
Beyond efficiency ∗

David H. Ackley

Esteem for efficiency should be tempered with respect for robustness.

Computer science often emphasizes
processing efficiency, leaving ro-
bustness to be addressed separately.
However, robustness requires re-
dundancy, which efficiency elimi-
nates. For safer and more scalable
computing, we must embrace and
manage this tradeoff.

You’ve seen them: Crashed com-
puters, frozen on the job. Fortu-
nately the result is seldom worse
than user inconvenience or owner

embarrassment. Still, as computer
scientists we wonder why the com-
puter inside the machine is so often
the weakest link.

Computers keep gaining new re-
sponsibilities. In everything from
smartphones to cars to medical
equipment, we need computers to be
robust. They should be competent
at their jobs, but also sensible about
the unexpected, and prudent about
the malicious.

Over the years we have learned

much about how to keep com-
puters working. Fields like fault
tolerance10 and software reliabil-
ity7 employ structured redundancy
to enhance robustness. Data cen-
ters and other high-availability sys-
tems have benefited, but the tech-
niques rarely reach the mass market.
Meanwhile, many areas of com-
puter science—for example, algo-
rithm and database design, and pro-
gramming generally—view redun-
dancy as waste. A common perspec-

∗This is an author’s preprint of a Viewpoint essay accepted for publication in the Communications of the ACM, 2013.

1



tive, here stated categorically for
emphasis, says software designers
and programmers should assume a
100% reliable deployment platform,
and the goal of software is ‘CEO’:
Correctness and Efficiency Only.

That ‘CEO Software’ mindset has
gone largely unchallenged because
it has history and technology be-
hind it. Our traditional digital archi-
tectures, error-correcting hardware,
and fault-masking subsystems like
TCP libraries work together to sup-
port it. Yet it is misleading and
risky. It implies efficiency and ro-
bustness are separate, when actually
they are coupled. Teaching it to our
students perpetuates that misunder-
standing.

CEO Software powers much of
computing today, often with great
success, but it is neither inevitable
nor harmless in general. This essay
reviews its origins, offers a canoni-
cal example of its hidden risks, and
suggests opportunities for balancing
efficiency and robustness through-
out the computational stack.
It is easy to blame the woes of
modern computing on flaky hard-
ware, miscreants spreading mal-
ware, clueless users clicking, sloppy
coders writing buggy code, and
companies shipping first and patch-
ing later. Certainly in my pro-
gramming classes I have a stern
face for missing error checks and
all program ugliness, but the deeper
problem is our dependence on
the basic von Neumann model of
computation—a CPU with RAM,
cranking out a vast daisy chain of
ideal logical inferences. This is ulti-
mately unscalable, as von Neumann
himself observed11 in 1948. We’ve
stretched von Neumann’s model far
beyond what he saw for it. The
cracks are showing.

The original concept of general-
purpose digital computing amounts
to this: Reliability is a hardware
problem; desirability is a software
problem. The goal was to engi-
neer a “perfect logician” to flaw-

lessly follow a logic ‘recipe’ pro-
vided later. Reliability was achieved
through massive redundancy, using
whole wires to carry individual bits,
and amplifiers everywhere to squish
out errors. Analog machines of the
day could compute a desirable re-
sult, such an artillery firing solution,
using less than ten amplifiers. Early
digital machines did similar work
more flexibly, but used thousands of
amplifiers.

Meanwhile, computer scientists
and programmers devised correct
recipes for desirable computations.
The huge costs but modest abilities
of early hardware demanded those
recipes be ruthlessly efficient. CEO
Software was born. Many efficient
algorithms were developed, along
with efficiency enhancements such
as keeping the processor busy with
multiple recipes, sharing memory to
speed task interactions, and caching
intermediate results to save time.

However, if an intermediate re-
sult might—for any reason—be in-
correct, reusing it might just make
things worse. Sharing resources lets
problems cascade between recipes.
If efficiency is optimized, a single
fault could corrupt a machine’s be-
havior indefinitely—an unlikely out-
come with random faults, but a fact
of life with hostile security faults.

Computers used to have paid staff
watching them. Software was small
enough to debug credibly. Comput-
ing needs changed slowly. Leav-
ing reliability to hardware worked
well. The world has changed: In the
hurly-burly of networked consumer
computing, the more CEO Software
we add to a system, the more break-
able it gets. Today’s crashed ma-
chines may be just canaries in the
coal mine.
To see how robustness and effi-
ciency can trade off, consider sort-
ing a list by comparing pairs of
items. This is considered a solved
problem in computer science, with
solid theory and many efficient al-
gorithms. “Quick sort” and “merge

sort” are particularly widely used.
When sorting a long list, either one
blows the doors off “bubble sort,”
which basically makes many passes
over the list and swaps adjacent
items if they compare out of or-
der. Computer scientists love to hate
bubble sort, because it is inefficient
but easy to reinvent. It keeps pop-
ping up in software like a weed.

Efficient sorting algorithms make
comparisons that often move items
long distances. Bubble sort doesn’t
do that. It compares items repeat-
edly. It only moves items one po-
sition at a time. Bubble sorting a
billion items would involve a bil-
lion billion comparisons and take
years. Quick sorting a billion items
took under ten minutes on my lap-
top: It is an efficient algorithm for
big tasks.

Yet some tasks are small, like
sorting my shopping list by price.
Even inefficient bubble sort will do
that in the blink of an eye. Is it al-
ways best to do even small jobs as
fast as possible? Maybe not.

As a demonstration, imagine sort-
ing just 52 items, like a shuffled
deck of cards. I used1 stock im-
plementations of quick and merge
sorts, and hand-coded a totally un-
optimized bubble sort. Each algo-
rithm picks pairs of cards to com-
pare, and passes them to a ‘card
comparison component’ to deter-
mine their order.

Here’s the twist: Imagine that
component is unreliable. Maybe
malware corrupted it. Maybe
sunspots cooked it. We don’t know
why. For this demonstration, the
card comparison component usually
works fine, but on 10% of compar-
isons it gives a random answer. It
might claim 3♠> 7♦, or Q♥= 9♣,
or whatever.

Given such faults, a sorting algo-
rithm’s output might well be incor-
rect. I scored the output error by
adding up each card’s distance from
its proper position—ranging from 0,
for the correct deck order, up to

2



1,352 (i.e., 522/2), for worst cases
like getting the whole deck back-
wards.

Averaged over 1,000 shuffled
decks, here are the errors made by
each sorting algorithm:

 0

 100

 200

 300

Quick Merge Bubble

To
ta

l c
ar

d 
po

si
ti

on
al

 e
rr

or
 (

av
er

ag
e)

Sort algorithm

Errors sorting a deck of cards
with 10% failed comparisons

Now whose doors have fallen off?
Bubble sort’s inefficient repeated
comparisons repair many faults, and
its inefficient short moves minimize
the damage of the rest.

I subsequently found that quick
and merge become competitive with
bubble if I repeat each of their com-
parisons six times and return the
most common answer. But that
felt like a cheap hack—an after-
the-fact fix tailored to one situation.
Here, the failed comparisons were
independent, identically-distributed
(IID) events, but real-world faults
often occur in bursts or other pat-
terns. For example, a mistaken per-
son gives wrong directions even if
you repeat the question. How far
should you drive based on their an-
swers? Or in this case, how far
should a sorter swap data?

Bubble sort wins on some non-
IID faults as well. Suppose our falli-
ble comparator also suffered from a
sticky output, so half the time it just
repeated its previous answer. Given
such awful directions, bubble’s er-
ror rose to nearly 90—but quick ex-
ceeded 550, merge exceeded 650,
and even their best-of-six variants
both broke 250. Bubble sort is in-
efficient, but it is robust.

Efficiency is key when demands ex-
ceed resources. Yet many comput-
ers are usually idling. They could
have been checking their work, but
that’s off the radar for CEO Soft-
ware. Optimizing efficiency con-
spires with program correctness to
undermine robustness. The more
work done per program action, as
with the long swaps of efficient
sorters, the more serious the disrup-
tion from faulty action. Yet as long
as the optimized code remains log-
ically correct, with CEO Software
there is no pushback. That risk is
never even assessed, because fault-
induced failures, no matter how se-
vere, are billed to someone else.

Ironically, even fault tolerance re-
searchers can succumb to the lure
of CEO Software. With com-
mendable candor, one group has ar-
gued that optimizing fault-free effi-
ciency, “a practice that we have en-
gaged in with relish. . . , is increas-
ingly misguided, dangerous, and
even futile.”6 Broader awareness
of CEO Software’s liabilities could
help avoid such traps.

Over sixty years ago, von Neu-
mann recognized the scalability lim-
its of his namesake design. He pre-
dicted a future computing model,
a “logic of automata,” in which
short runtimes would be preferred,
and all computational operations
would tolerate faults.11 With tran-
sistor sizes continuing to shrink be-
neath churning piles of dubious soft-
ware, plus fault-injecting attackers
wielding lasers and X-rays3, we
continue to delay that future at our
peril.
Today’s computing base is opti-
mized for the perfect logician, so
the quest for robustness has many
fronts. A clean-slate approach is ro-
bust, indefinitely scalable architec-
tures2, but research topics abound.

For example, it would help to
have better visibility into efficiency-
robustness tradeoffs. Existing
software quality metrics could be
expanded to include correctness

degradation under various fault
models. Bubble sort wasn’t even de-
signed to be robust. How will other
algorithms behave?

To set the stage formally, it would
help to have results on the tradeoffs
between efficiency and robustness,
perhaps like a Brewer’s Theorem8

extended to degrees of failure. A
starting point might be highly opti-
mized tolerance4, which explicitly
represents failure size.

We also need to understand ro-
bust applications programming bet-
ter. The ongoing trend away from
monolithic mainlines towards quick
event handlers could be seen as
compatible with von Neumann’s
short program runtimes.

More possibilities arise as we re-
place prima donna CEO Software
with robust team player code that
gives better than it gets. For ex-
ample, Dijkstra’s self-stabilization9

technique continually “falls toward”
correctness. It is a beautiful em-
bodiment of the robust spirit, but re-
quires extra work to interface with
CEO Software, because it can vi-
olate correctness while stabilizing,
which CEO Software cannot toler-
ate.

Finally, we could develop self-
tuning algorithms that trade effi-
ciency against robustness dynami-
cally, based on workload proper-
ties, and resource availability and
quality. Some existing work5 uses
failure-detection heuristics to switch
from efficient to robust processing.
More could be done in a compu-
tational model that supported sig-
naling external resource characteris-
tics, and internal robustness margins
between components.

It’s time to study and manage in-
correctness in the interest of robust-
ness. We should not shun the trade-
off, but rather, we should under-
stand, engineer, and teach compu-
tation beyond correctness and effi-
ciency only.

Robust computation now.
version 201301131528 word count 1724

3



References
1. David H. Ackley. Bubble

sort robustness demon-
stration code. http:
//livingcomputation.
com/robusort2.tar,
April 2012. Accessed Jan
2013.

2. David H. Ackley, Daniel C.
Cannon, and Lance R.
Williams. A movable ar-
chitecture for robust spatial
computing. The Computer
Journal, 2012.

3. H. Bar-El, H. Choukri, D. Nac-
cache, M. Tunstall, and
C. Whelan. The Sorcerer’s
Apprentice Guide to Fault
Attacks. Proceedings of the
IEEE, 94(2):370–382, February
2006.

4. J. M. Carlson and John Doyle.
Highly optimized tolerance: a
mechanism for power laws in
designed systems. Phys. Rev. E,
60:1412–1427, Aug 1999.

5. Ilwoo Chang, Matti A.
Hiltunen, and Richard D.
Schlichting. Affordable fault
tolerance through adaptation.
In IPPS/SPDP Workshops,
pages 585–603, 1998.

6. Allen Clement, Edmund Wong,
Lorenzo Alvisi, Mike Dahlin,

and Mirco Marchetti. Mak-
ing Byzantine fault tolerant sys-
tems tolerate Byzantine faults.
In Proceedings of the 6th
USENIX symposium on Net-
worked systems design and im-
plementation, NSDI’09, pages
153–168, Berkeley, CA, USA,
2009. USENIX Association.

7. Tadashi Dohi and Bojan Cu-
kic, editors. IEEE 22nd In-
ternational Symposium on Soft-
ware Reliability Engineering,
ISSRE 2011, Hiroshima, Japan,
November 29 - December 2,
2011. IEEE, 2011.

8. Seth Gilbert and Nancy Lynch.
Brewer’s conjecture and the
feasibility of consistent, avail-
able, partition-tolerant web ser-
vices. SIGACT News, 33(2):51–
59, June 2002.

9. Marco Schneider. Self-
stabilization. ACM Comput.
Surv., 25(1):45–67, March
1993.

10. Robert S. Swarz, Philip Koop-
man, and Michel Cukier, edi-
tors. IEEE/IFIP International
Conference on Dependable Sys-
tems and Networks, DSN 2012,
Boston, MA, USA, June 25-28,
2012. IEEE Computer Society,
2012.

11. John von Neumann. The gen-
eral and logical theory of au-
tomata. In L. A. Jeffress, ed-

itor, Cerebral Mechanisms in
Behaviour: the Hixon Sympo-
sium (1948), pages 15–19. Wi-
ley, 1951. Also appears as
pages 302–306 in A.H. Taub,
editor, John von Neumann Col-
lected Works: Volume V – De-
sign of Computers, Theory of
Automata and Numerical Anal-
ysis, Pergamon Press, 1963.

Acknowledgments

For their comments and encourage-
ment, the author thanks the readers
of earlier versions of this essay, par-
ticularly including Brian Christian,
Howard Shrobe, George Furnas, Jim
Hollan, Michael Lesk, and Terry
Jones. John Leslie King was par-
ticularly helpful during revisions, as
were the vigorous reactions of the
anonymous reviewers.

The internet has many pictures of
crashed computers. In the open-
ing image, clockwise from top
left, from: gizmodo.com http://
bit.ly/UZ1yeb, knick-knack.com
http://bit.ly/13ovMsd, and
wikipedia.org http://bit.ly/
UTOlzG.

Author
David H. Ackley (ackley@cs.unm .edu)
is an associate professor of computer
science at the University of New Mex-
ico in Albuquerque, NM.

4

http://livingcomputation.com/robusort2.tar
http://livingcomputation.com/robusort2.tar
http://livingcomputation.com/robusort2.tar
http://bit.ly/UZ1yeb
http://bit.ly/UZ1yeb
http://bit.ly/13ovMsd
http://bit.ly/UTOlzG
http://bit.ly/UTOlzG

