
University of New Mexico

1

Memory Virtualization: Address Spaces

Prof. Patrick G. Bridges

University of New Mexico

2

Memory Virtualization
 What is memory virtualization?

▪ OS virtualizes its physical memory.

▪ OS provides an illusion memory space per each process.

▪ It seems to be seen like each process uses the whole memory .

University of New Mexico

3

Benefit of Memory Virtualization

 Ease of use in programming

 Memory efficiency in terms of times and space

 The guarantee of isolation for processes as well as OS
▪ Protection from errant accesses of other processes

University of New Mexico

4

OS in early eystems
 Load only one process in memory.

▪ Poor utilization and efficiency
0KB

64KB

max

Operating System
(code, data, etc.)

Current
Program

(code, data, etc.)

Physical Memory

University of New Mexico

5

Multiprogramming and Time Sharing

 Load multiple processes in memory.
▪ Execute one for a short while.

▪ Switch processes between them in memory.

▪ Increase utilization and efficiency.

 Cause an important protection issue.
▪ Errant memory accesses from other processes

0KB

64KB

Operating System
(code, data, etc.)

Process C
(code, data, etc.)

Free

Process B
(code, data, etc.)

Free

Process A
(code, data, etc.)

Physical Memory

Free

Free

128KB

192KB

256KB

320KB

384KB

448KB

512KB

University of New Mexico

6

Address Space
 OS creates an abstraction of physical memory.

▪ The address space contains all about a running process.

▪ That is consist of program code, heap, stack and etc.

0KB
Program Code

(free)

1KB

2KB

15KB

16KB

Heap

Stack

Address Space

University of New Mexico

7

Address Space(Cont.)
 Text/Data

▪ Where instructions and global variables live

 Heap
▪ Dynamically allocate memory.

▪ malloc in C language

▪ new in object-oriented language

 Stack
▪ Store return addresses or values.

▪ Contain local variables arguments to routines.

Program
Text/Data

(free)

Heap

Stack

Address Space

University of New Mexico

8

Virtual Address

 Every address in a running program is virtual.
▪ OS translates the virtual address to physical address

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

printf("location of code : %p\n", (void *) main);

printf("location of heap : %p\n", (void *) malloc(1));

int x = 3;

printf("location of stack : %p\n", (void *) &x);

return x;

}

A simple program that prints out addresses

University of New Mexico

9

Virtual Address(Cont.)

 The output in 64-bit Linux machine

location of code : 0x40057d

location of heap : 0xcf2010

location of stack : 0x7fff9ca45fcc

(free)

Code
(Text)

Stack

stack

heap

Address Space

Data

Heap

0x400000

0xcf2000

0x7fff9ca49000

0x401000

0xd13000

0x7fff9ca28000

