dream up ever more massive, or unlikely, or subtly
malicious system perturbations. Drawing on biology in [20] the
authors present useful robustness ‘principles and parameters’—
and in such terms, the examples in Sections 4 and 5 touch
on spatial compartmentalization, redundancy, sloppiness and
homeostasis.

As we view it, ‘robustness’ is strongly related to, but
distinguishable from, such well-studied areas as error-
correcting codes (e.g. [21, 22]), fault tolerance ([23-25],
are surveys) and high-availability computing (e.g. [26, 27]).
Such approaches recognize that system components sometimes
cannot deliver reliable behavior to other components and levels,
and provide techniques for using redundant resources to cover
potential lapses—such as triple modular redundancy [28] to
help mask hardware failures, or N-version programming [29]
to help mask software faults. Although these approaches have
much in common with our concerns, they typically focus only on
maintaining correct program execution—while true robustness,
as we see it, necessarily cares about managing the consequences
of indisputably incorrect programs as well.

1.4.2. Movability

Computing machinery derives great economic leverage from
its extreme programmability, deferring many decisions from
before manufacture until after sale, thus amortizing a single
design across many uses. But as a result, critical details may
exist only inside one specific machine—and indeed, losses
attributed to lack of backups are among the most common and
vexing of problems for computer users.

For robust memory, data bits must be copied and moved
elsewhere; for robust processing, computations must be copied
and moved as well. In conventional computer systems,
computational movability has been studied most intensively at
the level of process migration ([30], is one survey) although
other scales of movability have also been explored—up to entire
virtual machines (VMs) (e.g. [31]), and down to individually
mobile objects as in Emerald [32] or MagnetOS [33]. In
comparison with even the latter efforts, the MFM’s approach
to movability is decidedly fine-grained and primitive, pushing
mobility below programming language and operating system
into architecture. Furthermore, we have found that embracing
movability as a requirement up front can radically alter
conventional design pressures and may provide paths toward
architectures that are inherently robust to a wide range of
failures. For example, beyond just moving a single entity,
biological organisms gain dramatic robustness by copying and
moving—by reproducing—themselves; we argue that purpose-
designed computational processes can and should as well.

1.4.3. Asynchronous design

Separately clocked circuits require additional resources to
communicate, tempting designers to unite them in a single clock
domain, even though synchronization costs grow faster than
the unified region’s circuit complexity. But if synchronization
could be guaranteed, then so could determinism, making a
synchronous parallel machine, in some sense, the ‘next best
thing to serial’—and likewise only finitely scalable.

Consider cellular automata (CA), another computational
model popularized by von Neumann [34], based on a suggestion
by Ulam [35], which have been applied to phenomena as diverse
as weather and self-reproduction. Even though CA are blatantly
parallel and spatial, most are also synchronous, and given even
rare timing failures, their computations can go drastically awry.
There are, however, asynchronous cellular automata (ACA)
(e.g. [36—40]), which have indefinite scalability potential. Some
ACAs use stochastic transition rules, but in any case their site
update order is usually non-deterministic.

An oft-rediscovered technique [41-43] can be used to
emulate a synchronous CA on top of an ACA with
reasonable efficiency—notwithstanding the claim originally in
[2]. However, for indefinite scalability such a global approach
is hopelessly fragile: a single stuck site would eventually block
the entire universe.

Ultimately, global synchronization is unscalable—but fully
asynchronous operation is aggravating and slow—motivating
the idea of globally asynchronous locally synchronous (GALS)
architectures (e.g. [44]), in which synchronized subregions
interact within a larger asynchronous framework. We believe the
design of such synchronized subregions and their interactions
are akin to object-oriented design, and should be addressed via
problem-specific programming rather than a one-size-fits-all
architectural decision. The overhead of scalable asynchrony is
simply the reality of large systems; it should not be avoided, but
embraced and exploited.

Asynchronous Logic Automata (ALA) [45], and their
reconfigurable variant (RALA) [46], are another recent
approach to asynchronous spatial computing. They offer low-
level, self-timed logic gates with programmer-visible spatial
layout as a primary concern. ALA presumes that the circuit’s
functional and spatial layout is cemented at manufacturing
time, while RALA employs generic ‘stem cell’ elements that
differentiate into specific functions after manufacture, under
control of a pre-compiled bit stream describing the desired
layout.

ALA and RALA are somewhat more conventional than the
MFM in that robustness is not an explicit design concern,
but conceptually they form a vector toward MFM-style
computational movability. ALA offers immobile asynchronous
logic elements, and then RALA offers rigid block movability of
an entire computation during a privileged configuration phase
before execution—while the MFM embraces movability as a
first-class design element, fundamental to its definition and
active during operation.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

4 D.H. ACKLEY et al.

Other computational models, such as connectionist
machines (e.g. [47—49]), may also offer indefinitely scalable
architectures. Next to such an exotic approach the MFM can
seem relatively conventional, with its highly localized, but still
recognizable, form of serial programmability.

Broadly, our view is that von Neumann machines are fine as
long as they are small and individually insignificant. Of course,
the details matter—and that is our next topic.

2. THE MOVABLE FEAST MACHINE

Figure 1 summarizes the MFM, ranging from conceptual
hardware ‘tiles’ at the bottom to pseudocode software ‘elements’
at the top. Although a truly complete description would be
excessive for this introductory paper, we try to provide concepts
and specifics sufficient to engage the reader’s mechanical
intuition.

Throughout this section, the phrase ‘some chosen’ is used to
flag overtly parametric model properties; all the experimental
results shown in this paper are based on one particular parameter
set called P1, discussed further below.

2.1. Small programs change big neighborhoods

Viewed as a stochastic ACA, the MFM falls into a rather
sparsely populated corner of ACA parameter space—with many

afa Movable Feast
import Dockable; X
g element :'j.':.mr.-j.:- (bond prv, - MaCh]ﬂe
= bond nxt, |Element definitions
= sbond dock, | (compiled to non-volatile
o sbond tmp) i
A w123 memory, all tiles)
i ;
i55tde the Type:0x123
wp T e Bond(: {(-2-1)
} . Bondl: (3,1)
Active atom | Sbond0: (0.0)
(type-specific atomic update+ | Sbond!1: (-1,1)
Sites & atoms bond-aware diffusion)
(volatile memory)[) :
L
0 , O .
o | O]
W i EEEE 1O
O O._
®) i i
|
© QL] / =
L @A | Event window
[} O?/_O 5 (may span tiles)
= Ll]
z
=] Tiles
= (memory+

processing+local communications)

FIGURE 1. Architectural overview (see also Section 2).

possible states per site, and also many sites per neighborhood.
The P1 parameters used in this paper, for example, employ
64 bits per site (see Section 2.4 for details), and a 41-site
neighborhood (a ‘Manhattan’ or ¢; distance of four in a 2D
rectangular lattice)—implying about 10%° possible states per
site, and a naive state transition table with over 108%° rows.
These quantitative parameter choices thus have qualitative
consequences: additional design is needed to bypass that table’s
vast infeasibility.

Instead of a table lookup, the MFM executes sequential
code—which we call an event window update—to perform a
neighborhood state transition. Our design seeks to present a
flexible and powerful, but still transparent and understandable,
machine semantics to the state transition programmer, and to
that end, we adapt familiar programming concepts—objects,
classes, pointers—reinvented for indefinite scalability, and
miniaturized to fit into an MFM site (for an object) and a
neighborhood (the pointer addressing range). Programming a
state transition feels somewhat familiar because an individual
event executes with synchronous clocking and single-threaded
semantics, revealing the MFM to be an odd but recognizable
GALS architecture as discussed in Section 1.4.3.

2.2. Sites and spatial structure

MFM computation occurs at discrete sites arranged in some
chosen lattice that is at least locally regular, and embedded in
some chosen metric space called machine space. Some chosen
event window radius is defined relative to the metric, and the set
of sites at most one event window radius away from a given site
is called its neighborhood. Although the computation is discrete
in space-time, for physical realizability the MFM is grounded
in effectively continuous spaces, distances and velocities. We
presume that a site occupies finite but more than infinitesimal
space, and we require machine space to map smoothly into R?,
either by limiting machine space to 3D or less, which preserves
indefinite scalability but excludes many topologies, or by using
only a finite, if arbitrarily connected, machine space, such as a
2D grid with periodic boundary conditions, mapping smoothly
into a torus in R3.

2.3. Event window processing

MFM computation proceeds asynchronously in parallel by
executing events, each of which corresponds to one independent
state transition, occurring in a compact volume of space-time
called an event window. The spatial extent of an event window is
the neighborhood of some selected site, and its temporal extent
is the state transition’s code execution time. For efficiency or
implementability in any given media, there may be restrictions
on the time, space, or other resources available to execute one
event, but in the P1 parameter set, for research flexibility, there
are no specific limits.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 5

Select potential Unlock event
center site (| 4 _; window sites
1] A
Lock event Notify caches
window sites | s
A
Examine active | eor . | Reset center site
atom) 5 toempty
] W Aerror
Update Diffuse center
neighborhood , 4 atom

FIGURE 2. Event window life cycle (see Section 2.3).

An event window life cycle is depicted in Fig. 2. A center
site holding an active atom is selected, at random or by any
starvation-free mechanism (step 0), such that its neighborhood
is disjoint from the neighborhoods of any other currently
selected center sites (step 1). The active atom is checked, and
erased if any format problem is found (steps 2, 5); otherwise its
element type is extracted and that type’s element description is
located (Section 2.4.1). If there is no such element, which can
occur as a result of bit corruptions yielding a valid header but
an unknown type, the active atom is likewise erased (steps 2, 5).

Next, the update function of the selected element description
is invoked, which may alter the contents of the neighborhood
arbitrarily (step 3). This freedom to modify the neighborhood
differs from CA variants that only modify center sites—
and adds complexities, such as in the cache management
of step 6—but it also greatly eases programming tasks in
general and maintaining bond consistency in particular (see
Section 2.5).

After the update, the center site contents are optionally
diffused (step 4)—possibly moving the active atom to an
immediately adjacent empty site up, down, left or right, and
updating all relevant bonds if so (Section 2.5 has additional
information on this process). Then neighborhood modifications
are communicated to all affected tiles (step 6), locks are released
(step 7) and the event ends.

The charter of an indefinitely scalable MFM hardware
implementation is to execute as many disjoint event windows
as possible, parallel in space and consecutively in time,
while providing reasonably, if not absolutely, reliable state
maintenance and transitions. An initial MFM implementation
on our first real, indefinitely scalable hardware (Fig. 3) is in
progress, although it has limited communication channels; see
Section 3 for some performance considerations on plausible
but currently hypothetical hardware. For an MFM simulation—
which includes any MFM that is not running on indefinitely
scalable hardware—the actual execution time is usually
misleading, and instead we adopt average events per site
(AEPS) as the base unit of time; regardless of the MFM size,
in 1 AEPS each site will, on average, be the center site of one
event.

FIGURE 3. Hot-plugging llluminato X Machina tiles [50], prototype
indefinitely scalable hardware.

The P1 atom
64 bits
(=)

#Long| #Short ||Long bdsiiShort bdsi; StateiiType
~|bonds| bonds ||8 bits/ea i4 bits/ea i: bits iibits

Movable Feast Machine

AN~
OO
[

Zero|63

#State bits
=

Fixed format header—~~Variable format body~

FIGURE 4. Atomic format used in this paper (see Section 2.4).

2.4. Atomic structure and semantics

Each MFM site contains some chosen number of modifiable
bits; each possible combination of those bit values is called
an atom, and the number of bits per site is called the atomic
width. Some chosen type function abstracts an atom into
a corresponding type number, which is associated with an
element, which in turn specifies how to perform a state transition
when that atom is active. In object-oriented terms, an atom
is akin to a small, fixed-size object instance, linked by its
type number to an element definition that acts like a class
(pseudocode shown in Fig. 1), which supplies information such
as bond counts (next section) as well as the update method
that defines a state transition.

Figure 4 depicts the ‘P1 atom’, a 64-bit atom used in all
the examples below. A 16-bit header specifies the interpretation
of the remaining 48 bits, dividing them up among two types of
‘bonds’, general-purpose ‘state bits’ and zero or more ‘type bits’
that specify that atom’s elemental type number. Managing and
optimizing atomic ‘bit budgets’ is a common activity in MFM
program design, and there is always pressure to ‘poach’ type bits
for other purposes. But once zero type bits are assigned, the only
possible element number is 0, and so only one such completely
packed element definition can exist in a given MEM ‘physics’.

2.4.1. Element descriptions

The elemental type number extracted from an atom is used as
a key to locate the associated element description, which is
a data structure providing the information needed to perform
transitions. The element descriptions are identical across

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

6 D.H. ACKLEY et al.

ElementName=type Number[typeBits|
‘ long bond names ‘ short bond names ‘
| state names: bits and fields[size] |

FIGURE 5. An ‘element information box’. See also Section 2.4, and
examples in Section 4.

processing tiles, and are read-only to atomic-level event window
computations; techniques to alter them are discussed below.

Figure 5 shows a sample ‘element information box’,
summarizing the main parameters of an element, containing: in
the top row, the element name, type number and number of type
bits; in the middle row, the names of any long and short bonds;
and in the bottom row, the names of any state bits (unmarked)
or state fields (with their bit counts).

Beyond the atomic layout information, a key component
provided by each element is its update function, which is
invoked (Fig. 2, step 3) to transform an event window when
an active atom is of the given element. An element definition
may also provide information affecting the diffusion process
(Fig. 2, step 4).

2.4.2. Reprogrammable physics

Collectively, a set of element descriptions—a physics—both
enables and constrains the possible behaviors of an MFM.
For robustness and consistency we expect element descriptions
to be stored in non-volatile memory and be identical on
all tiles, which could be accomplished permanently during
manufacture—storing code and data in ROM or direct logic—
and that would also be the most economical approach.
At present, however, we are far from having so complete
and useful a physics to justify such a rigid construction.
Like the shift from hard-coded ALA to programmable
RALA discussed in Section 1.4.3, for research flexibility we
require reprogrammability of element descriptions—despite
the challenges inherent in changing the laws of (MFM)
physics.

The ‘Santa Fe Board’ (SFB) software [51] that runs our
prototype hardware [50] supports peer-to-peer tile reprogram-
ming [52], using low-level intertile packets that are not con-
fusable with MFM traffic. We expect that reprogramming at
the level of MFM physics will use the same or similar mecha-
nisms, and so we briefly describe the approach here. For peer-
to-peer neighbor reprogramming, the SFB software provides
three ‘boot modes’ for different trade-offs of convenience and
security. A tile in ‘green boot’ mode will accept any user pro-
gramming claiming to be newer than the board’s existing user
code. ‘Blue boot’ requires a matching ‘program id’ as well as
a newer date, but note that there is no code signing or valida-
tion: primarily, blue boot enables touching tiles to run differ-
ent user programs without overwriting each other. Finally, ‘red
boot’ disables automatic peer-to-peer reprogramming entirely,

demanding a physical button press on each tile, in a specific
time window during power-up, to initiate its reprogramming.

A general security advantage of a robust spatial computer
over a von Neumann machine is that many sites, rather
than just one, must be suborned to take complete control—
but if powerful global reprogrammability is implemented,
for research or any reason, then access to that leverage can
negate the distributed system advantage. The most robust
MFM implementations would avoid global reprogrammability
at the element description level entirely—forcing attacks to
be physically localized in real space, like a button push or
blob of solder, or to progress inside the grid like a ground
war or a disease—taking and holding site after site, and thus
tile after tile—but only in ways allowed by the laws of MFM
physics.

2.5. Bonds and mobility

A namesake aspect of the MFM is that atoms move, for a
variety of purposes, as implemented via copying and erasing site
contents. A communications mechanism, for example, could
employ atoms—interpreted as data or packets—moving relative
to sites or other atoms acting like a channel or a wire (see
Section 4.2 and [3]). Atomic mobility is also handy in self-
reproducing systems, and so offspring might eventually move
into space of their own [53].

When atoms can move, though, their current location cannot
reliably be used to find them in the future, causing major
headaches for distributed data structures, and spawning a variety
of schemes ([54] is one survey; see also Section 1.4.2) for
updating or forwarding pointers in the face of object migration.

In the MFM, an atomic bond can be used to join two
atoms in a relationship that survives certain atomic motions.
A bond connects precisely two atoms, but one atom can have
multiple bonds, allowing the creation of a connected-component
molecule involving perhaps many atoms. A molecule as a
whole may be much larger than an event window, and so in
general, an entire molecule cannot expect to update at one time.
Bonds are designed so that the element description specifies a
common bond layout for all atoms of that element, and the
hardware always knows which bits of each atom represent
bond information. Bonds are distance-limited and cannot be
longer than the event window radius, and are represented by
self-as-origin relative spatial coordinates. The P1 atom offers
‘long bonds’ and ‘short bonds’ (Fig. 4, also ‘bond’ and ‘sbond’
in Fig. 1) which trade address range (maximum ¢; length
4 and 2, respectively) against atomic bit usage (8 and 4,
respectively).

Importantly, each bond is symmetric—if atom A has
a (long or short) bond to atom B, then B will have a
same-type bond back to A. This redundant representation
helps detect inconsistencies and ensures that the bond, like a
physical chemical bond, can be detected, updated and broken
from either side.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 7

By default, atomic diffusion (step 4 of Fig. 2) only
considers one site rectilinear moves, and it handles existing
bonds automatically, refusing to break or overstretch them,
while weakly preferring to minimize bond lengths, and it
automatically updates bond coordinates as needed if the active
atom does diffuse. In our simulations to date, an element
description can also affect the default diffusion process by
providing a set of per-direction diffusion weights to bias the
outcome, or by replacing the default diffusion mechanism
entirely; how much of that flexibility is worth direct hardware
support remains to be seen.

3. PERFORMANCE ESTIMATION

The MFM is an abstract architecture designed for indefinite
scalability, research flexibility and implementation potential in
hardware both more and less conventional. It abstracts away
the event window selection mechanism, requiring only that
implementations avoid site starvation, and it is silent about the
duration of any given event transition (Fig. 2, steps 3 and 4).
Measuring computation time in AEPS, similarly, suppresses
many details of any real machine, such as its number of sites,
clock rate, and communications and locking overhead between
adjacent processing elements.

Particularly at this early stage, we argue that such
abstractions are appropriate for research in indefinitely scalable
computations. If MFM-like models prove usable for robust
computation at scale, we expect that subsequent science and
engineering could yield indefinitely scalable implementations
highly optimized for the capabilities and needs identified in
the abstract. Still, some may worry that MFM overhead could
be fundamentally prohibitive, and so for concreteness, in this
section we describe one approach to caching and locking, and
estimate its performance via simulation of a plausible though
hypothetical hardware substrate.

We produce estimates of event efficiency, the percent of the
total machine cycles actually devoted to event transitions as well
as the average event rate (AER), the overall AEPS per second of
the indefinitely scalable machine. The simulations suggest that
if we can tolerate a factor of two in event rate variation across
tile sites, then, for plausible event durations, we can expect an
indefinitely scalable AER in the several hundreds to a thousand
or more, without heroic engineering, using an affordable tile
suitable for research.

3.1. A caching and locking model

As suggested by Fig. 1, the MFM posits tiles each containing
a processor, internal memory for data and code, and external
interfaces for intertile communications. Referring to Fig. 6,
given some chosen tile side N, an N x N grid of sites is
represented in the memory of each tile. Given some chosen
event window radius R, the sites are divided into functional

Hidd No locks required

| |
| N | for event centers
T
012 .. CACHE N- _‘3"_ Visible, Shared: Event
f Bl :SI'{ARiE[') R centers require lock(s)
gl i
ol | . | Shared, Cache: Sites
. modihabie by loc older
VISIBLE R tifiable by lock hold
(directly or remotely)
Cache: No event centers;
maps neighbors' Shared
IDDEN, <>
\“— East edge lock
{locked by west)
LEve nt center
(current active site)
g Current
.'Z'_ E event window

(requires east
edge lock only)

Southeast
South edge lock ‘____,-—/corrmr lock
(uniocked) (unlocked)

FIGURE 6. An indefinitely scalable caching and locking model for
MFMs, illustrated with R = 2 (event window radius) and N = 16 (tile
side); see also Section 3.1.

groups: the shared sites located within R of the grid edge, the
visible sites located from R + 1 through 2R of the edge and
the hidden sites located more than 2R sites inward. Also in
tile memory is an R-wide cache surrounding those N? sites,
containing an additional 4 R(N + R) sites for local copies of the
adjacent portions of neighboring tiles shared sites. Externally,
the model possesses communications and locking interfaces,
with a communications channel and a mutex on each edge
between orthogonal neighbors, and a diagonal pair of channels
and mutexes on the following corner.

In each tile, the center site selection and locking process
(Fig. 2, steps 0 and 1) is a loop consisting of these steps:

(1) Select a candidate event center (x¢, y.) at random in
©O---N—-1,0---N —1).

(2) Determine what locks (x., y.) requires. For example, if
X, is east of hidden, require the east lock (Fig. 6, top); if
in addition, y. is north of hidden, require the north and
northeast locks as well (Fig. 6, bottom, middle left tile;
see other locking examples there as well).

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

8 D.H. ACKLEY et al.

(3) Attempttoacquire each required lock, without blocking.
If all are obtained, then selection and locking is complete
and event window processing continues (Fig. 2, step 2);
otherwise release any obtained locks and go to
step 1.

Since our primary purposes here are exposition and ballpark
assessment, we sometimes favor simplicity over performance.
We assume that Notify processing (Fig. 2, step 6) always
transmits the entire event window, as uncompressed bits. Also,
this method locks conservatively—for example, in Fig. 6 the
lower right tile is barred from centering an event in the white-
outlined region, even though any such event window actually
would be disjoint.

Although no site starves, note also that since this mechanism
reselects rather than waiting on any lock, the edges and
corners see lower event rates due to communications delays
and lock contention—in the simulations below, there is
typically a factor of two between the least- and most-sampled
sites. If needed, such hardware-induced rate variations can
be reduced by decreasing performance and/or increasing
cost and complexity—for example by warping site selection
probabilities to compensate, using more and finer-grained locks,
or increasing channel data rates relative to processor speed.

3.2. Hypothetical hardware substrate

Model performance depends on the chosen MFM parameters,
the tile side and the durations of event transitions, as well as
the speeds of processing, locking and communications. As yet
we have no indefinitely scalable implementations, and so here
we employ a hypothetical tile processor whose parameters are
summarized in Fig. 7. Note that the average event duration
may depend strongly on the interactions between the hardware
details and the user-defined physics, and so we vary that
parameter over three orders of magnitude to help explore the
space. To keep the results manageable, we explore only the
P1 parameters: 64 bits per site and R = 4; we simulate
variable event transitions by choosing event durations uniformly
at random in £50% of the average.

Name Min Max Unit

System clock 100 MHz
Instruction time 2 cycles
Intertile mutex lock try 20 cycles
Intertile mutex unlock 10 cycles

Intertile I/O speed 1 10 Mbps
Tile side (N) 20 40 sites
Average event duration 103 105 instructions

FIGURE 7. Parameters of a hypothetical MFM processing tile, for
performance prediction. Non-empty Max indicates multiple parameter
values tested.

Our chosen hardware specifications are deliberately at
least an order of magnitude below state of the art in clock
and I/O speeds. We envision a tile of moderate cost even
manufactured in only research quantities—perhaps using a mid-
range FPGA plus memory, or a microprocessor plus added
interfaces. At present, however, all such details remain to
be engineered.

3.3. Performance estimates

We built a discrete event simulator to count events and track
where the clock cycles are used by the model. For each
combination of parameters tested, we configured a 5 x 5 grid
of tiles connected in a torus and simulated it for one second
(100 M clocks per tile). Results are averages across the 25 tiles;
the observed variance is low in all cases shown.

For a tile side of 32, Fig. 8 shows event efficiency and the
AER for arange of event durations and communications speeds.
Unsurprisingly, event efficiency rises with event duration, while
AER falls; faster communication helps both but the gains
dwindle as events lengthen. Figure 9 illustrates the sampling
bias discussed above, showing the AEPS/sec seen by different
sites within a 32 x 32 tile. The corner sites require three locks
and see about 630 events/second; the hidden sites require none
and do about 1100.

To suggest the cost of eliminating that spatial variation,
should that prove worthwhile, Fig. 10 plots the ‘uniform AER’
obtained by limiting all sites to the event rate seen by corner
sites. With a3 Mb datarate, N = 32 and 10 K instruction events,
a uniform AER around a thousand looks achievable.

The simulation results confirm that in this implementation,
MEFM performance is highly sensitive to communications costs.
The transmission of a full uncompressed window for each event
is expensive but robust—requiring little agreement between tiles
and tending to stabilize cache contents after transient errors
or tile reconnections. If, in practice, most event durations turn
out to be brief and make few event window changes, a more
efficient cache update mechanism could be a valuable model
improvement, despite the added complexity and fragility.

Evaluating such engineering decisions depends largely on
whether we should consider 500 or a 1000 AEPS/second a good
AER or a bad AER, uniform or otherwise. We can always want
more performance, but ultimately the answer to that depends on
what sorts of things we can do with events, which is the subject
of the remainder of this paper.

4. BASIC MOVABLE ELEMENTS

Here we present some of our exploratory results from
programming MFM elements and simulating their behaviors
in various-sized grids. First, we examine the basic task of
distributed density regulation; then we look at simple ‘wire’
mechanisms for point-to-point data transport, and finally we

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 9

(a)
Predicted event efficiency vs instructions/event
and communications speed; P1 atom, N=32, R=4
100
>0
50 %
S° 60 .
58 1Mbps ——
=2 40 2Mbps -+ 7
(XS] 20 3Mbps - |
i 10Mbps &~
0) A
1000 10000 100000 1e+06

Average instructions per event

Event efficiency

(b)
Predicted AER vs instructions/event
and communications speed; P1 atom, N=32, R=4

8000 r T T T
Qo . 4
ISk 7000 _ 1Mbps —+—
= § 6000 | e 2Mbps -3 7]
3 5000 | 3Mbps -
o » 4000 | “H=., 10Mbps ~E- -
o
i
g
<

0
1000 10000 100000 1e+06
Average instructions per event

Average event rate

FIGURE 8. Tiled event processing.

Predicted event rate vs site position
10K avg instr/event, 2Mbps, P1 Atom, N=32, R=4

1200
1000
800

600

Events/sec (25 tile average)

FIGURE 9. The event rate by site.

Predicted uniform AER vs communications
speed and tile side; P1 atom, R=4, event length=10K

£_ 5000 g : ; ; ;
55 4000 | 2Mbpe -

%g 3000 | . (oMbne
53 2000 B, .
£2 1000 .
5% o

Tile side

FIGURE 10. A uniform event rate.

modify the wire and close into a ring to form a simple
‘membrane’ that divides space.

As mentioned, all these examples are based on the Pl
parameter set—a rectangular lattice in 2D with Manhattan
distance, varying grid sizes, event window radius of 4, and
atomic width of 64 with a 16-bit header and 48 programmable
bits. Our purpose at this early stage of research is to explore
possibilities and trade-offs, and so the different experiments

and demonstrations focus on different aspects and subsets of
robustness, functionality and movability, as discussed in each
section.

4.1. Dynamic regulation

Itis easy to overlook, butin the MFM probably the single biggest
spatial issue is empty space management. In an asynchronous
universe especially, empty sites are precious to facilitate the
activities of nearby occupied sites—for example, for temporary
use during reconfigurations, or to allocate for new atoms—as
well as to enable the movements of travelers passing through.
And since any given empty site is in the neighborhood of
many other sites, without effective open space management
a tragedy of the commons can easily ensue, producing traffic
jams, gridlock and similar hazards.

Traditionally such problems are managed by careful design,
and capacity simulations and analysis, but hardcore robustness
offers a much sloppier idea: if empty sites get rare, just make
more, by erasing some atoms—which might disrupt some
ongoing computations, but so what? If the computations are
robust, they will have spares or make repairs—and if they are
not, we cannot rely on them anyway.

We explore controlling the occupied site density (OSD) with
DReg, a diffusing ‘Dynamic Regulator’ element that forms no
bonds and maintains no persistent state (Fig. 11). On each
update, DReg inspects a random adjacent site. If the site is
empty, DReg might create a general-purpose ‘resource’ atom
(element Res), or rarely another DReg; if it is occupied,
DReg might erase it, particularly if it is another DReg. See
the pseudocode in Fig. 12.

Over time, a lone DReg will fill MFM space with a churning
mix of DReg, Res and empty sites, with an OSD related to
the ratio of the creation chance to the sum of the chances of
creation and destruction. We commonly use a creation ratio of
about 1/3 (closeto dodds /(modds+dodds) in Fig. 12), but the
specific probabilities also matter: smaller values yield a looser

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

10 D.H. ACKLEY et al.

DReg=0xBDA[48]

FIGURE 11. DReg: dynamic regulator (see also Fig. 5).

// Pseudocode

element DReg() = 0xBDA {
constant modds = 40 // approx odds to make Res
constant dodds = 20 // approx odds to destroy
Loc at = randomLoc((1,0), (-1,0), (0,1), (0,-1))
Type atType = window([at].type
Type t = undefined

if atType is Empty.type then

if randomOneIn(1000) then t = DReg.type

else if randomOneIn(modds) then t = Res.type
else if atType is DReg.type then

if randomOneIn(10) then t = Empty.type
else if randomOneIn(dodds) then t = Empty.type

if t is not undefined then
unbond window[at]
window[at] = new atom of t // may be empty

FIGURE 12. DReg update pseudocode. Also see text.

DReg recovery from 97% reset at 10K AEPS

50 I Crleate 1-i}1-40 / Déstroy 1'-in-20 ——
Create 1-in-20 / Destroy 1-in-10 ---»---

40 + _ Create 1-in-10 / Destroy 1-in-5 ok
S = S

20 '; i
0 K]

0 1 o] 1 1 1
0 5000 10000 15000 20000 25000 30000 35000
Time (AEPS)

Occupied site density (% of grid)

FIGURE 13. DReg density regulation after a transient.

regulation and slower transient response; larger probabilities are
faster but more disruptive. Figure 13 shows OSD regulation for
three different DReg parameter sets after a system is shocked
by erasing 97% of the sites at 10 K AEPS.

OSD regulation is a basic housekeeping task, but if we
add other elements that perform some useful computation,
while competing for Res to reproduce themselves, we can
produce a combined system in which DReg operations are
‘space shared’ with other tasks, as shown in Section 5.1.
As we have gained experience, we have found dynamic
regulation and Res production to be so fundamental and useful
that sometimes, instead of DReg, we use ‘direct dynamic
regulation’, incorporated into event window processing, in

Node=0x4[3]
prev, next [-
lock, frame|[28]

(a) See Fig.5.

(b) Logical wire structure.

FIGURE 14. A simple wire.

effect as an additional component of step 2 in Fig. 2, with
separate parameters for atomic deletions and Res creation.

4.2. Movable data transport

While the MFM provides no explicit mechanism for sending
messages between atoms, atoms may communicate with each
other by reading and writing each other’s state. However, this
level of communication is possible only between two atoms
that are separated by no more than one event window radius.
While atoms can use bonds to maintain their proximity, locality
is a precious resource, and modularity requires mechanisms for
longer range communication.

We have previously [3] introduced the concept of using
a bonded chain of atoms—a ‘wire’—to facilitate non-
local communication. Our most straightforward version, the
Simple Wire depicted in Fig. 14, is essentially a spatialized
doubly linked list. A Simple Wire chain consists of a long-
bonded sequence of Node atoms forming a path between a
Transmitter and a Receiver, with each Node atom’s
next and prev bonds linking downstream and upstream,
respectively. (Recall that all MFM bonds are bidirectional and
symmetric; the arrows in Fig. 14b, from tail to head, join atoms
with matching next and prev bonds, respectively.) Such
a wire chain can be used spatially or mechanically (e.g. as
a navigational aid to locate a destination), but can also be used
to transport a bit stream, using the leftover state of each node
to store in-flight data chunks as they propagate down the wire.

A Simple Wire Node has 29 bits available for state. We draft
one bitas a 1ock to indicate whether the contents of £rame are
valid, and deploy the rest as a 28-bit frame data field. When
a Transmitter wishes to send a message, it waits for its
downstream Node’s 1ock to clear, then writes the next 28 bits
of data into that £rame and sets its 1ock. Then, whenever a
Node is unlocked and has an upstream locked Node, it copies
the upstream frame, clears the upstream lock and locks itself;
a Receiver disposes of the data however it wishes, and then
unlocks the upstream frame.

This mechanism successfully transfers bits from
Transmitter to Receiver, but it is fragile. If a sin-
gle atom is erased, due to corruption or DReg or any other
reason, the entire wire fails irretrievably; even short of that
catastrophe, corrupted bits can cause bitstream data errors or
the loss or duplication of entire frames. To address the fragility
of the Simple Wire, we have devised a more robust variant that
we call Self-Healing Wire (SHW), illustrated in Fig. 15. SHW

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 11

Node=0x4[3]
prev, next ‘ left, right
lock, parity, frame[19]

(a) See Fig.5.

(b) Logical wire structure.

FIGURE 15. A self-healing wire.

is an extended-range, bidirectional communication channel
with redundancy and repair mechanisms that consists of two
wires, laid out in opposite directions and stitched together by
short bonds. Each Node of an SHW has a 1eft and right
bond to its immediate neighbors and a prev and next bond
to the neighbors of its neighbors. As with Simple Wire, prev
and next bonds indicate the direction in which messages
travel; however, messages may now travel in two directions
along the wire. Furthermore, if a SHW Node bond or atom
fails, adjacent atoms will attempt to reconstruct it using the
information encoded by the remaining bonds. Of course, there
is no free lunch, and implementing SHW repairability costs
two short bonds and one state bit for Node parity. That leaves
only 19 bits per frame, and so the maximum data rate is
reduced—and if a second Node failure occurs nearby before
a first failure has been repaired, the SHW chain will fail
anyway.

To improve the robustness of data, we implemented a
TMDS [55] encoding layer above the bitstream, even though
many features of TMDS—such as its DC-balanced signaling—
are unnecessary for the purpose at hand. TMDS provides packet
framing and clock recovery, converting a raw bitstream into a
more useful self-synchronizing byte stream, but our use of it
does significantly reduce the efficiency of data transmission.
Without TMDS, sending 1 KB (8000 bits) over a 100-atom
Simple Wire yielded a raw data rate of 7.03 bits/AEPS (¢ =
0.07), averaged over 200 error-free trials. Under the same
conditions, the SHW yielded 4.80 bits/AEPS (o = 0.04). When
TMDS encoding overhead plus one-for-one synchronization
packets are included, the Simple Wire effective data rate drops
to 2.808 bits/AEPS (¢ = 0.03) and SHW’s drops to 1.915
bits/AEPS (¢ = 0.01). Less frequent synchronization packets
would improve the data rate but decrease robustness; optimal
parameters depend on the specific computation and failure
modes.

We have previously [3] shown that SHW significantly
outperforms Simple Wire when measuring the survival time
(i.e. time until the wire becomes disconnected) at any non-
zero fault density. However, this provides little insight into the
real performance trade-offs of each wire implementation. To
investigate further, we simulated the transmission of a TMDS-
encoded 1 KB message along a 100-atom Simple Wire and SHW
between a transmitter and a receiver, each anchored at either
end of the wire. The error model is atom deletion via the ‘direct
dynamic regulation’ (Section 4.1), with Res production set to
zero and varied rates of site erasure.

o

X100 [dedishi -

5 80t .

™

S 60 f -

o

A 1

S 20t 8

[%2])

2 0} i

5\ ':lealing I--I-éé---I 1 1 1 1
0.1 1 10 100 1000 10000

Fault density (erasures per million events)

FIGURE 16. The average fraction of a 1 KB message successfully
delivered for each wire implementation.

@ 400 [' I | | |
& T

< 350 - SEEEERES RS 1
<300]
8 o250]
8 200 f]
2 150 -]
5 100]
o

] 50 Simple —a—]
8 0t I-Ilealing '"I'*“") | |

0.1 1 10 100 1000 10000
Fault density (erasures per million events)

FIGURE 17. The average goodput for each wire implementation.

The resulting data reflects the expected efficiency-vs.-
resilience trade-off, both in terms of the fraction of bytes lost
(Fig. 16) and the rate at which correct bytes were delivered
(Fig. 17) during the transmission of a 1 KB message at various
fault densities. Simple Wire achieved a far greater goodput at
low fault densities than the SHW; however, as the error rate
increased, the performance of the Simple Wire degraded far
more rapidly than the SHW. Variances are high in all cases
because of the timing variability and catastrophic impact of a
wire breakage.

4.3. Movable membranes

An absolutely fundamental aspect of spatial computing,
and robustness generally, is the ability to compartmentalize
space. This is sometimes easy to achieve—for example
during the manufacturing of non-movable architectures—
but to produce movable and yet isolated compartments is
more challenging. We are exploring movable membranes to
implement a selectively permeable spatial divider, which derive
their inspiration—though little else—from the cell membranes
of biological systems.

Of course, given the two-dimensional worlds of the Pl
parameter set, these ‘membranes’ are really more like rings.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

12 D.H. ACKLEY et al.

FIGURE 18. A movable membrane whose contents cannot diffuse
out. Also see text.

To date, though not in a single simulation, we have prototyped
movable membranes that: grow to arbitrary sizes, repair damage
caused by DReg and bit corruptions, communicate with other
membranes via SHW and transport unbonded contents through
space in a fixed direction. Here we demonstrate only the last,
after a brief general discussion.

An MFM design for a movable membrane is constrained
by two opposing requirements: the membrane should
be impermeable to the passage of non-membrane atoms
undergoing normal diffusion, but at the same time the
membrane’s constituent atoms must have sufficient free space
to allow the membrane itself to move. A Simple Wire chain
fashioned into a ring, for example, is typically very movable but
also very porous to the passage of atoms through it. Conversely,
a box of the adjacent, immobile atoms is impermeable to
diffusion but also unable to move.

We have previously employed in [3] a fairly elaborate
approach to constructing semipermeable membranes, but more
recently have found that we can achieve similar effects with
considerably less complexity, by combining the limited set
of directions considered by diffusion (Section 2.3) with an
additional constraint on membrane bond lengths. Given a short-
bonded ring of atoms, under normal circumstances each ring
atom may be separated from its neighbors by up to a short bond
length (¢; < 2).If we instead require that membrane atoms limit
their separation from neighbors to an £, distance of 1—that is,
they must both lie within each other’s Moore neighborhood—
then we still have some room to move but can prevent the escape
of diffusing particles, as illustrated in Fig. 18.

While in the absence of errors this simple membrane design
is both movable and impermeable, it suffers from the same
fragility as the Simple Wire (Section 4.2), but we can also
improve it the same way. A Self-Healing Membrane (SHM)
consists of atoms with two short bonds to their immediate
neighbors in the ring and two long bonds to the neighbors
of their neighbors, with a parity bit to assist reconstruction.
At present, however, we have just the beginnings of experiments
with the SHM. We also have preliminary work on membrane
growth mechanisms based on transmuting and incorporating
environmental Res, but that is likewise immature.

Here, we show one additional membrane technique that we
have explored in some depth. In addition to creating distinct

40
35 |
30 |
25 |
20 | ‘
150 5

. 40 atom payload —&—
10 | ¢S 80 atom payload :----+ -
-] ‘ 160 gtom Payloa‘d eee@eeet

Velocity (sites per KAEPS)

5 | | |
20 40 60 80 100 120 140 160 180 200

Membrane ring size (atoms)

FIGURE 19. Velocity of direction-biased AVMM rings vs. membrane
size for various payloads. Also see text.

inside-vs.-outside spatial environments, membranes that are
movable can act like ratchets or guides, shepherding their
contents in some specific direction, even when the contained
atoms move solely by diffusion. An Absolute Vectored Movable
Membrane (AVMM) atom is like a normal membrane node
except that it also overrides the diffusion scoring mechanism,
scaling the diffusion scores based on a 4-bit ‘preferred direction’
field. With that change, plus some mechanism—either initial
conditions or something more dynamic—to achieve a preferred
direction consensus around the ring, significant ‘motive force’
can be generated.

Figure 19 illustrates typical results, showing the velocities
attainable by AVMM rings of varying sizes containing varying
numbers of unbonded payload atoms.

5. INTEGRATED COMPUTATIONS

The previous section illustrated a few strategies and components
of robust spatial computing in the MFM. Here we offer brief
looks at two MFM approaches to more complex computational
tasks.

5.1. Robust spatial sort

To help perfuse robustness into the computational stack, we
seek ways to intertwine it with functionality—and we are more
than ready to reframe notions of functionality to that end. Here,
for example, to help break our obsession with correctness and
efficiency, we explore a sorting task that is impossible to solve
perfectly. We imagine a rectangular ‘flow sorting channel’,
depicted in Fig. 20a, given the task of sorting or prioritizing
an endless stream of Datum atoms that are injected at random
intervals by ‘emitters’ near the right side of the grid. Each
Datum contains a 32-bit number (and an 8-bit checksum), and
is to be transported to the left and also sorted vertically, so that
small values rise and large ones sink. Once a Datum is close
to the left edge, it will be consumed by a nearby ‘absorber’ and
output from the sorting channel.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 13

Channel length

O

@, © @0

0O
@ O
O OO O

Channel width
(G
®

2
S
=

. DReg O Sorter
@)

(a) Elements and global structure

D Datum emitter (input)
Res . Datum . Datum absorber (output)

3
R

(b) Sorter behavior

FIGURE 20. Elements of the demon horde sort.

Here we focus on an equal interval goal where each output
‘bucket’ (the absorbers on a single row) should receive the
values of an equal portion of the underlying data range.! We
measure performance by the average positional error—the
average distance between the bucket that absorbs a Datum and
its correct equal interval bucket, as a percentage of the number
of buckets.

We assume an unknown, perhaps non-stationary, data
distribution, and so perfect bucketing is simply off the table.
For a baseline comparison, we use this ‘Sample Sort” heuristic:
Given N buckets, repeatedly buffer up N Datums, sort them
and then output one sorted Datum to each bucket in order.

We call our robust spatial sorting strategy the ‘Demon Horde
Sort’.2 It builds on DReg and Res (Section 4.1) and adds
a Sorter element, illustrated in Fig. 20b. In this version,
Sorter has two primary functions. First, whenever it sees a
Res, it transmutes it into another Sorter, and so the Sorter
population level is indirectly controlled by DReg. Secondly,
Sorter transports Datums from right to left when possible,
and also up or down based on the comparison of the Datum’s
value with a 32-bit threshold stored in the Sorter. When a
Datum ‘crosses’ the Sorter during a move, the Sorter
copies the Datum’s value to its threshold—in Fig. 20b, the
Sorter’s threshold will soon be 79.

In this standalone demonstration the emitters and absorbers
suppress their MFM diffusion and remain stationary; in addition
to their I/O functions, they ‘buddy check’ their same-element
neighbors and recreate them if they are missing but the site is
available—e.g. after an erasure by DReg. The initial condition

"More general is an equal frequency goal, which asks buckets to receive
Datums equally often on average; here the two goals coincide because the test
distributions are uniform random.

ZNote that this is a simplified version compared with that in [3].

consists of some DRegs and Sorters scattered in the channel,
and appropriately placed emitter and absorber ‘seeds’ from
which the I/O grids establish themselves. Figure 21 depicts
a demon horde that has been running for some 100 K AEPS
in a 65-bucket flow sorter, illustrating its typical equilibrium
structure: near the emitters, on the right, the thresholds are
choppy as diverse data values pass through, but after some
distance the thresholds become largely laminar, making (and
remaking) increasingly fine distinctions as Datums close in on
the absorbers.

A pleasant aspect of writing modular, ‘low commitment’
behaviors, like Sorter’s locally sensible notion of sorting, is
the extra freedom it can provide later in the design. For example,
varying the channel length allows trading off hardware and
latency against sorting performance, as illustrated in Fig. 22.
At a channel length of 5 (in which case the emitter and absorber
neighborhoods overlap) performance is random; by the time
the channel length reaches 150 or so, performance begins to
saturate at about the ‘sample sort’ heuristic level.

The demon horde sort’s performance may be just adequate,
by that measure, but its robustness seems quite impressive.
Figure 23 shows results of one experiment in which we
randomly corrupted site memory with simulated bit errors at
arange of probabilities. Each error occurrence selects a random
site and then flips from one to eight of its 64 atomic bits.
We can see that while channel length helps performance, it
does not help robustness against this system perturbation—
but the system is strikingly robust anyway, tolerating upward
of 10 multibit corruptions per million events with essentially
no visible performance degradation, regardless of channel
length.

Above about 50 errors/Mevent the system reliably falls
apart—and the pathology appears to run a reliable course: the

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

14 D.H. ACKLEY et al.

e R T TR
Ll %‘Zﬁ P e

'II i ;:d:{ .!.’EEE"';_ -.’IH:‘ . E&“‘&'

i ."'.E‘ .".:f;:l::t' ;:;"

S .:"r':*.‘-ir.}'f' o

.' ..::‘:! £ ‘__:_.-'.- I.'-"" .'...
o e AR R 3
SR

-
Fhiey

(a) All Types

e Ml g2

(b) Sorters only

FIGURE 21. Filtered views of a 150 x 65 flow sorter, sorting right to left, at + ~ 100K AEPS. Colors (or gray levels) in (a) represent
element types as in Fig. 20a; (b) shows just Sorter thresholds from smallest (orange) through intermediate (blue) to largest values

(pink).

S Demon Horde Sort: Effect of channel length on performance
S B

§ qé’ 32 i *"*--.,,_ Random order bucketing]
=8 920 | st Sample sort bucketing -------- i

4 = 15+ 2 Posmonal error ket |

o

oo 101 g 7
g g i — P proo B]

:?:’ 0 20 40 60 80 100 120 140 160 180

Channel length (sites horizontally, including I/O grids)

FIGURE 22. Sorting performance.

Demon Horde Sort: Performance vs site reliability

35 T T T T T

30 F Channel length=50 +—¢— ¥
Channel length=100 ---3%--~ <

25 Channel length=150 E

hann(éélength =200 . :
20 FRandom order bucketing ----- / 3
15 F Sample sort bucketing - - - - 5

Average positional error (% full range)

0.1 1 10 100 1000
Site memory reliability (corruptions per million events)

FIGURE 23. Sort performance on unreliable hardware.

bit flips trigger the error pathways in Fig. 2, which wipes out
the DReg population the fastest because they are rare and the
slowest to reproduce, and their demise accelerates the extinction
of the Sorters, which leaves the emitted Datums moving
only by diffusion, and they mostly fail to reach any absorber (let
alone the right one) before they too are detectably corrupted and
erased—and for scoring purposes, we count such lost Datums
as if they had arrived at a random bucket.

If we dispensed with DReg and Res, and added direct
Sorter behaviors for managing their own population level,

the system would likely be somewhat more robust to this
specific perturbation, at the expense of more custom physics
and giving up some compositionality, such as the possibility of
simultaneous regulation of multiple elements via competition
for Res. We have only begun identifying such trade-offs and
sweet spots in MFM design space.

5.2. Distributed virtual machines

The examples in Section 4 are admittedly low-level, and the
Demon Horde Sort turned sorting from an algorithm into a
stochastic process, so what can we say for ‘good old-fashioned’
serial determinism? In principle, if robustness and indefinite
scalability are ignored, then a Turing machine or a von Neumann
machine can be implemented, painfully, in an MFM, and
traditional computational effects thus produced—but of course
we argue that indefinite scalability and robustness are both
critical for future computational growth.

A movable feast computation is indefinitely scalable if it can
always make effective use of additional hardware. Although the
ability to solve larger problems is one effective use of additional
hardware, there are others, such as the ability to solve a fixed-
size problem more quickly, or—as our focus in this section—
with an increased chance of success. Here, we describe a method
for MFM evaluation of compiled expressions of a functional
programming language. Figure 24 provides an overview of the
entire process.

One standard method [56, 57] to evaluate an expression
in a functional programming language is, first, to compile it
into a bytecode program (Fig. 24, left). Traditionally, such a
bytecode program is then interpreted by a Virtual Machine
(VM), a program that simulates a von Neumann computer. The
VM maintains a set of registers containing numbers which can
also serve as addresses of memory locations that contain both
instructions and data. A special program counter register holds
the address of the current instruction, which when executed
transforms the contents of the registers and memory in some
way, then the program counter is updated to address the next

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 15

L3 - P E———— Yy p—————
Offline preprocessing 2 o PHEE] Feunn
* (+ 1 2) 3 TFamo B car@2
(*) 3) 0 oGl Robust scalable
slype
Bytecode mstate 11 s
i oltaster (11) @, ez, processing
| toSlave (-1,-1)
| i '__g; self @27 |
o (i_g target @26|
T 1 Ty : Event --p ég; i;éﬁ Zsexprs 34
f I 6 g acc @15
! “update: | mstate2 = args @33
£33 . |toMaster (1,1)| /@ erv @2
\ Master frames @32
» rguman) [2] [r:nnstam] L1 toSlave (-1,-
@' flags SLOH 24 €11 £19
|ium':‘e;s used 7 pal | I
as addresses
RGO » o0
Event center | N O
(current active site) ’
B _sul
3 L]
4| constant Message: | argument 8
2 B2 Continuation % @27
; tarqp I' ;‘.?.
£ SL,leS 3_1 f el B m self @33 |
=3 g fsoprs 0 I c target @0 g9
[g args @0 ."' car@15 |- Allecation:
Z. env @2 - cdr@2 Master creates
bannuin | frames @0 S?Téel]jl new maolecule
Distributed virtual machine | toSlave (1,0) l,u]\n;g's?,eg(Ljay o ecee

FIGURE 24. Robust distributed evaluation of a functional language expression. Left to right: Compilation of a Scheme expression to a bytecode
tree; part of its implementation as a distributed virtual machine (DVM), using actors passing continuations; one of those actors reified as an MFM

molecule, allocating a new pair during an MFM event. Also see text.

instruction and the computation proceeds step-by-step until a
halt bytecode is executed, at which point some part of the VM
state represents the result.

Instead of such a traditional, centralized VM, here we
develop a distributed virtual machine (DVM) implemented
using actors. An actor [58-62] is a universal primitive of
concurrent computation, a lightweight process with a unique
address which can exchange messages with other actors. On
receiving a message, an actor can send messages, create new
actors and update its internal state.

We use actors to represent simple versions of Scheme
data types including pair, number, primitive function, closure
and boolean—and especially, a bytecode actor, representing a
bytecode of a compiled Scheme program. To avoid the central
registers of a von Neumann machine, we encapsulate the VM
state in a message called a continuation that can be sent from
actor to actor. Overall, a compiled set of bytecode actors, using
message passing to exchange continuations, forms a DVM (see
a fragment of a DVM in Fig. 24, lower middle). When an active
bytecode actor sees that a continuation has arrived, it transforms
it in a manner specific to its kind, then sends it on to the next
bytecode in the program, as determined by the compilation
process. Eventually the continuation reaches a halt bytecode
and its accumulator contains the evaluation result.

Finally, we reify each DVM actor as a two-atom molecule
undergoing diffusion in the MFM (Fig. 25, and Fig. 24, right).
With this approach, an ‘address’ represents a value to be
matched, rather than a memory location fixed in space. In

this approach, messages are not reified as atoms or molecules;
instead, a message transmission occurs implicitly, during a
single event, when an active message sender recognizes the
addressed recipient in its neighborhood, and changes the
recipient’s state, and its own, accordingly.

The event window update depicted in (Fig. 24, right) shows an
actor creation event, when the ‘argument’ actor with address 27
creates a new pair referring to the constant 3—part of setting up
the function call that will perform the multiplication specified
in the original expression.

By using only pure functional programming with no side-
effects, we guarantee that any heap-objects that are compiled to,
or created at, any given address are absolutely interchangeable
for purposes of that program, no matter which actors created
them or when they were last accessed. As a result, multiple
active continuations can coexist without inconsistency in one
distributed heap, and we can improve robustness by including
redundant sets of heap-objects—as we explore momentarily.

The programming language used is a purely functional
subset of Scheme [63]. In addition, we restrict user-defined
functions to one argument—so higher arity functions must be
curried—allowing us to implement all variable references by
indexing into a flat evaluation stack [64]. We also introduce a
new Y-combinator-like special form lambda+ to create locally
defined recursive functions at runtime.

In all other ways, we faithfully implemented the heap-based
compiler and VM for Scheme described by Dybvig [57], which
created tremendous pressure on the atomic bit budget. Each

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

16 D.H. ACKLEY et al.

Master=0x4[4]

Slave=0x3[2]

- ‘ toSlave

- ‘ toMaster

sexprs|8], acc[8], args[8], env[8], frames]§]

self[8], target[8], car[8], cdr[8], stype[5], mstate[5]

(a) Reified actor: Master. See Fig. 5.

(b) Reified actor: Slave. See Fig. 5.

FIGURE 25. Actor component elements.

bytecode actor needs to represent nine heap addresses: five for
the VM registers encapsulated in the continuation, two for the
child pointers in the bytecode tree (‘car’ and ‘cdr’), one for the
message recipient and one for a self-pointer—and the number
of bits allocated per address determines the maximum heap size
available jointly for compiled program and all runtime data. In
addition, five more bits are needed for the heap-object type,
and four more bits to represent the execution state of the most
complex bytecode.

Given all that, the 48 P1 bits proved just too tight, so we
reified each actor as a small molecule: a two atom master-
slave pair joined by a short bond (Fig. 25). For simplicity
we put all the ‘behavior’ in the Master element update; the
Slave element update does nothing. These actor molecules
offer 88 programmable bits and support 8-bit addresses which,
though small, do permit the evaluation of a relatively complex
expression like

((lambda+ f x
(if (=x1) 1 (+ x (£ (-x1))))) 9)

which sums the integers from 1 to 9, and compiles into 67 unique
heap-objects. As a first experiment, we randomly distributed 16
copies of that compiled set in a 128 x 128 fault-free simulation,
and found that it typically ran for about 3 million AEPS before
any of the 16 continuations successfully halted, reaching a heap
size of 232 in the process.

With confirmation that the DVM was computing correctly in
an error-free environment, we began to probe redundant DVM
robustness. In a second experiment, we added random bonded
pair deletions as the only possible fault, in which an entire
failing actor molecule is erased cleanly, with no other form
of corruption. We evaluated (* (+ 1 2) 3) as illustrated
in Fig. 24, which produced a compiled set of 29 unique heap-
objects—the 19 visible in the bytecode tree plus various other
built-in constants and primitive functions. Another 13 heap-
objects are created while the program runs. The fault rate
ranged from 1 to 256 molecule deletions per million events; the
redundancy r ranged from 1 to 16. Since the average message
delivery time depends on actor density, we scaled the MFM size
to keep the starting density constant across redundancy; the size
of the simulated MFM was N x N where N = 16 x 2'°¢"/2,

Figure 26 shows the results, with the y axis giving the
fraction of 100 trials per condition that succeeded—meaning
that any continuation executed the halt bytecode before all
actors vanished or the simulation time limit of 50 kKAEPS was

Robustness to pair deletions: (* (+ 1 2) 3)

T T T
Z 1F
8§ o8l
o
& 06
c
S o4t
@
Q. -
g 02
O 0 _..I n n PR 1 il

1 10 100
Bonded pair deletions per million events

FIGURE 26. The performance of DVMs with different levels of
redundancy as a function of the actor failure rate.

reached. A perhaps unexpected result is that beyond about
50 or 100 molecule deletions per million events, additional
redundancy seems to have no effect on robustness. However,
deleting actors (without also removing sites) decreases actor
density, which increases message latency, which slows the
overall computation, decreasing its chance of ultimate success.
Here, DVM computations are less like a traditional VM and
more like chemical reactions in which, all else being equal, it is
the reactant concentrations, rather than their absolute number,
that govern the reaction rate.

Given the results of the second experiment, it was natural to
explore DVM robustness from another direction, and consider
DVM success rates given catastrophic permanent removal of a
fraction of the entire machine, rather than scattered individual
actor deletions. As we explored it, a ‘“fractional failure’ of size
x consists of the removal of all sites (and bonded pairs of atoms
occupying those sites) outside a square region of area n x n
positioned in the lower left corner of a simulated MFM where
n=I-xN.

In each trial, a single fractional failure (ranging in size
from 0.1 to 0.9) was simulated at 7500 AEPS; the expression
evaluated, termination criteria and trials per condition were the
same as in the second experiment. Figure 27 reveals that higher
levels of redundancy result in higher probabilities of successful
completion over the full range of fractional board failure sizes.
For example, even with a fractional failure of 70%, the 16-way
redundant DVM successfully completed 90% of the time. We
conjecture that this trend would continue indefinitely so that
tolerance to fractional board failures of any degree less than
100% could be achieved by a sufficiently large MFM.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 17

Robustness to hardware losses: (* (+ 1 2) 3)

PR o N S S AU L S o
- VTR T 2
S 0.8 :) NI JETTN - PR
o e o . \; 8 n

o 06 - . HE F-o-
C \\\7 \

S o4l i -]
<2

Q - -
g 0.2

O 0 i 1 1 1 1 1 1 \I 1 >| v 1]

10 20 30 40 50 60 70 80 90 100
Hardware removed (% initial machine)

FIGURE 27. The performance of DVMs with different levels of
redundancy as a function of machine failure fraction.

6. CRITIQUE AND CONCLUSION

From the perspective of cellular automata, it is certainly true
that the MFM is a more complex and articulated design, and
its state transition programming is much harder to explain than
the pure simplicity of a state table. Of course, for designing
computations at scale, the state table’s apparent simplicity is
an illusion, not dealing with complexity, but simply pushing it
into larger assemblages, like trying to implement a conventional
computer using only NAND gates.

Furthermore, from the direction of traditional programmable
computers, one obvious criticism is that all this makes the
programmer’s job that much harder, asking for a spatial, as
well as a functional, implementation of the same behavior.
Historically, systems making such extra demands have met
only limited success, and it is possible such a fate awaits the
MFM, but there are also reasons for hope. On the one hand,
previous systems aspired only to finite scalability, limiting the
rewards offered for the extra work required. On the other hand,
lately it seems that the programmer’s job is getting harder
anyway—specifically because the networked world is finally
and increasingly losing tolerance for the /lack of robustness and
security that is the dark flip side of the von Neumann machine’s
zero-dimensional convenience.

Where it is applicable—for example, in relatively small and
safe contexts like those of its early years—the CPU+RAM
model of computation is simple, powerful and a joy to use,
intoxicating in its master-of-the-universe positioning of the
programmer—and indeed there is something deeply right about
it as a model of a conscious mind. But, it is just as deeply wrong
as a physical implementation of a brain—and it is essentially
sociopathic as a model for a team member.

As computing inevitably and now quickly scales beyond
the purview of a single actor, we suggest that the additional
complexities attending robust spatial computing are only the
price of admission to this new and larger arena. Computation
cannot continue to ignore space for that much longer, but
physical computational spaces can, and will, be floorplanned
and blueprinted, farmed and developed, sold and rented—and

in the process, computer architecture will turn into, well,
architecture. It is high time.

ACKNOWLEDGEMENTS

The authors thank the anonymous referees for their helpful
comments.

FUNDING

Funding to pay the Open Access publication charges for this
article was provided by D.H.A.

REFERENCES
[1

—

Cappello, F., Geist, A., Gropp, B., Kal, L.V., Kramer, B.
and Snir, M. (2009) Toward exascale resilience. I/JHPCA, 23,
374-388.

[2] Ackley, D.H. and Williams, L.R. (2011) Homeostatic Architec-

ture for Robust Spatial Computing. Spatial Computing Work-

shop at IEEE Self-Adaptive Self-Organizing Systems, Ann Arbor,

Michigan, USA, October. IEEE.

Ackley, D.H. and Cannon, D.C. (2011) Pursue Robust Indefinite

Scalability. Proc. HotOS XlII, Napa Valley, CA, USA, May.

USENIX Association.

[4] Partridge, C., Mendez, T. and Milliken, W. (1993) Host
Anycasting Service. RFC 1546 (Informational).

[5] Abley, J. and Lindqvist, K. (2006) Operation of Anycast Services.
RFC 4786 (Best Current Practice).

[6] Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell,
T.E. and Stojanovic, M.N. (2006) Behavior of polycatalytic
assemblies in a substrate-displaying matrix. J. Am. Chem. Soc.,
128, 12693-12699.

[7] Franco, E., Friedrichs, E., Kim, J., Jungmann, R., Murray, R.,
Winfree, E. and Simmel, F.C. (2011) Timing Molecular Motion
and Production with a Synthetic Transcriptional Clock. Proc.
Natl. Acad. Sci., 108, E784-E793.

[8] DeHon, A., Giavitto, J.-L. and Gruau, F. (2007) 06361
Executive Report—Computing Media Languages for Space-
Oriented Computation. In DeHon, A., Giavitto, J.-L., and
Gruau, F. (eds), Computing Media and Languages for
Space-Oriented Computation, Dagstuhl, Germany, Dagstuhl
Seminar Proceedings, Vol. 06361. Internationales Begegnungs-
und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl,
Germany.

[9] Borcea, C., Intanagonwiwat, C., Kang, P., Kremer, U.
and Iftode, L. (2004) Spatial Programming Using Smart
Messages: Design and Implementation. In International Conf.
on Distributed Computing Systems (ICDCS’04), Tokyo, Japan,
pp. 690-699.

[10] Zambonelli, F. and Mamei, M. (2005) Spatial Computing: An
Emerging Paradigm for Autonomic Computing and Communica-
tion. In Smirnov, M. (ed.), Autonomic Communication, Lecture
Notes in Computer Science, Vol. 3457, pp. 227-228. Springer,
Berlin/Heidelberg.

[11] Beal, J. and Bachrach, J. (2007) Programming manifolds. In

DeHon, A., Giavitto, J.-L. and Gruau, F. (eds.), Computing

3

—

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

18 D.H. ACKLEY et al.

Media and Languages for Space-Oriented Computation,
Dagstuhl, Germany, Dagstuhl Seminar Proceedings, Vol.
06361. Internationales Begegnungs- und Forschungszentrum fiir
Informatik (IBFI), Schloss Dagstuhl, Germany.

[12] Gruau, F., Eisenbeis, C. and Maignan, L. (2008) The foundation
of self-developing blob machines for spatial computing. Physica
D: Nonlinear Phenomena, 237, 1282—-1301. Novel Computing
Paradigms: Quo Vadis?

[13] Yamins, D. and Nagpal, R. (2008) Automated Global-to-Local
Programming in 1-d Spatial Multi-Agent Systems. Proceedings
of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems, Vol. 2, Richland, SC AAMAS’08,
pp. 615-622. International Foundation for Autonomous Agents
and Multiagent Systems.

[14] Mamei, M. and Zambonelli, F. (2009) Programming pervasive
and mobile computing applications: the TOTA approach. ACM
Trans. Softw. Eng. Methodol., 18, 1-56.

[15] Beal,J.,Dulman, S., Usbeck, K., Viroli, M. and Correll, N. (2012)
Organizing the aggregate: languages for spatial computing.
CoRR, abs/1202.5509.

[16] Bachrach, J., Beal, J. and McLurkin, J. (2010) Composable
continuous-space programs for robotic swarms. Neural Comput.
Appl., 19, 825-847.

[17] Gruau, F. and Eisenbeis, C. (2007) Programming Self Developing
Blob Machines for Spatial Computing. In Brams, S.J., Pruhs, K.
and Woeginger, G.J. (eds), Computing Media and Languages for
Space-Oriented Computation, Dagstuhl Seminar Proceedings,
Vol. 07261. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

[18] Beal, J., Michel, O. and Schultz, U.P. (2011) Spatial computing:
distributed systems that take advantage of our geometric world.
TAAS, 6, 11.

[19] von Neumann, J. (1951) The General and Logical Theory
of Automata. In Jeffress, L.A. (ed.), Cerebral Mechanisms in
Behaviour: The Hixon Symposium (1948). Wiley.

[20] Micheli-Tzanakou, E. and Krakauer, D.C. (2006) Robustness in
Biological Systems: A Provisional Taxonomy. In Deisboeck, T.S.
and Kresh, J.Y. (eds), Complex Systems Science in Biomedicine,
Topics in Biomedical Engineering. International Book Series,
pp- 183-205. Springer US.

[21] Hamming, R.W. (1950) Error detecting and error correcting
codes. Bell Syst. Tech. J., 29, 147-160.

[22] Peterson, W.W. and Weldon, E.J. (1972) Error-Correcting Codes.
The MIT Press.

[23] Treaster, M. (2005) A survey of fault-tolerance and fault-recovery
techniques in parallel systems. ACM Comput. Res. Repository
(CoRR), 501002, 1-11.

[24] Cheatham, J.A., Emmert, J.M. and Baumgart, S. (2006) A survey
of fault tolerant methodologies for fpgas. ACM Trans. Des.
Autom. Electron. Syst., 11, 501-533.

[25] Xiong, N., Yang, Y., Cao, M., He, J. and Shu, L. (2009) A Survey
on Fault-Tolerance in Distributed Network Systems. 2009 Int.
Conf. on Computational Science and Engineering, Vancouver,
Canada, Vol. 2, 1065-1070. IEEE Computer Society.

[26] Gray, J. and Siewiorek, D. (1991) High-availability computer
systems. Computer, 24, 39-48.

[27] Ayari, N., Barbaron, D., Lefevre, L. and Primet, P. (2008)
Fault tolerance for highly available internet services: concepts,

approaches, and issues. [EEE Commun. Surveys Tutorials, 10,
34-46.

[28] Lyons, R.E. and Vanderkulk, W. (1962) The use of triple-modular
redundancy to improve computer reliability. IBM J. Res. Dev., 6,
200-209.

[29] Avizienis, A. (1985) The N-version approach to fault-tolerant
software. [EEE Trans. Softw. Eng., 11, 1491-1501.

[30] Milojiéié, D.S., Douglis, F., Paindaveine, Y., Wheeler, R. and
Zhou, S. (2000) Process migration. ACM Comput. Surv., 32,241—
299.

[31] Nelson, M., Lim, B.-H. and Hutchins, G. (2005) Fast Transparent
Migration for Virtual Machines. Proc. Annual Conf. on USENIX
Annual Technical Conf., Berkeley, CA, USA ATEC’05, pp. 25—
25. USENIX Association.

[32] Black, A.P., Hutchinson, N.C., Jul, E. and Levy, H.M. (2007) The
Development of the Emerald Programming Language. Proc. 3rd
ACM SIGPLAN Conf. on History of Programming Languages,
New York, NY, USA, HOPL III, pp. 11-1-11-51. ACM.

[33] Liu, H., Roeder, T., Walsh, K., Barr, R. and Sirer, E.G. (2005)
Design and Implementation of a Single System Image Operating
System for ad hoc Networks. Proc. 3rd Int. Conf. on Mobile
Systems, Applications, and Services, New York, NY, USA,
MobiSys’05, pp. 149-162. ACM.

[34] von Neumann, J. and Burks, A.W. (eds.) (1966) Theory of Self-
Reproducing Automata. University of Illinois Press, Urbana, IL,
USA.

[35] Ulam, S. (1950) Statistical mechanics of cellular automata, 1952.
Proc. Int. Congr. Math., 2, 264-275.

[36] Sipper, M., Tomassini, M. and Capcarrere, M.S. (1997) Evolving
Asynchronous and Scalable Non-Uniform Cellular Automata.
Proc. Int. Conf. on Artificial Neural Networks and Genetic
Algorithms (ICANNGA97), Norwich, England, pp. 67-71.
Springer.

[37] Tomassini, M. and Venzi, M. (2001) Evolving robust asyn-
chronous cellular automata for the density task. Complex Syst.,
13, 185-204.

[38] Lee, J., Adachi, S., Peper, F. and Morita, K. (2003) Embedding
universal delay-insensitive circuits in asynchronous cellular
spaces. Fundam. Inf., 58, 295-320.

[39] Cornforth, D., Green, D.G. and Newth, D. (2005) Ordered
asynchronous processes in multi-agent systems. Physica D:
Nonlinear Phenom., 204, 70-82.

[40] Bouré, O., Fates, N. and Chevrier, V. (2011) Robustness of
Cellular Automata in the Light of Asynchronous Information
Transmission. In Calude, C.S., Kari, J., Petre, I. and Rozenberg,
G. (eds), Proc. of the 10th International Conference on
Unconventional Computation, Turku, Finland, Lecture Notes in
Computer Science, Vol. 6714, pp. 52-63. Springer.

[41] Nakamura, K. (1974) Asynchronous cellular automata and their
computational ability. Syst. Comput. Controls, 5, 58—66.

[42] Toffoli, T. (1978) Integration of the Phase-Difference Rela-
tions in Asynchronous Sequential Networks. ICALP’78,
Udine, Italy, pp. 457-463.

[43] Nehaniv, C.L. (2004) Asynchronous automata networks can
emulate any synchronous automata network. 1JAC, 14, 719-739.

[44] Chapiro, D. (1984) Globally asynchronous locally synchronous
systems. PhD Thesis, Stanford University. STAN-CS-84-1026.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://comjnl.oxfordjournals.org/

A MOVABLE ARCHITECTURE FOR ROBUST SPATIAL COMPUTING 19

[45] Gershenfeld, N. (2011) Aligning the representation and reality of

computation with asynchronous logic automata. Computing, 93,
91-102.

[46] Gershenfeld, N., Dalrymple, D., Chen, K., Knaian, A., Green,
F., Demaine, E.D., Greenwald, S. and Schmidt-Nielsen, P.
(2010) Reconfigurable Asynchronous Logic Automata: RALA.
Proc. 37th Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, New York, NY, USA, POPL’10,
pp- 1-6. ACM.

[47] Rumelhart, D.E., McClelland, J.L. and PDP Research Group
(eds) (1986) Parallel Distributed Processing. Volume 1:
Foundations. MIT Press, Cambridge, MA.

[48] Ackley, D.H. (1987) A Connectionist Machine for Genetic
Hillclimbing. Kluwer, Dordrecht, Boston.

[49] Ananthanarayanan,R., Esser, S.K., Simon, H.D. and Modha, D.S.
(2009) The Cat is Out of the Bag: Cortical Simulations with
109 neurons, 1013 synapses. Proc. Conf. on High Performance
Computing Networking, Storage and Analysis, New York, NY,
USA, SC’09, pp. 63:1-63:12. ACM.

[50] Liquidware.com (2011) Illuminato X Machina. http://illumi
natolabs.com (accessed September 2, 2012).

[51] Ackley, D.H. (2008) The SFB reference manual. http:/
livingcomputation.com/s/doc/ (accessed September 2, 2012).

[52] Ackley, D.H. (2009). Illuminato X Machina network arrays
(video). http://www.youtube.com/watch?v=ZBFoFYhC9B4.

[53] Williams, L.R. (2011) Artificial cells as reified quines. European
Conf. on Artificial Life (ECAL’11), Paris, France, August.

[54] Pitoura, E. and Samaras, G. (2001) Locating objects in mobile
computing. IEEFE Trans. Knowl. Data Eng., 13, 571-592.

[55] Digital Display Working Group (1999). Digital visual interface:
DVL. http://www.ddwg.org/lib/dvi_10.pdf (accessed September
2,2012).

[56] Landin, PJ. (1964) The mechanical evaluation of expressions.
Comput. J., 6, 308-320.

[57] Dybvig, R.K. (1987) Three Implementation Models for Scheme.
PhD Thesis, University of North Carolina, Chapel Hill, NC.

[58] Hewitt, C., Bishop, P. and Steiger, R. (1973) A universal modular
actor formalism for artificial intelligence. IJCAL.

[59] Greif, 1. and Hewitt, C. (1975) Actor Semantics of PLANNER-
73. Principles of Programming Languages, January.

[60] Baker, H. (1978) Actor Systems for Real-Time Computation. PhD
Thesis, Massachusetts Insitute of Technology, Cambridge, MA.
http://publications.csail.mit.edu/Ics/specpub.php?id=765.

[61] Clinger, W. (1981) Foundations of Actor Semantics. PhD Thesis.

[62] Agha, G. (1986) Actors: A model of concurrent computation
in distributed systems, Massachusetts Insitute of Technology,
Cambridge, MA. http://hdl.handle.net/1721.1/6935.

[63] Kelsey, R., Clinger, W. and Rees, J. (1998) Revised? report
on the algorithmic language Scheme. Higher-Order Symbol.
Comput., 11.

[64] Bruijn, N.G.D. (1972) Lambda calculus notation with nameless
dummies: a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. Indag. Math., 34,
381-392.

THE COMPUTER JOURNAL, 2012

2T0Z ‘PT J000100 U0 188n6 Aq /B10'seulnolployxo’ ulwooy/:dny wouiy papeojumoq

http://illuminatolabs.com
http://illuminatolabs.com
http://livingcomputation.com/s/doc/
http://livingcomputation.com/s/doc/
http://www.youtube.com/watch?v=ZBFoFYhC9B4
http://www.ddwg.org/lib/dvi_10.pdf
http://publications.csail.mit.edu/lcs/specpub.php?id=765
http://hdl.handle.net/1721.1/6935
http://comjnl.oxfordjournals.org/

	1 Introduction
	1.1 Scaling beyond serial determinism
	1.2 Research context
	1.3 Spatial computing
	1.4 Architectural criteria

	2 The Movable Feast Machine
	2.1 Small programs change big neighborhoods
	2.2 Sites and spatial structure
	2.3 Event window processing
	2.4 Atomic structure and semantics
	2.5 Bonds and mobility

	3 Performance Estimation
	3.1 A caching and locking model
	3.2 Hypothetical hardware substrate
	3.3 Performance estimates

	4 Basic Movable Elements
	4.1 Dynamic regulation
	4.2 Movable data transport
	4.3 Movable membranes

	5 Integrated Computations
	5.1 Robust spatial sort
	5.2 Distributed virtual machines

	6 Critique and Conclusion

