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Memory Virtualization
 What is memory virtualization?

▪ OS virtualizes its physical memory.

▪ OS provides an illusion memory space per each process.

▪ It seems to be seen like each process uses the whole memory .
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Benefit of Memory Virtualization

 Ease of use in programming

 Memory efficiency in terms of times and space

 The guarantee of isolation for processes as well as OS
▪ Protection from errant accesses of other processes
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OS in early eystems
 Load only one process in memory.

▪ Poor utilization and efficiency
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Multiprogramming and Time Sharing

 Load multiple processes in memory.
▪ Execute one for a short while.

▪ Switch processes between them in memory.

▪ Increase utilization and efficiency.

 Cause an important protection issue.
▪ Errant memory accesses from other processes
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Address Space
 OS creates an abstraction of physical memory.

▪ The address space contains all about a running process.

▪ That is consist of program code, heap, stack and etc.
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Address Space(Cont.)
 Text/Data

▪ Where instructions and global variables live

 Heap
▪ Dynamically allocate memory.

▪ malloc in C language

▪ new in object-oriented language

 Stack
▪ Store return addresses or values.

▪ Contain local variables arguments to routines.
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Virtual Address

 Every address in a running program is virtual.
▪ OS translates the virtual address to physical address

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

printf("location of code  : %p\n", (void *) main);

printf("location of heap  : %p\n", (void *) malloc(1));

int x = 3;

printf("location of stack : %p\n", (void *) &x);

return x;

}

A simple program that prints out addresses
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Virtual Address(Cont.)

 The output in 64-bit Linux machine

location of code  : 0x40057d

location of heap  : 0xcf2010

location of stack : 0x7fff9ca45fcc
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