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Figure 5 .37 Oblique projec-
tion.
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Because the camera is pointing in the negative z direction, the projectors are
directed from infinity on the negative z-axis toward the origin.

5.8.3 Oblique Projections
OpenGL provides through glOrtho a limited class of parallel projections—
namely, only those for which the projectors are orthogonal to the projection
plane. As we saw earlier in this chapter, oblique parallel projections are
useful in many fields.4 We could develop an oblique projection matrix directly;
instead, however, we follow the process that we used for the general orthogonal
projection. We convert the desired projection to a canonical orthogonal
projection of distorted objects.

An oblique projection can be characterized by the angle that the projectors
make with the projection plane, as shown in Figure 5.37. In APIs that
support general parallel viewing, the view volume for an oblique projection
has the near and far clipping planes parallel to the view plane, and the
right, left, top, and bottom planes parallel to the direction of projection,
as shown in Figure 5.38. We can derive the equations for oblique projections

4. Note that without oblique projections we cannot draw coordinate axes in the way that we
have been doing in this book; see Exercise 5.15.
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by considering the top and side views in Figure 5.39, which shows a projector
and the projection plane z = 0. The angles θ and φ characterize the degree
of obliqueness. In drafting, projections such as the cavalier and cabinet
projections are determined by specific values of these angles. However, these
angles are not the only possible interface (see Exercises 5.9 and 5.10).

If we consider the top view, we can find xp by noting that

tan θ =
z

x − xp

,

and thus

xp = x − z cot θ.
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Figure 5 .38 Oblique clipping volume.
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Figure 5 .39 Oblique projection. (a) Top view. (b) Side
view.
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Figure 5 .40 Effect of shear transformation.

Likewise,

yp = y − z cot φ.

Using the equation for the projection plane

zp = 0,

we can write these results in terms of a homogeneous-coordinate matrix

P =









1 0 − cot θ 0
0 1 − cot φ 0
0 0 0 0
0 0 0 1









.

Following our strategy of the previous example, we can break P into the
product

P = MorthH(θ, φ) =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

















1 0 − cot θ 0
0 1 − cot φ 0
0 0 1 0
0 0 0 1









,

where H(θ, φ) is a shearing matrix. Thus, we can implement an oblique
projection by first doing a shear of the objects by H(θ, φ), and then doing
an orthographic projection. Figure 5.40 shows the effect of H(θ, φ) on an
object—a cube—inside an oblique view volume. The sides of the clipping
volume become orthogonal to the view plane, but the sides of the cube become
oblique as they are affected by the same shear transformation. However,
the orthographic projection of the distorted cube is identical to the oblique
projection of the undistorted cube.
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We are not finished, because the view volume created by the shear is not
our canonical view volume. We have to apply the same scaling and translation
matrices that we used in Section 5.8.1. Hence, the transformation

ST =
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must be inserted after the shear and before the final orthographic projection,
so the final matrix is

P = MorthSTH.

The values of left , right , bottom, and top are the vertices of the right
parallelepiped view volume created by the shear. These values depend on
how the sides of the original view volume are communicated through the
application program; they may have to be determined from the results of the
shear to the corners of the original view volume.

5.9 Perspective-Projection Matrices
For perspective projections, we follow a path similar to the one that we
used for parallel projections: We find a transformation that, by distorting the
vertices of our objects, allows us to do a simple canonical projection to obtain
the desired image. Our first step is to decide what this canonical viewing
volume should be. We then introduce a new transformation, the perspective-

normalization transformation, that converts a perspective projection to an
orthogonal projection. Finally, we derive the perspective-projection matrix
used in OpenGL.

5.9.1 Perspective Normalization
In Section 5.4 we introduced a simple perspective-projection matrix that, for
the projection plane at z = −1 and the center of projection at the origin, is

M =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0









.

Suppose that to form an image, we also need to specify a clipping volume.
Suppose that we fix the angle of view at 90 degrees by making the sides
of the viewing volume intersect the projection plane at a 45-degree angle.
Equivalently, the view volume is the semi-infinite view pyramid formed by
the planes
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x = ±z,

y = ±z,

shown in Figure 5.41. We can make the volume finite by specifying the near
plane to be z = max and the far plane to be z = zmin, where both these values
are negative (the near and far distances) and

zmax > zmin.

Consider the matrix

N =









1 0 0 0
0 1 0 0
0 0 α β
0 0 −1 0









,

which is similar to M but is nonsingular. For now, we leave α and β unspecified
(but nonzero). If we apply N to the homogeneous-coordinate point p =

[ x y z 1 ]T , we obtain the new point q = [ x′ y′ z′ w′ ]T , where

x′ = x,

y′ = y,

z′ = αz + β,

w′ = −z.

After dividing by w′, we have the three-dimensional point

x

y

z

(1, 1, 2 1)

(2 1, 2 1, 2 1)

z = z
min

Figure 5 .41 Simple perspective projection.
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x′′ = −
x

z
,

y′′ = −
y

z
,

z′′ = −

(

α +
β

z

)

.

If we apply an orthographic projection along the z-axis to N, we obtain the
matrix

MorthN =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1 0









,

which is a simple perspective-projection matrix, and the projection of the
arbitrary point p is

p′ = MorthNp =









x
y
0

−z









.

After we do the perspective division, we obtain the desired values for xp and
yp:

xp = −
x

z
,

yp = −
y

z
.

We have shown that we can apply a transformation N to points, and, after
an orthogonal projection, we obtain the same result as we would have for a
perspective projection. This process is similar to how we converted oblique
projections to orthogonal projections by first shearing the objects.

The matrix N is nonsingular and transforms the original viewing volume
into a new volume. We choose α and β such that the new volume is the
canonical clipping volume. Consider the sides

x = ±z.

They are transformed by x′′ = −x/z to the planes

x′′ = ±1.

Likewise, the sides y = ±z are transformed to

y′′ = ±1.

The front of the view volume z = zmax is transformed to the plane



284 Chapter 5 Viewing

z′′ = −

(

α +
β

zmax

)

.

Finally, the far plane z = zmin is transformed to the plane

z′′ = −

(

α +
β

zmin

)

.

If we select

α =
zmax + zmin

zmax − zmin

,

β = −
2zmaxzmin

zmax − zmin

,

then the plane z = zmin is mapped to the plane z′′ = −1, the plane z =
zmax is mapped to the plane z′′ = 1, and we have our canonical clipping
volume. Figure 5.42 shows this transformation and the distortion to a cube
within the volume. Thus, N has transformed the viewing frustum to a right
parallelepiped, and an orthographic projection in the transformed volume
yields the same image as does the perspective projection. The matrix N is
called the perspective-normalization matrix. The mapping

z′′ = −

(

α +
β

z

)

is nonlinear but preserves the ordering of depths. Thus, if z1 and z2 are the
depths of two points within the original viewing volume and

z1 > z 2,

then their transformations satisfy

z
′′

1 > z
′′

2.

Consequently, hidden-surface removal works in the normalized volume, al-
though the nonlinearity of the transformation can cause numerical problems
because the depth buffer has a limited resolution, usually 24 or 32 bits. Note

COP

z = 1

z = 2 1

x = 2 1 x = 1

z = z
max

z = z
min

Figure 5 .42 Perspective normalization of view volume.
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that, although the original projection plane we placed at z = −1 has been
transformed by N to the plane z′′ = β − α, there is little consequence to this
result because we follow N by an orthographic projection.

Although we have shown that both perspective and parallel transforma-
tions can be converted to orthographic transformations, the effects of this
conversion are greatest in implementation. As long as we can put a carefully
chosen projection matrix in the pipeline before the vertices are defined, we
need only one viewing pipeline for all possible views. In Chapter 8, where we
discuss implementation in detail, we shall see how converting all view volumes
to right parallelepipeds by our normalization process simplifies both clipping
and hidden-surface removal.

5.9.2 OpenGL Perspective Transformations
The OpenGL function glFrustum does not restrict the view volume to a sym-
metric (or right) frustum. The parameters are as shown in Figure 5.43. We can
form the OpenGL perspective matrix by first converting this frustum to the
symmetric frustum with 45-degree sides (see Figure 5.41). The process is sim-
ilar to the conversion of an oblique parallel view to an orthogonal view. First,
we do a shear to convert the asymmetric frustum to a symmetric one. Fig-
ure 5.43 shows the desired transformation. The shear angle is determined by
our desire to skew (shear) the point ((left + right)/2, (top + bottom)/2, −far)
to (0, 0, −near). The required shear matrix is

H(θ, φ) = H

(

cot−1

(

left + right

2zmax

)

, cot−1

(

top + bottom

2zmax

))

.

The resulting frustum is described by the planes

x = ±
right − left

2zmax

,

y = ±
top − bottom

2zmax

,

z = zmin,

z = zmax.

(x
min

,y
min

, z
max

)
(x
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)
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Figure 5 .43 OpenGL perspective.
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The next step is to scale the sides of this frustum to

x = ±z,

y = ±z,

without changing either the near plane or the far plane. The required scal-
ing matrix is S(2zmax/(right − left), 2zmax/(top − bottom), 1). Note that this
transformation is determined uniquely without reference to the location of the
far plane z = zmin, because, in three dimensions, an affine transformation is
determined by the results of the transformation on four points. In this case,
these points are the four vertices where the sides of the frustum intersect the
near plane.

To get the far plane to the plane z = −1 and the near plane to z = 1
after applying a projection normalization, we use the projection-normalization
matrix N:

N =









1 0 0 0
0 1 0 0
0 0 α β
0 0 −1 0









,

with α and β as in Section 5.9.1. The resulting projection matrix is in terms
of the near and far distances,

P = NSH =



















−2far

right−left
0

right+left

right−left
0

0
−2far

top−bottom

top+bottom

top−bottom
0

0 0 −

far+near

far−near
−

2far∗near

far−near

0 0 −1 0



















.

5.10 Projections and Shadows
The creation of simple shadows is an interesting application of projection
matrices. Although shadows are not geometric objects, they are important
components of realistic images and give many visual clues to the spatial
relationships among the objects in a scene. Starting from a physical point
of view, shadows require one or more light sources to be present. A point
is in shadow if it is not illuminated by any light source, or equivalently if a
viewer at that point cannot see any light sources. However, if the only light
source is at the center of projection, there are no visible shadows, because any
shadows are behind visible objects. This lighting strategy has been called the
“flashlight in the eye” model and corresponds to the simple lighting we have
used thus far.

To add physically correct shadows, we must understand the interaction
between light and materials, a topic that we investigate in Chapter 6. There,
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we show that such calculations are difficult; normally, they cannot be done
in real time.

Nevertheless, the importance of shadows in applications such as flight sim-
ulators led to a number of special approaches that can be used in many
circumstances. Consider the shadow generated by the point source in Fig-
ure 5.44. We assume for simplicity that the shadow falls on the ground or the
surface

y = 0.

Not only is the shadow a flat polygon, called a shadow polygon, but also it is
the projection of the original polygon onto the surface. Specifically, the shadow
polygon is the projection of the polygon onto the surface with the center of
projection at the light source. Thus, if we do a projection from a frame in
which the light source is at the origin, we obtain the vertices of the shadow
polygon. These vertices must then be converted back to a representation in
the world frame. Rather than do the work as part of an application program,
we can find a suitable projection matrix and use OpenGL to compute the
vertices of the shadow polygon.

Suppose that we start with a light source at (xl, yl, zl), as in Figure 5.45(a).
If we reorient the figure such that the light source is at the origin, as in
Figure 5.45(b), by a translation matrix T(−xl, −yl, −zl), then we have a simple
perspective projection through the origin. The projection matrix is

M =









1 0 0 0
0 1 0 0
0 0 1 0
0 1

−yl
0 0









.

Finally, we translate everything back with T(xl, yl, zl). The concatenation of
this matrix and the two translation matrices projects the vertex (x, y, z) to

xp = xl −
x − xl

(y − yl)/yl

,

yp = 0,

zp = zl −
z − zl

(y − yl)/yl

.

However, with an OpenGL program, we can alter the model-view matrix to
form the desired polygon,

GLfloat m[16]; /* Shadow Projection Matrix */

for(i=0;i<15;i++) m[i]=0.0;

m[0]=m[5]=m[10]=1.0;

m[7]= -1.0/yl;

glColor3fv(polygon_color)
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Figure 5 .45 Shadow polygon projection (a) from a light source, and
(b) with source moved to the origin.
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glBegin(GL_POLYGON)
.
.
. /* Draw the polygon normally */

glEnd();

glMatrixMode(GL_MODELVIEW);

glPushMatrix(); /* Save state */

glTranslatef(xl,yl,zl); /* Translate back */

glMultMatrixf(m); /* Project */

glTranslate(-xl,-yl,-zl); /* Move light to origin */

glColor3fv(shadow_color);

glBegin(GL_POLYGON);
.
.
. /* Draw the polygon again */

glEnd();

glPopMatrix(); /* Restore state */

Note that although we are performing a projection with respect to the
light source, the matrix that we use is the model-view matrix. We render
the same polygon twice: the first time as usual and the second time with
an altered model-view matrix that transforms the vertices. The same viewing
conditions are applied to both the polygon and its shadow polygon. The results
of computing shadows for the cube are shown in Back Plate 3. The code is in
the program cubes.c.

For a simple environment, such as an airplane flying over terrain casting a
single shadow, this technique works well. It is also easy to convert from point
sources to distant (parallel) light sources (see Exercise 5.17). However, when
objects can cast shadows on other objects, this method becomes impractical.
In Chapter 13 we address more general, but slower, rendering methods that
will create shadows automatically as part of the rendering process.

5.11 Summary and Notes
We have come a long way. We can now write complete, nontrivial, three-
dimensional applications. Probably the most instructive activity that you can
do now is to write such an application. Facility with manipulating the model-
view and projection functions takes practice.

We have presented the mathematics of the standard projections. Although
most APIs obviate the user from writing projection functions, understanding
the mathematics leads to understanding a pipeline implementation based on
concatenation of 4 × 4 matrices. Until recently, user programs had to do
the projections within the applications, and most hardware systems did not
support perspective projections.

There are three major themes in the remainder of this book. First, we ex-
plore modeling further by expanding our basic set of primitives. In Chapter 9,
we incorporate more complex relationships between simple objects through
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hierarchical models. In Chapter 10, we leave the world of flat objects, adding
curves and curved surfaces. These objects are defined by vertices, and we can
implement them by breaking them into small flat primitives, so we can use
the same viewing pipeline. Then, in Chapter 11, we explore approaches to
modeling that do not force us to describe objects through procedures rather
than as geometric objects. This approach allows us to model objects with only
as much detail as is needed, to incorporate physical laws into our models, and
to model natural phenomena that cannot be described by polygons.

The second major theme is realism. Although more complex objects allow
us to build more realistic models, we also explore more complex rendering
options. In Chapter 6 we consider the interaction of light with the materials
that characterize our objects. We look more deeply at hidden-surface–removal
methods, at shading models, and, in Chapter 7, at techniques such as texture
mapping that allow us to create complex images from simple objects using
advanced rendering techniques.

Third, we look more deeply at implementation in Chapter 8. At this point,
we have introduced the major functional units of the graphics pipeline. We
discuss the details of the algorithms used in each unit. We shall also see
additional possibilities for creating images by working directly in the frame
buffer.

After reading Chapter 6, you should be able to read the remaining chapters
in any order.

5.12 Suggested Readings
Carlbom and Paciorek [Car78] discuss the relationships between classical and
computer viewing. Rogers and Adams [Rog90] give many examples of the
projection matrices corresponding to the standard views used in drafting.
Foley [Fol90], Watt [Wat00], and Hearn and Baker [Hea94] derive canonical
projection transformations. All follow a PHIGS orientation, so the API is
slightly different from the one used here, although Foley derives the most
general case. The references differ in whether they use column or row matrices,
in where the COP is located, and in whether the projection is in the positive
or negative z direction. See the OpenGL Programmer’s Guide [Ope01a] for
a further discussion of the use of the model-view and projection matrices in
OpenGL.

Exercises
5.1 Not all projections are planar geometric projections. Give an example

of a projection in which the projection surface is not a plane, and
another in which the projectors are not lines.
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5.2 Consider an airplane whose position is specified by the roll, pitch, and
yaw, and by the distance from an object. Find a model-view matrix in
terms of these parameters.

5.3 Consider a satellite rotating around the earth. Its position above the
earth is specified in polar coordinates. Find a model-view matrix that
keeps the viewer looking at the earth. Such a matrix could be used to
show the earth as it rotates.

5.4 Show how to compute u and v directions from the VPN, VRP, and
VUP using only cross products.

5.5 Can we obtain an isometric of the cube by a single rotation about a
suitably chosen axis? Explain your answer.

5.6 Derive the perspective-projection matrix when the COP can be at any
point and the projection plane can be at any orientation.

5.7 Show that perspective projection preserves lines.

5.8 Any attempt to take the projection of a point in the same plane as the
COP will lead to a division by zero. What is the projection of a line
segment that has endpoints on either side of the projection plane?

5.9 Define one or more APIs to specify oblique projections. You do not
need write the functions; just decide which parameters the user must
specify.

5.10 Derive an oblique-projection matrix from specification of front and
back clipping planes, and top-right and bottom-left intersections of the
sides of the clipping volume with the front clipping plane.

5.11 Our approach of normalizing all projections seems to imply that we
could predistort all objects and support only orthographic projections.
Explain any problems we would face if we took this approach to building
a graphics system.

5.12 How do the OpenGL projection matrices change if the COP is not
at the origin? Assume that the COP is at (0, 0, d) and the projection
plane is z = 0.

5.13 We can create an interesting class of three-dimensional objects
by extending two-dimensional objects into the third dimension
by extrusion. For example, a circle becomes a cylinder, a line
becomes a quadrilateral, and a quadrilateral in the plane becomes
a parallelepiped. Use this technique to convert the two-dimensional
maze from Exercise 2.8 to a three-dimensional maze.

5.14 Extend the maze program of Exercise 5.13 to allow the user to walk
through the maze. A click on the middle mouse button should move
the user forward; a click on the right or left button should turn the
user 90 degrees to the right or left, respectively.

5.15 If we were to use orthogonal projections to draw the coordinate axes,
the x- and y-axes would lie in the plane of the paper, but the z-axis
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would point out of the page. Instead, we can draw the x- and y-axes
as meeting at a 90-degree angle, with the z-axis going off at −135
degrees from the x-axis. Find the matrix that projects the original
orthogonal-coordinate axes to this view.

5.16 Write a program to display a rotating cube in a box with three light
sources. Each light source should project the cube onto one of the three
visible sides of the box.

5.17 Find the projection of a point onto the plane ax + by + cz + d = 0 from
a light source located at infinity in the direction (dx, dy, dz).

5.18 Using one of the three-dimensional interfaces discussed in Chapter 4,
write a program to move the camera through a scene composed of
simple objects.

5.19 In animation, often we can save work by working with two-dimensional
patterns that are mapped onto flat polygons that are always parallel
to the camera. Write a program that will keep a simple polygon facing
the camera as the camera moves.

5.20 Stereo images are produced by creating two images with the viewer in
two slightly different positions. Consider a viewer who is at the origin
but whose eyes are separated by ∆x units. What are the appropriate
viewing specifications to create the two images?


