
Understanding the Linux 2.6.8.1 CPU Scheduler

By Josh Aas
c©2005 Silicon Graphics, Inc. (SGI)

17th February 2005

Contents

1 Introduction 3
1.1 Paper Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Linux Kernel Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Typographic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 About this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Companion CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Linux Kernel Source Code 5
2.1 Getting the Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Kernel Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Code Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Overview of Processes and Threads 5
3.1 Programs and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 CPU and I/O-bound Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Context Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 Linux Processes/Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Linux Scheduling Goals 7
4.1 Linux’s Target Market(s) and their Effects on its Scheduler . . . . . . . . . . . . . . . . . . . 7
4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Interactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Fairness and Preventing Starvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.5 SMP Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.6 SMT Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.7 NUMA Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.8 Soft Real-Time Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.9 Scheduling Performance Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 The Linux 2.6.8.1 Scheduler 10
5.1 Origins and the Significance of an O(1) Scheduling Algorithm . . . . . . . . . . . . . . . . . . 10

5.1.1 Origins of the Linux 2.6.8.1 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.2 What is an O(1) Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.3 What Makes the Linux 2.6.8.1 Scheduler Perform in O(1) Time . . . . . . . . . . . . . 11

5.2 Runqueues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.3 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



5.3 Priority Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.3 How Priority Arrays are Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4 Calculating Priority and Timeslice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.1 Static Task Prioritization and the nice() System Call . . . . . . . . . . . . . . . . . . 14
5.4.2 Dynamic Task Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.3 I/O-bound vs. CPU-bound Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.4 The effective_prio() Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.5 Calculating Timeslice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.6 Fairness when Forking New Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.7 Interactive Task Reinsertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.8 Interactivity Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 Sleeping and Waking Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.1 Why Sleep? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.2 Interruptible and Uninterruptible States . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.3 Waitqueues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.4 Going to Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.5 Waking Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.6 The Main Scheduling Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6.2 The schedule() Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.7 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.7.1 Why do Load Balancing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.7.2 Scheduler Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.7.3 CPU Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7.4 Balancing Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7.5 Migration Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.8 Soft RT Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.8.1 Prioritizing Real-Time Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8.2 SCHED_FIFO Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8.3 SCHED_RR Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.9 NUMA Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.9.1 Scheduler Domain/Group Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.9.2 NUMA Task Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.10 Scheduler Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10.1 Reasons for Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10.2 Scheduler Tuning Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10.3 MIN_TIMESLICE and MAX_TIMESLICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10.4 PRIO_BONUS_RATIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10.5 MAX_SLEEP_AVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10.6 STARVATION_LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 The Linux 2.4.x Scheduler 22
6.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 It Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 (Relatively) Simple Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3.2 Large Average Timeslices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3.3 I/O-Bound Task Priority Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.4 RT Application Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2



7 The Future of the Linux Scheduler 24
7.1 Implementation Tuning vs. Algorithmic Changes . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.1.1 Scheduler Modes and Swappable Schedulers . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1.2 Shared Runqueues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Final Notes 25
8.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.1.1 Professors Libby Shoop and Richard K. Molnar, Macalester College, St. Paul, Min-
nesota, USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8.1.2 Jeff Carr and the Free Software/OSS Community . . . . . . . . . . . . . . . . . . . . . 25
8.1.3 Silicon Graphics, Inc. (SGI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.2 About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3 Legal (GNU FDL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Introduction

1.1 Paper Overview

Linux kernel development is relatively fast-paced given the size and complexity of the code base. This
is because of its widespread adoption by hobbyists, home users, businesses (including many Fortune 500
companies), and educational institutions. The Linux kernel mailing list (LKML, a mailing list for kernel
developers), as of summer 2004, averages about 300 messages per day from between 50 and 100 different
developers. These numbers do not include most architecture-specific discussions, which happen on separate
lists. In the year before August 1st, 2004, over 16,000 patches of widely varying sizes were committed to
the official Linux kernel [7]. This pace of development has led to a situation where very few of the kernel’s
major components are adequately documented at the implementation level.

This lack of documentation makes it more difficult for new contributors, students, researchers, and even
veteran contributors to understand the Linux kernel’s implementation. For all of these people, implementation-
level documentation of the Linux kernel provides many benefits. Obviously, those who wish to contribute to
the Linux kernel must have a fairly good understanding of its actual implementation. But why is it valuable
for students and researchers to understand the Linux kernel at the implementation level? Isn’t the theory
behind it or a general idea of what is going on enough? Since the Linux kernel is “developed with a strong
practical emphasis more than a theoretical one” [6], many decisions are made in reaction to Linux’s real-world
performance. This means that it is quite common for Linux’s implementation to diverge from theoretical
foundations; when this happens, it is usually for a good reason. Understanding deployed algorithms, the
reasoning behind divergences from theory, and the weaknesses in theories that real-world applications bring
to light is essential for the development of future algorithms.

For the reasons listed above, Linux needs documentation specific to its implementation, not just the
theory that may or may not have at one time been the basis for the design choices made by its developers.
This paper on the Linux 2.6.8.1 scheduler was inspired by Mel Gorman’s thesis on the Linux virtual memory
(VM) system [6], which current Linux VM developers probably reference and value more than any other
piece of documentation on the subject.

The goal of this paper is to provide in-depth documentation of the Linux 2.6.8.1 CPU scheduler. This
documentation will hopefully be of use to kernel developers who must work with the code, as well as students
and researchers who wish to understand the implementation of a real, working scheduler. Hopefully this paper
will greatly reduce the amount of time required to gain a detailed understanding of how the Linux 2.6.8.1
scheduler works. In the same way that Mr. Gorman’s documentation of the Linux 2.4.20 VM system is still
very helpful in understanding the VM system in the Linux 2.6.x series of kernels, it is hoped that this paper
will remain relevant for many versions of the Linux kernel beyond 2.6.8.1.

1.2 Linux Kernel Literature

While the Linux kernel lacks up-to-date code-level documentation, there is a reasonable amount of higher-
level and introductory documentation available. Any of the following literature is highly recommended
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reading for those who wish to gain a basic knowledge of kernel internals.
Linux Kernel Development by Robert Love (a highly respected Linux kernel hacker) was released in 2004

[4] 1. It covers the Linux 2.6.x kernel series, and as of fall 2004 it is perhaps the only book to do so (most
others cover Linux 2.4.x and earlier). At 332 pages, it is quite manageable as a book to read page-by-page
and to use as a reference. It gives a general overview of each of the Linux kernel’s components, and helps to
illustrate how they fit together. It contains a well-written overview of the Linux 2.6.x scheduler.

Robert Love’s Linux Kernel Development may be the only book available that covers the Linux 2.6.x
kernel, but there are several books available about the Linux 2.4.x kernel that may be helpful in understanding
many components of the Linux 2.6.x kernels (some component have not changed drastically). Books providing
such coverage include:

• Understanding the Linux Kernel, 2nd Edition by Daniel Bovet and Marco Cesati. O’Reilly, 2003.

• Linux Device Drivers, 3rd Edition by Jonathan Corbet, Alessandro Rubini and Greg Kroach-Hartman.
O’Reilly, 2005.

• IA-64 Linux Kernel: Design and Implementation by David Mosberger and Stephane Eranian. Prentice
Hall PTR, 2002.

• Understanding the Linux Virtual Memory Manager by Mel Gorman. Prentice Hall PTR, 2004.
(http://www.skynet.ie/˜mel/projects/vm/ )

The Linux Documentation Project (http://www.tldp.org/ ) is another good source of documentation. It
contains documents covering many different aspects of Linux distributions and the Linux kernel.

Archives of all past conversation on the official Linux kernel development mailing list (LKML) are
available on many web sites. Simply search for “LKML archive” using a search engine such as Google
(http://www.google.com/). LKML should be read liberally and posted to conservatively.

Last but not least, the documentation distributed with the kernel source itself is quite helpful. It can be
found in the Documentation/ directory.

Unfortunately, Linux documentation covering kernels prior to the 2.6.x series will be of minimal use in
understanding the scheduler described in this paper because the scheduler was heavily modified between the
2.4.x and 2.6.x kernel series.

1.3 Typographic Conventions

New concepts and URLs are italicized. Binaries, commands, and package names are in bold. Code, macros,
and file paths are in a constant-width font. Paths to included files will be written with brackets around
them (e.g. <linux/sched.h>); these files can be found in the include/ directory of the Linux kernel source
code. All paths are rooted in the Linux kernel source code unless otherwise noted. Fields in a structure are
referred to with an arrow pointing from the structure to the field (e.g. structure->field).

1.4 About this Document

This document was written in LATEX using the LYX editor on SuSE Linux 9.x and Mac OS X 10.3.x. It
is made available in HTML, PDF, and LATEX form. It can be downloaded from the author’s web site
(http://josh.trancesoftware.com/linux/).

1.5 Companion CD

The companion disc included with this document includes the full source code of the Linux 2.6.8.1 kernel,
a patch to add in-depth comments to the scheduler code, and a digital copy of this document. The disc
is an ISO-9660 formatted CD that should work in any modern operating system. To apply the scheduler
comments patch, move it to the directory kernel/ in your Linux source code, cd into that directory, and
run the following command:

patch -p0 < sched comments.patch

1The Second Edition of the book was published by Novell in 2005.
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2 Linux Kernel Source Code

2.1 Getting the Source

The Linux kernel source code is an essential resource for learning about the kernel. In attempting to
gain a detailed understanding of the kernel, no paper can entirely replace reading the code itself. This
paper will refer to it heavily. The Linux kernel source code is available at The Linux Kernel Archives
(http://www.kernel.org). The main page of the kernel archive lists the latest release from each kernel series,
including complete source code, upgrade patches, and change logs. All released versions of the Linux kernel
are available on the archive’s FTP site (ftp://ftp.kernel.org/ ).

2.2 Kernel Versioning

Linux kernels have version numbers in the form W.X.Y.Z. The W position is rarely incremented - only when
an extremely significant change has been made to the kernel, such that a considerable amount of software
that works on one version won’t work on another. This has only happened once in the history of Linux (thus
the ”2” at the beginning of the kernel version this paper focuses on, 2.6.8.1).

The X position denotes the kernel series. An even series indicates a stable release series, and an odd
series denotes a development release series. Historically, the series number is incremented every couple of
years. Development of older series’ continues as long as there is interest. For example - though Linux 2.0
was originally released in June of 1996, version 2.0.40 was released in February of 2004 (largely by/for people
who want to continue to support older hardware).

The Y position is the version number, which is normally incremented for every release. Often it is the last
position in a kernel version (e.g. 2.6.7), but occasionally there is a need to fix something critical in a release.
In such cases the Z position is incremented.2 The first instance of this happening was the release of the 2.6.8.1
kernel. The 2.6.8 kernel contains a very serious bug in its Network File System (NFS) implementation. This
was discovered very soon after its release, and thus 2.6.8.1 was released containing little more than a fix for
that specific bug.

2.3 Code Organization

There are quite a few subdirectories within each Linux source code package. Subdirectories that it would be
most helpful to know about while reading this paper are:

Documentation a directory containing lots of good documentation on kernel internals and the development
process

arch a directory containing architecture-specific code; it contains one subdirectory for each supported ar-
chitecture (e.g. i386, ia64, ppc64...)

include a directory containing header files

kernel a directory containing the main kernel code

mm a directory containing the kernel’s memory management code

3 Overview of Processes and Threads

It is important to have a decent understanding of both processes and threads before learning about schedulers.
Explaining processes and threads in depth is outside of the scope of this document, thus only a summary
of the things that one must know about them is provided here. Readers of this document are strongly
encouraged to gain an in-depth understanding of processes and threads from another source. Excellent
sources are listed in the bibliography[2, 3, 4, 5].

2Starting from 2.8.11.1 in March 2005, there are some specific criteria for using the Z number, e.g. the patch must have less
than 100 lines of code.
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3.1 Programs and Processes

A program is a combination of instructions and data put together to perform a task when executed. A process
is an instance of a program (what one might call a “running” program). An analogy is that programs are
like classes in languages like C++ and Java, and processes are like objects (instantiated instances of classes).
Processes are an abstraction created to embody the state of a program during its execution. This means
keeping track of the data that is associated with a thread or threads of execution, which includes variables,
hardware state (e.g. registers and the program counter, etc...), and the contents of an address space3 [1].

3.2 Threads

A process can have multiple threads of execution that work together to accomplish its goals. These threads
of execution are aptly named threads. A kernel must keep track of each thread’s stack and hardware state,
or whatever is necessary to track a single flow of execution within a process. Usually threads share address
spaces, but they do not have to (often they merely overlap). It is important to remember that only one thread
may be executing on a CPU at any given time, which is basically the reason kernels have CPU schedulers.
An example of multiple threads within a process can be found in most web browsers. Usually at least one
thread exists to handle user interface events (like stopping a page load), one thread exists to handle network
transactions, and one thread exists to render web pages.

3.3 Scheduling

Multitasking kernels (like Linux) allow more than one process to exist at any given time, and furthermore
each process is allowed to run as if it were the only process on the system. Processes do not need to be aware
of any other processes unless they are explicitly designed to be. This makes programs easier to develop,
maintain, and port [1]. Though each CPU in a system can execute only one thread within a process at a
time, many threads from many processes appear to be executing at the same time. This is because threads
are scheduled to run for very short periods of time and then other threads are given a chance to run. A
kernel’s scheduler enforces a thread scheduling policy, including when, for how long, and in some cases where
(on Symmetric Multiprocessing (SMP) systems) threads can execute. Normally the scheduler runs in its own
thread, which is woken up by a timer interrupt. Otherwise it is invoked via a system call or another kernel
thread that wishes to yield the CPU. A thread will be allowed to execute for a certain amount of time, then
a context switch to the scheduler thread will occur, followed by another context switch to a thread of the
scheduler’s choice. This cycle continues, and in this way a certain policy for CPU usage is carried out.

3.4 CPU and I/O-bound Threads

Threads of execution tend to be either CPU-bound or I/O-bound (Input/Output bound). That is, some
threads spend a lot of time using the CPU to do computations, and others spend a lot of time waiting for
relatively slow I/O operations to complete. For example - a thread that is sequencing DNA will be CPU
bound. A thread taking input for a word processing program will be I/O-bound as it spends most of its
time waiting for a human to type. It is not always clear whether a thread should be considered CPU or I/O
bound. The best a scheduler can do is guess, if it cares at all. Many schedulers do care about whether or
not a thread should be considered CPU or I/O bound, and thus techniques for classifying threads as one or
the other are important parts of schedulers.

Schedulers tend to give I/O-bound threads priority access to CPUs. Programs that accept human input
tend to be I/O-bound - even the fastest typist has a considerable amount of time between each keystroke
during which the program he or she is interacting with is simply waiting. It is important to give programs
that interact with humans priority since a lack of speed and responsiveness is more likely to be perceived
when a human is expecting an immediate response than when a human is waiting for some large job to finish.

It is also beneficial to the system as a whole to give priority to programs that are I/O-bound but not
because of human input4. Because I/O operations usually take a long time it is good to get them started

3An address space is the set of memory addresses that a process is allowed to read and/or write to.
4It is fortunate that both human-interactive and non-human-interactive I/O activity should be awarded a higher priority

since there is really no way to tell at the scheduler level what I/O was human-initiated and what was not. The scheduler does
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as early as possible. For example, a program that needs a piece of data from a hard disk has a long wait
ahead before it gets its data. Kicking off the data request as quickly as possible frees up the CPU to work
on something else during the request and helps the program that submitted the data request to be able to
move on as quickly as possible. Essentially, this comes down to parallelizing system resources as efficiently
as possible. A hard drive can seek data while a CPU works on something else, so having both resources
working as early and often as possible is beneficial. Many CPU operations can be performed in the time it
takes to get data from a hard drive.

3.5 Context Switching

Context switching is the process of switching from one thread of execution to another. This involves saving
the state of the CPU’s registers and loading a new state, flushing caches, and changing the current virtual
memory map. Context switches on most architectures are a relatively expensive operation and as such they
are avoided as much as possible. Quite a bit of actual work can be done during the time it takes to perform
a context switch. How context switching is handled is highly architecture-dependent and is not really part of
a kernel’s scheduler, though the way it is done can greatly influence a scheduler’s design. Context switching
code in the Linux kernel is defined in the files include/asm-[arch]/mmu_context.h (change current virtual
memory mapping) and include/asm-[arch]/system.h (perform CPU context switch, e.g. PC and general
registers).

3.6 Linux Processes/Threads

Linux takes a unique approach to implementing the process and thread abstractions. In Linux, all threads
are simply processes that might share certain resources. Instead of being something different than a thread
or a group of threads, a process in Linux is simply a group of threads that share something called a thread

group ID (TGID) and whatever resources are necessary. In order to reconcile Linux’s treatment of processes
and threads with the terms themselves, the term“task”will be used from here on to mean a Linux thread - it
does not mean thread in the POSIX sense. “Process”or “thread”will be used only when the difference really
matters. In the Linux task structure task_struct (one of which exists for each thread), the TGID that is
a process’s POSIX PID is stored as [task_struct]->tgid. Linux assigns unique “PID”s to every thread
([task_struct]->pid), but the (POSIX) PID that most people think of is really a task’s TGID. It is worth
mentioning that this model, combined with certain tricks like a COW (Copy On Write) forking algorithm5

causes process and thread spawning to be very fast and efficient in Linux, whereas spawning a process is
much more expensive than spawning threads6 on many other operating systems (e.g. BSD UNIX r© and
Microsoftr© Windows r©).

Unfortunately, further details about Linux’s process and thread implementation would be out of the scope
of this paper. It is only important to know that Linux considers processes to be merely groups of threads and
does not differentiate between the two. Because of this, Linux schedules threads only, essentially ignoring
what POSIX processes they belong to.

4 Linux Scheduling Goals

4.1 Linux’s Target Market(s) and their Effects on its Scheduler

An operating system’s scheduling algorithm is largely determined by its target market, and vice-versa. Un-
derstanding an operating system’s target market helps to explain its scheduling goals, and thus its scheduling
algorithm.

not know whether a program is blocked waiting for keyboard input or it is blocked waiting for data from a hard drive.
5Normally a call to fork() causes a copy of the caller’s resources to be created and labeled as a child. Copy On Write means

that the resources are not actually copied until the child’s resources differ from the parent’s (i.e. the child or parent tries to
write to some shared data). Even then, only the differing resources are copied and thus no longer shared. This saves time in the
usual case where fork()is immediately followed by a call to exec() because if fork() did not use COW, a copy of the parent’s
executable data (text section) would be created only to be overwritten by new data taken in during the exec() call.

6Operating systems that differentiate between process and thread spawning often referred to threads as lightweight processes
(LWPs).

7



Linux was originally created by Linus Torvalds for use on his personal computer. However, despite its
origins, Linux has become known as a server operating system. There are many reasons for this, not the
least of which is the fact that most software designed to run on top of the Linux kernel is meant for users
with a relatively high skill level or inherits design qualities targeting more skilled users. This led to Linux’s
notoriously complex and unrefined graphical user interface options (compared to Apple r© and Microsoftr©

operating systems) and subsequent relegation to the server room. Linux’s exposure in the server market
guided its development along the lines of the one market that it initially succeeded in. Linux’s prowess as a
server operating system is nowadays perhaps matched only by a few operating systems such as Sun’s Solaris
and IBM’s AIX. However, cost and legal advantages are causing many companies to replace both of those
operating systems with Linux as well.

While Linux has made a name for itself in the server operating systems arena, many users and developers
believe that it can also be a success on the desktop. In the last several years, there has been a push to optimize
the Linux kernel for the desktop market. Perhaps the biggest step in that direction was the scheduler written
by Ingo Molnar for the 2.6.x kernel series. Molnar designed his scheduler with the desktop and the server
market in mind, and as a result desktop performance is much improved in Linux distributions based on
2.6.x kernels. Targeting both the server and the desktop market imposes particularly heavy demands on the
kernel’s scheduler, and thus the Linux kernel’s scheduler is an interesting case study in how to please two
very different markets at the same time.

4.2 Efficiency

An important goal for the Linux scheduler is efficiency. This means that it must try to allow as much real
work as possible to be done while staying within the restraints of other requirements. For example - since
context switching is expensive, allowing tasks to run for longer periods of time increases efficiency. Also,
since the scheduler’s code is run quite often, its own speed is an important factor in scheduling efficiency. The
code making scheduling decisions should run as quickly and efficiently as possible. Efficiency suffers for the
sake of other goals such as interactivity, because interactivity essentially means having more frequent context
switches. However, once all other requirements have been met, overall efficiency is the most important goal
for the scheduler.

4.3 Interactivity

Interactivity is an important goal for the Linux scheduler, especially given the growing effort to optimize
Linux for desktop environments. Interactivity often flies in the face of efficiency, but it is very important
nonetheless. An example of interactivity might be a keystroke or mouse click. Such events usually require
a quick response (i.e. the thread handling them should be allowed to execute very soon) because users will
probably notice and be annoyed if they do not see some result from their action almost immediately. Users
don’t expect a quick response when, for example, they are compiling programs or rendering high-resolution
images. They are unlikely to notice if something like compiling the Linux kernel takes an extra twenty
seconds. Schedulers used for interactive computing should be designed in such a way that they respond to
user interaction within a certain time period. Ideally, this should be a time period that is imperceptible to
users and thus gives the impression of an immediate response.

4.4 Fairness and Preventing Starvation

It is important for tasks to be treated with a certain degree of fairness, including the stipulation that no
thread ever starves. Starvation happens when a thread is not allowed to run for an unacceptably long period
of time due to the prioritization of other threads over it. Starvation must not be allowed to happen, though
certain threads should be allowed to have a considerably higher priority level than others based on user-
defined values and/or heuristic indicators. Somehow, threads that are approaching the starvation threshold
(which is generally defined by a scheduler’s implementors) must get a significant priority boost or one-time
immediate preemption before they starve. Fairness does not mean that every thread should have the same
degree of access to CPU time with the same priority, but it means that no thread should ever starve or be
able to trick the scheduler into giving it a higher priority or more CPU time than it ought to have.
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4.5 SMP Scheduling

Since the Linux kernel supports multiprocessing, its scheduler must work (and work well for that matter)
when scheduling tasks across more than one CPU on the same motherboard. This means keeping track of
which tasks are running on which CPUs, making sure any given task is not executing on more than one CPU
at a time, and in general doing all of the accounting necessary to efficiently schedule tasks across multiple
CPUs. Since all CPUs generally access the same memory and system resources, the scheduler is primarily
concerned with making the best use of processor time. There is little reason to prefer one CPU over another
in terms of choosing where to schedule a task. The most conspicuous consideration is caching - by scheduling
a given task on the same CPU as often as possible, the likelihood of that CPU’s cache being hot increases.

4.6 SMT Scheduling

The Linux kernel supports scheduling multiple threads on a single Symmetric Multi-Threading (SMT) chip.
While the concept of SMT has been around for some time, Intel’s Hyper-Threading (HT) technology made
SMT technology mainstream. Essentially, each physical SMT chip can have more than one virtual processor
with the caveat that the virtual processors share certain resources (e.g. some types of cache). Because certain
resources are shared, virtual processors should not be treated in the same way that regular processors are.

4.7 NUMA Scheduling

The Linux kernel supports Non-Uniform Memory Access (NUMA), which means it can run a single system
image across more than one node if such hardware is present (essentially a node is defined as a motherboard).
At a hardware level, a node is something like a traditional uniprocessor or multiprocessor machine in that it
has its own CPU(s) and memory. However, NUMA systems treat multiple nodes as parts of a single system
running a single system image (i.e. one instance of the Linux kernel). This is usually accomplished through
some sort of high-speed interconnect (such as SGI’s NUMAlink technology), which connects nodes at a more
of a motherboard level than at a networking level. This means that all CPUs are capable of executing any
thread, and all of the memory across nodes is accessible via the same address space (i.e. any CPU can
allocate memory on any node on the system). NUMA support involves being aware of cache issues similar to
those in SMP scheduling, but can also include issues of memory locality (i.e. if a CPU is executing a thread
which is allocating memory from a local memory bank, it would be inefficient to move the thread across
the system as memory requests would take longer to fulfill). Perhaps the biggest issue that a scheduler
supporting NUMA needs to tackle is the possibility of having far more CPUs to schedule on than most
SMP systems. Common SMP systems might have anywhere from 2-8 processors, but NUMA systems might
have hundreds of processors. At the time of this writing, SGI is shipping NUMA systems containing 512
processors. This is the largest number of processors any company has been able to run under a single Linux
system image, and the limit to which the Linux 2.6.8.1 scheduler has been stretched.

4.8 Soft Real-Time Scheduling

The Linux scheduler supports soft real-time (RT) scheduling. This means that it can effectively schedule
tasks that have strict timing requirements. However, while the Linux 2.6.x kernel is usually capable of
meeting very strict RT scheduling deadlines, it does not guarantee that deadlines will be met. RT tasks are
assigned special scheduling modes and the scheduler gives them priority over any other task on the system.
RT scheduling modes include a first-in-first-out (FIFO) mode which allows RT tasks to run to completion on
a first-come-first-serve basis, and a round-robin scheduling mode that schedules RT tasks in a round-robin
fashion while essentially ignoring non-RT tasks on the system.

4.9 Scheduling Performance Perspectives

In terms of schedulers, there is no single definition of performance that fits everyone’s needs; that is, there is
not a single performance goal for the Linux scheduler to strive for. The many definitions of good scheduling
performance often lead to a give-and-take situation, such that improving performance in one sense hurts
performance in another. Some improvements to the Linux scheduler help performance all-around, but such
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improvements are getting more and more hard to come by. A good example of a give-and-take performance
issue is desktop vs. server vs. high performance computing (HPC) performance.

The most important performance metric for desktop users is perceived performance - that is, how fast
does a machine seem to respond to requests such as mouse clicks and key presses. If a user is compiling a
kernel in the background and typing in a word processor in the foreground, he or she is unlikely to notice if the
kernel compile takes an extra minute because it is constantly interrupted by the word processor responding
to keystrokes. What matters most to the users is that when he or she presses a key, the word processor
inserts and displays the desired character as quickly as possible. This entails a CPU making a context switch
to the word processor’s thread as soon as possible after the user presses a key. In order for this to happen, the
currently running thread must either give up the processor before its timeslice is up, or its timeslice must be
short enough that the delay between the time the keystroke happens and the timeslice ends is imperceptible
to the user. Since context switching is expensive, context switches must be minimized while happening
frequently enough to provide good perceived performance to interactive users (e.g. word processors). Fewer
context switches means better real efficiency, since more time is spent doing actual work and less is spent
switching tasks. More context switches means the system is more responsive to user input. On interactive
desktop systems, the desired behavior is to have context switching happen often enough that user input
seems to get an immediate response without happening so often that the machine becomes very inefficient.

Server systems generally focus less on perceived performance than desktop systems. They are relatively
more concerned with actual performance; that is, reducing the overall amount of time it takes to complete
a set of tasks. Since users are normally willing to put up with a longer response delay (e.g. they are willing
to wait longer for a web page to be transmitted over the network than they are for a keystroke to cause
a character to appear in a word processing document), more of an emphasis is placed on overall efficiency
via fewer context switches. If three complex database queries on a database loaded into memory happen
at the same time, it is most likely better to get them done faster overall than it is to do them inefficiently
for the sake of returning results at the same time and thus lowering the average response time. People
and applications submitting complex database queries generally have much lower response time expectations
than people who are typing characters into a word processor. However, if, for example, two massive files are
requested from an FTP server, it would be unacceptable for the server to completely finish sending one file
before beginning to send the other (the most extreme but perhaps overall most efficient case, potential I/O
concerns aside). Thus server systems, while having lower response time requirements than desktop systems,
are still expected to operate within some responsiveness expectations.

HPC systems generally require the least immediate response times as they tackle very large problems
that can take days to solve. Given a set of tasks, overall efficiency is the imperative and this means that
context switches for the sake of responsiveness must be minimized (or perhaps all but done away with?).
Response time expectations are generally the lowest for HPC applications, and thus they represent the true
opposite of desktop computing performance ideals. Servers tend to be somewhere in the middle.

This comparison illustrates the point that there is no universal ideal for scheduler performance. A
scheduler that seems superb to a desktop user might be a nightmare for someone running HPC applications.
The Linux scheduler strives to perform as well as possible in all types of situations, though it is impossible
for it to perform ideally for everyone. Desktop users are constantly crying out for more tuning for their needs
while at the same time HPC users are pushing for optimization towards their performance ideal.

5 The Linux 2.6.8.1 Scheduler

5.1 Origins and the Significance of an O(1) Scheduling Algorithm

5.1.1 Origins of the Linux 2.6.8.1 Scheduler

During the Linux 2.5.x development period, a new scheduling algorithm was one of the most significant
changes to the kernel. The Linux 2.4.x scheduler, while widely used, reliable, and in general pretty good, had
several very undesirable characteristics (see section 6). The undesirable characteristics were quite embedded
in its design, and thus when Ingo Molnar rose to the challenge of fixing it he produced an entirely new
scheduler instead of making modifications to the old one. The fact that the Linux 2.4.x scheduling algorithm
contained O(n) algorithms was perhaps its greatest flaw, and subsequently the new scheduler’s use of only
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O(1) algorithms was its most welcome improvement.

5.1.2 What is an O(1) Algorithm

An algorithm operates on input, and the size of that input usually determines its running time. Big-O
notation is used to denote the growth rate of an algorithm’s execution time based on the amount of input.
For example - the running time of an O(n) algorithm increases linearly as the input size n grows. The
running time of an O(nˆ2) grows quadratically. If it is possible to establish a constant upper bound on the
running time of an algorithm, it is considered to be O(1) (one might say it runs in “constant time”). That is,
an O(1) algorithm is guaranteed to complete in a certain amount of time regardless of the size of the input.

5.1.3 What Makes the Linux 2.6.8.1 Scheduler Perform in O(1) Time

The Linux 2.6.8.1 scheduler does not contain any algorithms that run in worse than O(1) time. That is,
every part of the scheduler is guaranteed to execute within a certain constant amount of time regardless of
how many tasks are on the system. This allows the Linux kernel to efficiently handle massive numbers of
tasks without increasing overhead costs as the number of tasks grows. There are two key data structures
in the Linux 2.6.8.1 scheduler that allow for it to perform its duties in O(1) time, and its design revolves
around them - runqueues and priority arrays.

5.2 Runqueues

5.2.1 Overview

The runqueue data structure is the most basic structure in the Linux 2.6.8.1 scheduler; it is the foundation
upon which the whole algorithm is built. Essentially, a runqueue keeps track of all runnable tasks assigned
to a particular CPU. As such, one runqueue is created and maintained for each CPU in a system. Each
runqueue contains two priority arrays, discussed in section 5.3. All tasks on a CPU begin in one priority
array, the active one, and as they run out of their timeslices they are moved to the expired priority array.
During the move, a new timeslice is calculated. When there are no more runnable tasks in the active priority
arrays, it is simply swapped with the expired priority array (which entails simply updating two pointers).
The job of the runqueue is to keep track of a CPU’s special thread information (idle thread, migration
thread) and to handle its two priority arrays.

5.2.2 Data Structure

The runqueue data structure is defined as a struct in kernel/sched.c. It is not defined in kernel/sched.h

because abstracting the scheduler’s inner workings from its public interface is an important architectural
goal. The runqueue struct contains the following variables:

• spinlock_t lock

This is the lock that protects the runqueue. Only one task can modify a particular runqueue at any given
time.

• unsigned long nr_running

The number of runnable tasks on the runqueue.

• unsigned long cpu_load

The load of the CPU that the runqueue represents. The load is recalculated whenever rebalance_tick() is
called, and is the average of the old load and the current (nr_running * SCHED_LOAD_SCALE). The latter
macro simply increases the resolution of the load average.

• unsigned long long nr_switches
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The number of context switches that have occurred on a runqueue since its creation. This value isn’t actually
used for anything useful in the kernel itself - it is simply exposed in the proc filesystem as a statistic.

• unsigned long expired_timestamp

Time since last priority array swap (active <–> expired).

• unsigned long nr_uninterruptible

Number of uninterruptible tasks on the runqueue.

• unsigned long long timestamp_last_tick

Timestamp of last scheduler tick. Primarily used in the task hot macro, which decides whether a task should
be considered cache hot or not (i.e. is some of the task’s data likely to still be in CPU caches).

• task_t *curr

Pointer to the currently running task.

• task_t *idle

Pointer to a CPU’s idle task (i.e. the task that runs when nothing else is running).

• struct mm_struct *prev_mm

Pointer to the virtual memory mapping of the previously running task. This is used in efficiently handling
virtual memory mappings in terms of cache hotness.

• prio_array_t *active

The active priority array. This priority array contains tasks that have time remaining from their timeslices.

• prio_array_t *expired

The expired priority array. This priority array contains tasks that have used up their timeslices.

• prio_array_t arrays[2]

The actual two priority arrays. Active and expired array pointers switch between these.

• int best_expired_prio

The highest priority of any expired task. Used in the EXPIRED STARVING macro to determine whether
or not a task with a higher priority than the currently running task has expired.

• atomic_t nr_iowait

The number of tasks on a runqueue waiting on I/O. Used for kernel stats (i.e. is a CPU waiting on I/O or
is it just idle?).

• struct sched_domain *sd

The scheduler domain that a runqueue belongs to. Essentially this is a group of CPUs that can share tasks
between them. See section 5.8.2 for more information.

• int active_balance

Flag used by the migration thread to determine whether or not a runqueue needs to be balanced (i.e. whether
or not it is considerably busier than others).

• int push_cpu

The CPU that a runqueue should be pushing tasks to when being balanced.

• task_t *migration_thread

A CPU’s migration thread. The migration thread is the thread that looks after task migration concerns (i.e.
does this CPU need to be balanced).

• struct list_head migration_queue

List of tasks that need to be migrated to other CPUs.
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5.2.3 Locking

Only one task may modify a CPU’s runqueue at any given time, and as such any task that wishes to modify
a runqueue must obtain its lock first. Obtaining multiple runqueue locks must be done by order of ascending
runqueue address in order to avoid deadlocks. A convenient function for obtaining two runqueue locks
is double_rq_lock(rq1, rq2), which handles lock ordering itself. Its opposite, double_rq_unlock(rq1,
rq2), does the same but unlocks instead of locks. Locking a runqueue that a certain task is in can be done
with task_rq_lock(task, &flags).

5.3 Priority Arrays

5.3.1 Overview

This data structure is the basis for most of the Linux 2.6.8.1 scheduler’s advantageous behavior, in particular
its O(1) (constant) time performance. The Linux 2.6.8.1 scheduler always schedules the highest priority task
on a system, and if multiple tasks exist at the same priority level, they are scheduled round-robin with each
other. Priority arrays make finding the highest priority task in a system a constant-time operation, and
also makes round-robin behavior within priority levels possible in constant-time. Furthermore, using two
priority arrays in unison (the active and expired priority arrays) makes transitions between timeslice epochs
a constant-time operation. An epoch is the time between when all runnable tasks begin with a fresh timeslice
and when all runnable tasks have used up their timeslices.

5.3.2 Data Structure

• unsigned int nr_active

The number of active tasks in the priority array.

• unsigned long bitmap[BITMAP_SIZE]

The bitmap representing the priorities for which active tasks exist in the priority array. For example - if
there are three active tasks, two at priority 0 and one at priority 5, then bits 0 and 5 should be set in this
bitmap. This makes searching for the highest priority level in the priority array with a runnable task as
simple as a constant-time call to __ffs(), a highly optimized function for finding the highest order bit in a
word (sched_find_first_bit() is essentially a wrapper for __ffs()).

• struct list_head queue[MAX_PRIO]

An array of linked lists. There is one list in the array for each priority level (MAX_PRIO). The lists contain
tasks, and whenever a list’s size becomes > 0, the bit for that priority level in the priority array bitmap is
set. When a task is added to a priority array, it is added to the list within the array for its priority level.
The highest priority task in a priority array is always scheduled first, and tasks within a certain priority level
are scheduled round-robin.

5.3.3 How Priority Arrays are Used

Among tasks with timeslice remaining, the Linux 2.6.8.1 scheduler always schedules the task with the highest
priority (timeslice is essentially the period of time a task is allowed to execute before other tasks are given
a chance - see section 5.4). Priority arrays allow the scheduler’s algorithm to find the task with the highest
priority in constant time.

Priority arrays are an array of linked lists, one for each priority level (in Linux 2.6.8.1 there are 140
priority levels). When a task is added to a priority array, it is added to the list for its priority level. A
bitmap of size MAX_PRIO + 1 (actually it might be a bit larger since it must be implemented in word-sized
chunks) has bits set for each priority level that contains active tasks. In order to find the highest priority task
in a priority array, one only has to find the first bit set in the bitmap. Multiple tasks of the same priority
are scheduled round-robin; after running, tasks are put at the bottom of their priority level’s list. Because
finding the first bit in a finite-length bitmap and finding the first element in a list are both operations with
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a finite upper bound on how long the operation can take, this part of the scheduling algorithm performs in
constant, O(1) time.

When a task runs out of timeslice, it is removed from the active priority array and put into the expired
priority array. During this move, a new timeslice is calculated. When there are no more runnable tasks in
the active priority array, the pointers to the active and expired priority arrays are simply swapped. Because
timeslices are recalculated when they run out, there is no point at which all tasks need new timeslices
calculated for them; that is, many small constant-time operations are performed instead of iterating over
however many tasks there happens to be and calculating timeslices for them (which would be an undesirable
O(n) time algorithm). Swapping the active and expired priority array pointers is a constant time operation,
which avoids the O(n) time operation of moving n tasks from one array or queue to another.

Since all operations involved in the maintenance of a system of active and expired priority arrays occur
constant O(1) time, the Linux 2.6.8.1 scheduler performs quite well. The Linux 2.6.8.1 scheduler will perform
its duties in the same small amount of time no matter how many tasks are on a system.

5.4 Calculating Priority and Timeslice

5.4.1 Static Task Prioritization and the nice() System Call

All tasks have a static priority, often called a nice value. On Linux, nice values range from -20 to 19, with
higher values being lower priority (tasks with high nice values are nicer to other tasks). By default, tasks
start with a static priority of 0, but that priority can be changed via the nice() system call. Apart from
its initial value and modifications via the nice() system call, the scheduler never changes a task’s static
priority. Static priority is the mechanism through which users can modify task’s priority, and the scheduler
will respect the user’s input (in an albeit relative way).

A task’s static priority is stored in its static_prio variable. Where p is a task, p->static_prio is its
static priority.

5.4.2 Dynamic Task Prioritization

The Linux 2.6.8.1 scheduler rewards I/O-bound tasks and punishes CPU-bound tasks by adding or subtract-
ing from a task’s static priority. The adjusted priority is called a task’s dynamic priority, and is accessible
via the task’s prio variable (e.g. p->prio where p is a task). If a task is interactive (the scheduler’s term for
I/O bound), its priority is boosted. If it is a CPU hog, it will get a penalty. In the Linux 2.6.8.1 scheduler,
the maximum priority bonus is 5 and the maximum priority penalty is 5. Since the scheduler uses bonuses
and penalties, adjustments to a task’s static priority are respected. A mild CPU hog with a nice value of
-2 might have a dynamic priority of 0, the same as a task that is neither a CPU nor an I/O hog. If a user
changes either’s static priority via the nice() system call, a relative adjustment will be made between the
two tasks.

5.4.3 I/O-bound vs. CPU-bound Heuristics

Dynamic priority bonuses and penalties are based on interactivity heuristics. This heuristic is implemented
by keeping track of how much time tasks spend sleeping (presumably blocked on I/O) as opposed to running.
Tasks that are I/O-bound tend to sleep quite a bit as they block on I/O, whereas CPU-bound task rarely
sleep as they rarely block on I/O. Quite often, tasks are in the middle, and are not entirely CPU-bound
or I/O-bound so the heuristic produces some sort of scale instead of a simple binary label (I/O-bound or
CPU-bound). In the Linux 2.6.8.1 scheduler, when a task is woken up from sleep, its total sleep time is
added to its sleep_avg variable (though a task’s sleep_avg is not allowed to exceed MAX_SLEEP_AVG for
the sake of mapping sleep avg onto possible bonus values). When a task gives up the CPU, voluntarily or
involuntarily, the time the current task spent running is subtracted from its sleep_avg. The higher a task’s
sleep_avg is, the higher its dynamic priority will be. This heuristic is quite accurate since it keeps track
of both how much time is spent sleeping as well as how much time is spent running. Since it is possible for
a task to sleep quite a while and still use up its timeslice, tasks that sleep for a long time and then hog a
CPU must be prevented from getting a huge interactivity bonus. The Linux 2.6.8.1 scheduler’s interactivity
heuristics prevent this because a long running time will offset the long sleep time.
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5.4.4 The effective_prio() Function

The effective_prio() function calculates a task’s dynamic priority. It is called by recalc_task_prio(),
the thread and process wakeup calls, and scheduler_tick(). In all cases, it is called after a task’s sleep_avg
has been modified, since sleep_avg is the primary heuristic for a task’s dynamic priority.

The first thing effective prio does is return a task’s current priority if it is a RT task. The function does
not give bonuses or penalties to RT tasks. The next two lines are key:
bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

prio = p->static_prio - bonus;

CURRENT_BONUS is defined as follows:
#define CURRENT_BONUS(p) \

NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / MAX_SLEEP_AVG)

Essentially, CURRENT_BONUS maps a task’s sleep average onto the range 0-MAX_BONUS, which is 0-10. If a task
has a high sleep_avg, the value returned by CURRENT_BONUS will be high, and vice-versa. Since MAX_BONUS

is twice as large as a task’s priority is allowed to rise or fall (MAX_BONUS of 10 means that the priority
adjustment can be from +5 to -5), it is divided by two and that value is subtracted from CURRENT_BONUS(p).
If a task has a high sleep_avg and CURRENT_BONUS(p) returns 10, then the bonus variable would be set to
5. Subsequently, the task’s static priority would get 5 subtracted from it, which is the maximum bonus that
a task can get. If a task had a sleep_avg of 0, its CURRENT BONUS(p) value might be 0. In that case,
the bonus value would get set to -5 and the task’s static priority would get -5 subtracted from it, which is
the same as adding 5. Adding five is the maximum penalty a task’s priority can get, which is the desired
behavior for a CPU hog that never sleeps.

Once a new dynamic priority has been calculated, the last thing that effective_prio() does is within
the non-RT priority range. For example - if a highly interactive task has a static priority of -20, it cannot
be given a 5 point bonus since it already has the maximum non-RT priority.

5.4.5 Calculating Timeslice

Timeslice is calculated by simply scaling a task’s static priority onto the possible timeslice range and making
sure a certain minimum and maximum timeslice is enforced7. The higher the task’s static priority (the lower
the task’s static_prio value) the larger the timeslice it gets. The task_timeslice() function is simply a
call to the BASE_TIMESLICE macro which is defined as:
#define BASE_TIMESLICE(p) (MIN_TIMESLICE + \

((MAX_TIMESLICE - MIN_TIMESLICE) * \

(MAX_PRIO-1 - (p)->static_prio) / (MAX_USER_PRIO-1)))

Essentially, this is the minimum timeslice plus the the task’s static priority scaled onto the possible timeslice
range, (MAX_TIMESLICE - MIN_TIMESLICE).

It is important to remember that an interactive task’s timeslice may be broken up into chunks, based on
the TIMESLICE_GRANULARITY value in the scheduler. The function scheduler_tick() checks to see if the
currently running task has been taking the CPU from other tasks of the same dynamic priority for too long
(TIMESLICE_GRANULARITY). If a task has been running for TIMESLICE_GRANULARITY and task of the same
dynamic priority exists a round-robin switch between other tasks of the same dynamic priority is made.

5.4.6 Fairness when Forking New Tasks

When new tasks (threads or processes) are forked, the functions wake_up_forked_thread()and wake_up_forked_process()

decrease the sleep avg of both parents and children. This prevents highly interactive tasks from spawning
other highly interactive tasks. Without this check, highly interactive tasks could keep spawning new tasks in
order to hog the CPU. With this check, sleep_avg and subsequently priority are decreased, increasing the

7In Robert Love’s “Linux Kernel Development,” he incorrectly states that timeslice is calculated based on dynamic priority.
While his statement is fundamentally incorrect, Con Kolivas pointed out in an IRC conversation with the author that a loose
enough interpretation (too loose, however) can argue that dynamic priority does affect timeslices. This is because if dynamic
priority is high enough (a task is interactive enough), timeslices maybe be broken into chunks based on TIMESLICE_GRANULARITY

so that a tasks cannot hog the CPU from other tasks of the same dynamic priority (see the scheduler_tick() function).
However, the total timeslice is calculated only with a task’s static priority, and breaking the timeslice up during an epoch is
another issue.
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likelihood that both parent and child will be preempted by a higher priority task. Note that timeslice does
not decrease for parent or child since timeslice is based only on static priority and not the dynamic priority
that is influenced by sleep_avg.

5.4.7 Interactive Task Reinsertion

Every 1ms, a timer interrupt calls scheduler_tick(). If a task has run out of timeslice, it is normally
given a new timeslice and put on the expired priority array for its runqueue. However, scheduler_tick()
will reinsert interactive tasks into the active priority array with their new timeslice so long as nothing is
starving in the expired priority array. This helps interactive performance by not letting interactive tasks sit
in the expired array while non-interactive tasks use up their timeslices (which might be a long time since
non-interactive tasks tend to be CPU hogs).

5.4.8 Interactivity Credits

Interactive credits help to control the rise and fall rate of the interactive status of tasks. Essentially, tasks
get an interactive credit when they sleep for a long time, and lose an interactive credit when they run for
a long time. A task’s interactive credit value is stored in its interactive_credit variable. If a task has
more than 100 interactivity credits it is considered to have high interactivity credit. If a task has less then
-100 interactivity credits it is considered to have low interactivity credit. Interactive credits matter in the
following situations:

1. Low interactivity credit tasks waking from uninterruptible sleep are limited in their sleep avg rise since
they are probably CPU hogs waiting on I/O. A CPU hog that only occasionally waits on I/O should
not gain an interactive sleep avg level just because it waits for a long time once.

2. High interactivity credit tasks get less run time subtracted from their sleep avg in order to prevent
them from losing interactive status too quickly. If a task got high credit, it must have slept quite a bit
at least 100 times recently and thus it should not lose interactive status just because it used up a lot
of CPU time once.

3. Low interactivity credit tasks can only get one timeslice worth of sleep avg bonus during dynamic
priority recalculation (recalc_task_prio()). They must not have been sleeping too much recently in
order to have low interactivity credit and thus they should not get too much of a bonus as they will
probably hog the CPU.

5.5 Sleeping and Waking Tasks

5.5.1 Why Sleep?

Tasks do not always want to run, and when this is the case they go to sleep (or “block”). Tasks sleep for
many reasons; in all cases they are waiting for some event to occur. Sometimes tasks sleep while they wait
for data from a device (e.g. a keyboard, a hard drive, an ethernet card), sometimes they sleep while waiting
for a signal from another piece of software, and sometimes they sleep for a certain amount of time (e.g.
waiting while trying to obtain a lock).

Sleeping is a special state in which tasks cannot be scheduled or run, which is important since if they could
get scheduled or run execution would proceed when it shouldn’t and sleeping would have to be implemented
as a busy loop. For example - if a task could be run after requesting data from a hard drive but before it
was sure the data had arrived, it would have to constantly check (via a loop) to see whether or not the data
had arrived.

5.5.2 Interruptible and Uninterruptible States

When a task goes to sleep, it is usually in one of two states - interruptible or uninterruptible. A task in the
interruptible state can wake up prematurely to respond to signals while tasks in the uninterruptible state
cannot. For example - if a user uses the kill command on a task, the kill command will attempt to do its
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job by sending a SIGTERM signal to the task. If the task is in the uninterruptible state, it will ignore the
signal until the event it was originally waiting for occurs. Tasks in the interruptible state would respond to
the signal immediately (though their response won’t necessarily be to die as the user probably wants).

5.5.3 Waitqueues

A waitqueue is essentially a list of tasks waiting for some event or condition to occur. When that event
occurs, code controlling that event will tell the waitqueue to wake up all of the tasks in it. It is a centralized
place for event notifications to be “posted.” Sleeping tasks are added to waitqueues before going to sleep in
order to be woken up when the event they are waiting for occurs.

5.5.4 Going to Sleep

Tasks put themselves to sleep by making system calls, and those system calls usually take something like
the following steps to ensure a safe and successful sleep period[4]:

1. Create a wait queue via DECLARE_WAITQUEUE().

2. Add task to the wait queue via add_wait_queue(). The wait queue will wake up any added tasks
when the condition they are waiting for happens. Whatever code is making that condition true will
need to call wake_up() on the waitqueue when appropriate.

3. Mark task as sleeping, either TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE.

4. Begin a loop that calls schedule() with a test to see if the condition is true or not. If it is true initially
then schedule() will not be called because sleeping is unnecessary. Otherwise, call schedule() to give
up the CPU. Since the task has been marked as sleeping, it will not be scheduled again (until it wakes
up).

5. When the task wakes up, the loop’s condition check will be executed again. This will prevent spurious
wakeups, which can happen. If the condition has occurred, the loop will exit. Otherwise it will repeat
and call schedule() again.

6. Once the condition is true, mark task as TASK_RUNNING and remove it from the wait queue via re-

move_wait_queue().

5.5.5 Waking Up

The try_to_wake_up() function is responsible for trying to wake up tasks. When a waitqueue is told to
wake up, try_to_wake_up() is called on each task in the waitqueue, and then tasks are removed from the
waitqueue. The task is marked TASK_RUNNING, and then it is added back to the appropriate runqueue to be
scheduled again.

5.6 The Main Scheduling Function

5.6.1 Overview

The schedule() function is the main scheduler function. Its job is to pick a new task to run and switch to it.
It is called whenever a task wishes to give up the CPU voluntarily (often through the sys_sched_yield()

system call), and if scheduler_tick() sets the TIF_NEED_RESCHED flag on a task because it has run out of
timeslice, then schedule() will get called when preempts are re-enabled[8]. scheduler_tick() is a function
called during every system time tick, via a clock interrupt. It checks the state of the currently running task
and other tasks in a CPU’s runqueue to see if scheduling and load balancing is necessary (and will invoke
them if so).
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5.6.2 The schedule() Function

The first thing that schedule does is check to make sure it’s not being called when it shouldn’t be (during
an atomic period). After that, it disables preemption and determines the length of time that the task to
be scheduled out has been running. That time is then reduced if a task has high interactivity credit since
it would be undesirable for a task that usually waits on I/O to lose interactivity status due to a single long
period of CPU usage. Next, if the function is entered off of a kernel preemption interruptible tasks with a
signal pending get a state of TASK_RUNNING and uninterruptible tasks get removed from the runqueue. This
is because if a task can be interrupted and it has a signal pending, it needs to handle that signal. Tasks that
are not interruptible should not be on the runqueue.

At this point, it is time to look for the next task to run. If there are no runnable tasks in the runqueue,
an attempt at load balancing is made. If balancing does not bring any runnable tasks, then a switch to the
idle task is made. If there are runnable tasks in the runqueue but not in the active priority array, then the
active and retired priority arrays are swapped.

At this point there is a runnable task in the active priority array. Next, the active priority array’s bitmap
is checked to find the highest priority level with a runnable task. After that, dependent sleeping tasks on
virtual SMT CPU’s are given a chance to run. If there is a dependent sleeper (which might only happen on
an SMT system), the current CPU (which is a virtual CPU sharing physical CPU resources with the virtual
CPU that has a dependent sleeper) switches to idle so the dependent sleeper can wake up and do what it
needs to do.

If there has not been a switch to the idle task for one reason or another at this point, a check is performed
to see if the task chosen to run next is not RT and has been woken up. If it is not an RT task and was woken
up, it is given a slightly higher sleep_avg and its dynamic priority is recalculated. This is a way to give
another small bonus to sleeping tasks. Once this check has been performed and a bonus possible awarded,
the wakeup flag is cleared.

Now schedule() is ready to make an actual task switch. This point in the algorithm is a goto target, and
whatever task is pointed to by the next variable is switched to. Earlier decisions to schedule the idle task had
simply set next to the idle task and skipped to this point. Here, the previous task has its TIF_NEED_RESCHED
flag cleared, context switch statistical variables are updated, and the previous task gets its run time deducted
from its sleep avg. Also, an interactive credit is deducted from the previous task if its sleep_avg dropped
below 0 and its credit is neither too high nor too low. This is because if its sleep_avg is less than 0 it must
not have been sleeping very much. With this setup complete, the actual context switch is made so long as
the previous task and the new task are not the same task. After the context switch, preemption is reenabled
since it was disabled during the scheduling algorithm. The final part of the schedule() function checks to
see if preemption was requested during the time in which preemption was disabled, and reschedules if it was.

5.7 Load Balancing

5.7.1 Why do Load Balancing?

Tasks stay on particular CPUs for the most part. This is for cache hotness and memory bank proximity
reasons. However, sometimes a CPU has more tasks on it than other CPUs in a system. For instance, on a
dual processor system, it is entirely possible that all tasks could be assigned to one CPU and the other CPU
would sit idle. Obviously, this is a less-than-optimal situation. The solution is to move some tasks from one
CPU to another CPU in order to balance the system. Load balancing is a very important part of any kernel
in charge of more than one CPU.

5.7.2 Scheduler Domains

Each node in a system has a scheduler domain that points to its parent scheduler domain. A node might be
a uniprocessor system, an SMP system, or a node within a NUMA system. In the case of a NUMA system,
the parent scheduler domain of a node’s domain would contain all CPUs in the system.

Each scheduler domain divides its CPUs into groups. On a uniprocessor or SMP system, each physical
CPU would be a group. The top level scheduler domain containing all CPUs in a NUMA system would have
one group for each node, and the groups would contain all CPUs in the node. Groups are maintained as
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a circular linked list, and the union of all groups is equivalent to the domain. No CPU can be in multiple
groups.

A domain’s load is balanced only within that domain. Tasks are moved between groups in a domain only
when groups within a domain become unbalanced. The load of a group is the sum of the loads of its CPUs.

5.7.3 CPU Load

Since there is one runqueue per active CPU in a system, it makes sense for that data structure to keep track
of each CPU’s load. Each runqueue maintains a variable called cpu_load, which stores a value representing
the CPU’s load. When runqueues are initialized, their cpu_load is set to zero, and the variable is updated
every time rebalance_tick() is called. rebalance_tick() is called at the end of scheduler_tick() and
also earlier in scheduler_tick() if the current CPU is idle (if the current CPU is idle then load balancing
is probably desirable before trying to schedule). In rebalance_tick(), the current runqueue’s cpu load
variable is set to the average of the current load and the old load. The current load is determined by
multiplying the runqueue’s current number of active tasks by SCHED_LOAD_SCALE. The latter macro is a
large number (it’s actually 128) and is simply used to increase the resolution of load calculations.

5.7.4 Balancing Logic

Load balancing is invoked via the rebalance_tick() function, which is called by scheduler_tick(). re-
balance_tick() first updates the current CPU’s load variable, then goes up the CPU’s scheduler domain
hierarchy attempting to rebalance. It only attempts to balance a scheduler domain for a CPU if the scheduler
domain has not been balanced for longer than its balance interval. This is very important - since all CPUs
share a top level scheduler domain, it would be undesirable to balance that domain every time a CPU has a
timer tick. Imagine how often the top level domain would get balanced on a 512 processor NUMA system if
that were the case.

If rebalance_tick() determines that a scheduler domain needs to be balanced, it calls load_balance()
on that domain. load_balance() looks for the busiest group in the domain, and if there is no busiest group
it exits. If there is a busiest group, it checks to see if the busiest group contains the current CPU - if so, it
exits. load_balance() pulls tasks to less loaded groups instead of pushing them from overloaded groups.
Once the busiest group has been identified, load_balance() attempts to move tasks from the busiest group’s
busiest runqueue to the current CPU’s runqueue via move_tasks(). The rest of load_balance() is largely
devoted to updating heuristics according to whether or not load balancing succeeded and cleaning up locks.

move_tasks() attempts to move up to a certain number of tasks from the busiest group to the cur-
rent group. move_tasks() attempts to take tasks from the target runqueue’s expired priority array first,
and within that array it takes the lowest priority tasks first. Tasks are moved by calling pull_task().
pull_task() moves tasks by dequeuing them from their current runqueue, and enqueuing them on their
destination runqueue. The operation is quite short and simple, a testament to the scheduler’s clean design.

5.7.5 Migration Threads

Every CPU has a migration thread, which is a kernel thread that runs at a high priority and makes sure
that runqueues are balanced. The thread executes the loop in the function migration_thread() until it is
told to stop for some reason (i.e. the CPU goes down for one reason or another). If task migration has been
requested (e.g. via migrate_task() for CPU assignment or active balancing reasons), the migration thread
will see the request and carry it out.

5.8 Soft RT Scheduling

The Linux 2.6.8.1 scheduler provides soft RT scheduling support. The “soft” adjective comes from the fact
that while it does a good job of meeting scheduling deadlines, it does not guarantee that deadlines will be
met.
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5.8.1 Prioritizing Real-Time Tasks

RT tasks have priorities from 0 to 99 while non-RT task priorities map onto the internal priority range
100-140. Because RT tasks have lower priorities than non-RT tasks, they will always preempt non-RT tasks.
As long as RT tasks are runnable, no other tasks can run because RT tasks operate with different scheduling
schemes, namely SCHED_FIFO and SCHED_RR. Non-RT tasks are marked SCHED_NORMAL, which is the default
scheduling behavior.

5.8.2 SCHED_FIFO Scheduling

SCHED_FIFO tasks schedule in a first-in-first-out manner. If there is a SCHED_FIFO task on a system it will
preempt any other tasks and run for as long as it wants to. SCHED_FIFO tasks do not have timeslices.
Multiple SCHED_FIFO tasks are scheduled by priority - higher priority SCHED_FIFO tasks will preemt lower
priority SCHED_FIFO tasks.

5.8.3 SCHED_RR Scheduling

SCHED_RR tasks are very similar to SCHED_FIFO tasks, except that they have timeslices and are always
preempted by SCHED_FIFO tasks. SCHED_RR tasks are scheduled by priority, and within a certain priority
they are scheduled in a round-robin fashion. Each SCHED_RR task within a certain priority runs for its allotted
timeslice, and then returns to the bottom of the list in its priority array queue.

5.9 NUMA Scheduling

5.9.1 Scheduler Domain/Group Organization

The scheduler domain system is a critical component of Linux 2.6.8.1’s NUMA support. NUMA architectures
differ from uniprocessor and SMP systems in that a NUMA system can contain multiple nodes. It is typical
for each node to have a local memory bank and certain other resources that are best used by CPU’s that are
physically nearby. For example - while a CPU in a NUMA system can usually use memory on any node in
the system, it is faster to access memory on local banks than it is to access memory that may be physically
20 feet and several NUMA links away. In short, since NUMA systems can be physically very large with less
than optimal connections between nodes, resource proximity becomes an issue. The issue of proximity makes
organizing resources into groups important, and that is exactly what the scheduler domain system does.

On a NUMA system, the top level scheduler domain contains all CPUs in the system. The top level
domain has one group for each node; that group’s CPU mask contains all CPUs on the node. The top level
domain has one child scheduler domain for each node, and each child has one group per physical CPU (the
group could have multiple virtual CPUs in the case of SMT processors). This scheduler domain structure is
set up with special domain initialization functions in the scheduler which are only compiled if CONFIG_NUMA
is true.

5.9.2 NUMA Task Migration

When scheduler_tick() runs, it checks to see if groups in the base domain for the current CPU are
balanced. If not, it balances groups within that domain. Once that domain is balanced, its parent domain
is balanced (and then its parent and so on). This means that on a NUMA system per-node base scheduler
domains allow for keeping tasks within a node, which is the desired behavior for resource proximity reasons.
Since the scheduler balances between a scheduler domain’s groups and not necessarily individual CPUs, when
the top level domain is balanced tasks are moved between nodes only if any node is overburdened. Individual
CPUs in a NUMA system are not considered during top level scheduler domain balancing (unless of course
each node has only one CPU). Once a task becomes part of a new node, it stays within that node until its
new node is an overburdened one. These levels of balancing discourage the unnecessary movement of tasks
between nodes.
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5.10 Scheduler Tuning

5.10.1 Reasons for Tuning

Linux users with some basic development skills might want to optimize the CPU scheduler for a particular
type of use. Such people might include desktop users that want to sacrifice efficiency for response time, or
sysadmins who want to sacrifice a server’s response time for the sake of efficiency.

5.10.2 Scheduler Tuning Possibilities

Near the top of the file kernel/sched.c, there is a series of macros beginning with MIN_TIMESLICE, the
definitions of which can be tuned in an attempt to achieve certain goals. These values can be tweaked within
reason and the scheduler will function in a stable manner. After changing desired macro definitions, users
should simply compile the kernel as they normally would. There is no sane way to change these values in
an already-compiled kernel, and they are not modifiable on a running system. Some of the more interesting
tuneable values are discussed in sections 5.10.3 - 5.10.6.

It is important to note that there are so many variables in the scheduler code and workloads that the
scheduler can handle that almost nothing is guaranteed by any tweaking. The best way to approach tuning
the scheduler is by trial and error, using the actual workload the tuned scheduler will work with.

5.10.3 MIN_TIMESLICE and MAX_TIMESLICE

MIN_TIMESLICE is the bare minimum timeslice that a task can receive. MAX_TIMESLICE is the maximum
timeslice that a task can receive. The average timeslice is determined by averaging MIN_TIMESLICE and
MAX_TIMESLICE, so increasing the value of either extreme will increase timeslice lengths in general. Increasing
timeslice lengths will increase overall efficiency because it will lead to fewer context switches, but it will
decrease response times. However, since I/O-bound tasks tend to have higher dynamic priorities than CPU-
bound tasks, interactive tasks are likely to preempt other tasks no matter how long their timeslices are;
this means that ineractivity suffers a bit less from long timeslices. If there are many tasks on a system, for
example on a high-end server, higher timeslices will cause lower priority tasks to have to wait much longer
to run. If most tasks are at the same dynamic priority, response time will suffer even more since none of the
tasks will be preempting others in an attempt to give better response times.

5.10.4 PRIO_BONUS_RATIO

This is the middle percentage of the total priority range that tasks can receive as a bonus or a punishment in
dynamic priority calculations. By default the value is 25, so tasks can move up 25% or down 25% from the
middle value of 0. Since there are 20 priority levels above and below 0, by default tasks can receive bonuses
and penalties of 5 priority levels.

Essentially this value controls the degree to which static, user-defined, priorities are effective. When this
value is high, setting a task to a high static priority using the nice() system call has less of an effect since
dynamic priority rewards and punishments will allow for more flexibility in dynamic priority calculatins.
When this value is low static priorities are more effective.

5.10.5 MAX_SLEEP_AVG

The larger MAX_SLEEP_AVG gets, the longer tasks will need to sleep in order to be considered active. Increasing
the value is likely to hurt interactivity, but for a non-interactive workload equality among all tasks may be
desirable. Overall efficiency may increase since fewer increases in dynamic priority means fewer preemptions
and context switches.

5.10.6 STARVATION_LIMIT

Interactive tasks are reinserted into the active priority array when they run out of timeslice, but this may
starve other tasks. If another task has not run for longer than STARVATION_LIMIT specifies, then interactive
tasks stop running in order for the starving tasks to get CPU time. Decreasing this value hurts interactivity
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since interactive tasks will more often be forced to give up the CPU for the sake of starving tasks, but fairness
will increase. Increasing this value will increase interactive performance, but at the expense of non-interactive
tasks.

6 The Linux 2.4.x Scheduler

6.1 The Algorithm

A basic understanding of the Linux 2.4.x scheduler is instructive in that it points out much of the logic
behind the improvements made in the 2.6.x kernels.

The Linux 2.4.x scheduling algorithm divides time into “epochs,” which are periods of time during which
every task is allowed to use up its timeslice. Timeslices are computed for all tasks when epochs begin, which
means that the scheduler’s algorithm for timeslice calculation runs in O(n) time since it must iterate over
every task.

Every task has a base timeslice, which is determined by its default or user-assigned nice value. The nice
value is scaled to a certain number of scheduler ticks, with the nice value 0 resolving to a timeslice of about
200ms. When calculating a task’s actual timeslice, this base timeslice is modified based on how I/O-bound
a task is. Each task has a counter value, which contains the number of scheduler ticks remaining in its
allotted timeslice at any given time. At the end of an epoch, a task might not have used up all of its timeslice
(i.e. p->counter > 0) because it was not runnable (sleeping), presumably waiting on I/O. A task’s new
timeslice is calculated at the end of an epoch with the following code:
p->counter = (p->counter > > 1) + NICE_TO_TICKS(p->nice);

The remaining scheduler tick count is shifted to the right one position (divided by two), and added to the
base timeslice. In this way, tasks that do not use up their timeslices due to being I/O-bound get longer a
longer timeslice in the next epoch. If a task suddenly becomes CPU-bound and uses up its whole timeslice,
it quickly drops back to a base timeslice in the next epoch. However, this becomes more and more difficult
to do as successive epochs of low timeslice utilization build up a task’s timeslice (which is a desired effect).

When a task forks a new task, the parent’s timeslice is split between itself and its child. This prevents
tasks from hogging the CPU by spawning children.

The schedule() function selects the task that will run next by iterating over all runnable tasks and calling
the goodness() function8. The task that evokes the highest return value from the goodness() function is
run next. Goodness is generally determined by adding the process’s counter value to its nice value, but
in the case of RT tasks, 1000 is added to the result (RT tasks: p->policy != SCHED_NORMAL) so that they
are always selected over non-RT tasks. An interesting optimization in the goodness() function is that if a
task shares the same address space as the previous task (i.e. p->mm == prev->mm), it will get a slight boost
to its goodness for the sake of taking advantage of cached pages. The goodness algorithm essentially boils
down to the following[5]:
if (p->policy != SCHED NORMAL)
return 1000 + p->rt priority;
if (p->counter == 0)
return 0;
if (p->mm == prev->mm)
return p->counter + p->priority + 1;
return p->counter + p->priority;

6.2 Strengths

The Linux 2.4.x scheduling algorithm performs quite well but is fairly unremarkable, and as such, its strengths
lie in the realm of the mundane.

8Iterating over tasks to find the one with the best goodness() value is another example of the Linux 2.4.x scheduler using
an O(n) algorithm.
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6.2.1 It Works

Although it is technically vague, the fact that the Linux 2.4.x scheduler “works” should not be discounted
in terms of the credit it deserves. The demands on the Linux scheduler are high; Linux 2.4.x runs on many
different types of very important systems, from Fortune 500 servers to NASA supercomputers, and it runs
quite well. The Linux 2.4.x scheduler is robust and efficient enough to make Linux a major player in the
computing world at the 2.4.x stage, which is more than can be said for many schedulers in the past.

6.2.2 (Relatively) Simple Logic

The Linux 2.4.x file kernel/sched.c is about 1/3 the size of kernel/sched.c in Linux 2.6.x. The algorithm
is fairly straightforward, even if its potential behavior and effects are somewhat unpredictable. Tweaking
scheduler behavior for specific situations is fairly easy in Linux 2.4.x, while improving it without a major
overhaul is quite difficult.

6.3 Weaknesses

In “Understanding the Linux Kernel,” Daniel Bovet and Marco Cesati expound on four weaknesses in the
Linux 2.4.x scheduler: scalability, large average timeslices, a less-than-optimal I/O-bound task priority boost-
ing strategy, and weak RT-application support9[5].

6.3.1 Scalability

The Linux 2.4.x scheduler executes in O(n) time, which means that the scheduling overhead on a system
with many tasks can be dismal. During each call to schedule(), every active task must be iterated over at
least once in order for the scheduler to do its job. The obvious implication is that there are potentially
frequent long periods of time when no “real” work is being done. Interactivity performance perception may
suffer greatly from this. This problem has been solved in the Linux 2.6.x series by using algorithms that
perform in O(1) time. Specifically, the Linux 2.6.x scheduler recalculates timeslices as each task uses up its
timeslice. The Linux 2.4.x scheduler recalculates timeslices for all tasks at once, when all tasks have run
out of their timeslices. Also, priority arrays in the Linux 2.6.x scheduler make finding the highest priority
process (the one that should run next) as simple as finding the first set bit in a bitmap. The Linux 2.4.x
scheduler iterates over processes to find the one with the highest priority.

6.3.2 Large Average Timeslices

The average timeslice assigned by the Linux 2.4.x scheduler is about 210ms [5]. This is quite high (recall that
the average timeslice in the Linux 2.6.x scheduler is 100ms), and according to Bovet and Cesati, “appears
to be too large for high-end machines having a very high expected system load.” This is because such large
timeslices can cause the time between executions of low-priority tasks (or simply unlucky ones if all priorities
are equal) to grow quite large. For example - with 100 threads using all of their 210ms timeslices without
pause, the lowest priority thread in the group might have to wait more than 20 seconds before it executes (an
unlikely situation, but it illustrates the point). This problem does not appear to be mitigated by starvation
checks or taking system load into account when calculating timeslices, which might not help anyway. Only
process data fields are used in timeslice recalculation:
p->counter = (p->counter > > 1) + NICE_TO_TICKS(p->nice);

The problem is lessened by the Linux 2.6.8 scheduler’s lower average timeslices, but it is not entirely done
away with. Essentially the system load just needs to be twice as much to create the same problem. It is
important to remember that even though higher priority tasks can preempt tasks with long timeslices and
thus maintain acceptable interactivity, that doesn’t help tasks that are non-interactive and at the end of the
line, but cannot wait for extremely long periods of time to execute. An example might be a web server that
has retrieved data from an I/O source and is waiting to formulate an HTTP reply - a long wait to formulate
the reply could cause timeouts on the client side of the connection.

9Actually, Bovet and Cesati are talking about the Linux 2.2.x scheduler in their book, but except for some major SMP
handling changes, the scheduler did not change much between the 2.2.x and 2.4.x kernel series. The similarity between the
Linux 2.2.x and 2.4.x schedulers is noted by them.
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6.3.3 I/O-Bound Task Priority Boosting

The Linux 2.4.x scheduler’s preference for I/O-bound tasks has some notable flaws. First, non-interactive
tasks that are I/O-bound get a boost even though they do not need one. The example from Bovet and Tosati
is a database application that must retrieve data from a disk or a network. Also, tasks that are interactive
but also CPU-bound may appear to be unresponsive since the boost for interactivity and the penalty for
high CPU usage can cancel each other out. Since the Linux 2.4.x scheduler assigns timeslices based on the
time remaining from the last epoch plus a value based on the user nice value, the former value will be low
for a CPU-bound task and subsequently if it also happens to be interactive, it will get a very small bonus.

Both problems cannot actually be solved until a better metric than sleep time is found for measuring
interactivity. Since the basic logic is that sleepy tasks are interactive and non-sleepy tasks are not, pairing up
antithetical characteristics is always going to be a problem. As for the former problem, with a non-interactive
yet I/O-bound task, the Linux 2.6.x scheduler does categorize tasks that sleep too much as idle, and assigns
them an average sleep time of:
if (...sleep_time > INTERACTIVE_SLEEP(p)) {

p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG - AVG_TIMESLICE);

...

}

This avoids giving excessively sleepy tasks huge bonuses. It is not a solution to the problem, but perhaps
limits the extent to which it can manifest itself.

6.3.4 RT Application Support

The Linux 2.4.x kernel is not preemptable, and thus the support for RT applications is weak. Interrupts and
exceptions result in short periods of kernel mode execution during which runnable RT tasks cannot resume
execution immediately. This is unacceptable for RT tasks, which need to meet very strict deadlines reliably.
Kernel preemptability adds a great degree of complication to kernel code, particularly concerning locking,
and thus has been resisted so far. Linux 2.6.x is a preemptable kernel, and thus RT application support is
considerably better. There are, however, certain points at which the Linux 2.6.x kernel cannot be preempted,
so RT support is not perfect yet. There are other RT application support issues, such a the prioritization of
access to system I/O resources, but they are beyond the scope of this paper.

7 The Future of the Linux Scheduler

7.1 Implementation Tuning vs. Algorithmic Changes

The Linux 2.6.8.1 scheduler is quite solid. It is unlikely that any major changes will be made in the near
future because of the fact that further solid performance gains are difficult to measure. The massive number
of different workload conditions under which the scheduler is expected to perform well is daunting, and it
means that a tweak that helps under one workload is likely to hurt other workloads.

While the basic algorithms and data structures in the Linux 2.6.8.1 scheduler are unlikely to change
much, the way things are implemented will continue to be improved (e.g. more efficient coding practices).
This will not effect performance at an algorithmic level, but it will improve performance all-around (though
to a relatively small extent). Features will be added, but the overall structure of the scheduler will probably
not be modified to a very significant degree.

7.1.1 Scheduler Modes and Swappable Schedulers

Two interesting possibilities for future scheduler development are scheduler modes or swappable schedulers
(the latter being much more likely).

Scheduler modes means breaking scheduler workloads into categories, and allowing root users to pick the
scheduling behavior of a system dynamically. For example, there might be two modes, server and desktop,
that a system administrator could put a machine into via a system call from a command. The desktop
mode would favor interactivity performance, the server mode efficiency. Actual scheduler mode breakups
are unlikely to be this simple, but even this simple setup might be beneficial to many people. In fact,
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the simplicity might actually be a boon for ease of use and development reasons. Scheduler modes could
be implemented fairly easily by making the tuning macros into variables changeable during runtime and
maintaining two sets of values with an interface for switching between the sets. While this is an interesting
idea, it is unlikely that it will actually happen.

Swappable schedulers would allow users to specify the scheduler that should be used for their own tasks.
A basic kernel scheduler would round-robin between users (perhaps favoring root with a longer timeslice?)
and allow a user’s chosen scheduler to pick tasks for a certain period of time. This way, interactive users
could use a scheduler that favors interactive tasks, while non-interactive users could use a scheduler favoring
their type of workload. This is a very simplistic description of swappable schedulers, but it gets the main
idea across. There are a few different examples of kernels with swappable schedulers in one form or another,
perhaps the most conspicuous being the GNU HURD kernel (http://www.gnu.org/software/hurd/).

7.1.2 Shared Runqueues

The recent addition of SMT support to the Linux scheduler is not perfect. In an Ars Technica interview
(http://www.arstechnica.com)[9], Robert Love put forward the example of a dual Pentium 4 HT workstation
which would have four virtual processors. If three virtual processors are idle, and the fourth has two tasks
on it, the scheduler should try to move one of the tasks to a different physical CPU instead of the other
virtual CPU on the same chip. Right now this does not happen. The solution put forward by Love is shared
runqueues for SMT architectures. If runqueues were shared, load balancing would balance among physical
CPUs before virtual ones. Such a feature will likely be added to the Linux scheduler.

8 Final Notes

8.1 Acknowledgments

The author would like to acknowledge the assistance, influence, and inspiration he received from the following
people and organizations.

8.1.1 Professors Libby Shoop and Richard K. Molnar, Macalester College, St. Paul, Min-
nesota, USA

Aside from acting as my advisor (Professor Shoop) and reader (Professor Molnar) for this paper, Professors
Shoop and Molnar have taught me quite a lot and been wonderful supporters during my time at Macalester
College. Professor Shoop has advised me on many independent projects concerning my own particular
interests and was always willing to teach and learn about the chosen subjects with me. Having a professor
willing to follow me beyond the subjects taught in classes has been wonderful. Professor Molnar taught the
class that made the subject of algorithms a favorite of mine. Because of him, I still make very frequent use
of “Introduction to Algorithms” for work and fun. Writing the final paper for his algorithms class was one
of the best academic experiences I have had at Macalester.

-Josh Aas

8.1.2 Jeff Carr and the Free Software/OSS Community

In late 2000 and early 2001, Jeff Carr allowed me to spend time with his company, LinuxPPC, near Milwaukee
WI, USA. Jeff was kind enough to allow me to stay at his house, put up with an incredible amount of my eager
high school kid questions, and even took me out to LinuxWorld NY 2001 with the rest of the LinuxPPC crew.
During the time I spent with Jeff, he taught me more than just technical things - he taught me about Open
Source and Free Software philosophies with a passion I’ll never forget. The Free Software/OSS community
I’ve since become a part of has been an incredible extension of the kindness, support, and passion that I
originally encountered in Jeff (in particular, Mike Pinkerton and the rest of the Mozilla.org folks!). Many
of the things I am most happy to have achieved in my life so far were heavily inspired and supported by
members of the Free Software/OSS community and for that I am very grateful.

-Josh Aas

25



8.1.3 Silicon Graphics, Inc. (SGI)

At the beginning of the summer of 2004, I began work as an intern at SGI, in their Linux System Software
group headed by John Hesterberg. As of this writing in late December of 2004 I am still at SGI, going on
my 8th month of what was originally a 3-month internship. I work on their Altix line of Linux-based high
performance servers, doing various things in kernel and core operating system software (as well as honing my
foosball skills). SGI has been an wonderful employer and I have learned an incredible amount since I started
working there. My group members and manager have been amazing coworkers; I couldn’t have asked for a
better environment in which to grow. SGI has contributed to this paper significantly by teaching me about
the Linux kernel, allowing me to use their hardware to play with the Linux scheduler on large machines,
and supporting my belief in Free Software/OSS philosophies. As a company, they have truly embraced and
learned to work with the community software development process.

-Josh Aas

8.2 About the Author

Josh Aas is a student at Macalester College in St. Paul, MN, USA. He will be receiving a double major in
Computer Science and English Literature, two subjects which he never has and never will try to associate.
At the time of this writing, he is employed by Silicon Graphics, Inc. (SGI) in their Linux System Software
group, working on their Altix line of Linux-based high performance servers. When he isn’t doing schoolwork
or working at SGI, he spends much of his time working on open source software projects, particularly with
Mozilla.org. Other interests include traveling, reading, running, sailing, and environmental action.

8.3 Legal (GNU FDL)

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license can be found
here <http://www.gnu.org/licenses/fdl.txt>.

References

[1] Curt Schimmel, UNIX r© Systems for Modern Architectures - Symmetric Multiprocessing and Caching
for Kernel Programmers. Addison-Wesley, 1994.

[2] Andrew S. Tanenbaum, Albert S. Woodhull. Operating Systems Design and Implementation, 2nd Edition.
Prentice Hall, 1997.

[3] Andrew S. Tanenbaum. Modern Operating Systems, 2nd Edition. Prentice Hall, 2001.

[4] Robert Love. Linux Kernel Development. Sams, 2004.

[5] Daniel P. Bovet, Marco Cesati. Understanding the Linux Kernel, 2nd Edition. O’Reilly, 2003.

[6] Mel Gorman. Understanding the Linux Virtual Memory Manager. Prentice Hall, 2004.

[7] Bitkeeper source management system, Linux project <linux.bkbits.net>

[8] Con Kolivas, Linux Kernel CPU Scheduler Contributor, IRC conversations, no transcript. December
2004.

[9] Jorge Castro, Ars Technica interviews Robert Love, http://arstechnica.com/columns/linux/linux-01-23-
2004.ars

26


