

 3

 1 Idioms, Patterns, and Programming

Chapter

Objectives
This chapter introduces the ideas that we use to organize our thinking about
languages and how they shape the design and implementation of programs.
 These are the ideas of language, idiom, and design pattern.

Chapter
Contents

1.1 Introduction
1.2 Selected Examples of AI Language Idioms
1.3 A Brief History of Three Programming Paradigms
1.4 A Summary of our Task

 1.1 Introduction

Idioms and
Patterns

As with any craft, programming contains an undeniable element of
experience. We achieve mastery through long practice in solving the
problems that inevitably arise in trying to apply technology to actual
problem situations. In writing a book that examines the implementation of
major AI algorithms in a trio of languages, we hope to support the reader’s
own experience, much as a book of musical etudes helps a young musician
with their own exploration and development.

As important as computational theory, tools, and experience are to a
programmer’s growth, there is another kind of knowledge that they only
suggest. This knowledge comes in the form of pattern languages and
idioms, and it forms a major focus of this book. The idea of pattern
languages originated in architecture (Alexander et al. 1977) as a way of
formalizing the knowledge an architect brings to the design of buildings
and cities that will both support and enhance the lives of their residents. In
recent years, the idea of pattern languages has swept the literature on
software design (Gamma, et al. 1995; Coplein & Schmidt 1995; Evans
2003), as a way of capturing a master’s knowledge of good, robust program
structure.

A design pattern describes a typical design problem, and outlines an
approach to its solution. A pattern language consists of a collection of
related design patterns. In the book that first proposed the use of pattern
languages in architecture, Christopher Alexander et al. (1977, page x) state
that a pattern

describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same way
twice.

Design patterns capture and communicate a form of knowledge that is
essential to creating computer programs that users will embrace, and that

Part I: Language Idioms and the Master Programmer

4

programmers will find to be elegant, logical, and maintainable. They
address programming and languages, not in terms of Turing completeness,
language paradigms, compiler semantics, or any of the other qualities that
constitute the core of computer science, but rather as tools for practical
problem solving. To a large extent, you can think of this book as
presenting a pattern language of the core problems of AI programming,
and examples – the patterns – of their solution.

Idioms are a form and structure for knowledge that helps us bridge the
differences between patterns as abstract descriptions of a problem and its
solutions and an understanding of how best to implement that solution in a
given programming language. A language idiom is the expression of a
design pattern in a given language. In this sense, design patterns + idioms =
quality programs.

Sample Design
Patterns

Consider, for example, the simple, widely used design pattern that we can
call map that applies some operator O to every element of a list L. We can
express this pattern in a pseudo code function as follows:

map(operator O, list L)

{

 if (L contains no elements) quit;

 h  the first element of L.

 apply O to h;

 map(O, L minus h);

}

This map function produces a stream of results: O applied to each element
of the list L. As our definition of pattern specifies, this describes a solution
to a recurring problem, and also fosters unlimited variations, depending on
the type of the elements that make up the list L, and the nature of the
operator, O.

Now, let us consider a fragment of Lisp code that implements this same
map pattern, where f is the mapped operator (in Lisp a function) and
list is the list:

(defun map (f list)

 (cond ((null list) nil)

 (t (cons (apply f (car list))

 (map f (cdr list))))))

This function map, created by using the built-in Lisp defun function, not
only implements the map pattern, but also illustrates elements of the Lisp
programming idiom. These include the use of the operators car and cdr to
separate the list into its head and tail, the use of the cons operator to place
the results into a new list, and also the use of recursion to move down the
list. Indeed, this idiom of recursively working through a list is so central to
Lisp, that compiler writers are expected to optimize this sort of tail
recursive structure into a more efficient iterative implementation.

Let us now compare the Lisp map to a Java implementation that
demonstrates how idioms vary across languages:

 Chapter 1 Idioms, Patterns, and the Master programmer

5

public Vector map(Vector l)

{

 Vector result = new Vector();

 Iterator iter = l.iterator();

 while(iter.hasNext())

 {

 result.add(f(iter.next));

 }

 return result;

}

The most striking difference between the Java version and the Lisp version
is that the Java version is iterative. We could have written our list search in
a recursive form (Java supports recursion, and compilers should optimize it
where possible), but Java also offers us iterators for moving through lists.
Since the authors of Java provide us with list iterators, and we can assume
they are implemented efficiently, it makes sense to use them. The Java
idiom differs from the Lisp idiom accordingly.

Furthermore, the Java version of map creates the new variable, result.
When the iterator completes its task, result will be a vector of
elements, each the result of applying f to each element of the input list
(vector). Finally, result must be explicitly returned to the external
environment. In Lisp, however, the resulting list of mapped elements is the
result of invoking the function map (because it is returned as a direct
result of evaluating the map function).

Finally, we present a Prolog version of map. Of course in Prolog, map will
be a represented as a predicate. This predicate has three arguments, the
first the function, f, which will be applied to every element of the list that
is the second argument of the predicate. The third argument of the
predicate map is the list resulting from applying f to each element of the
second argument. The pattern [X|Y] is the Prolog list representation,
where X is the head of the list (car in Lisp) and Y is the list that is the rest
of the list (cdr in Lisp). The is operator binds the result of f applied to
H to the variable NH. As with Lisp, the map relationship is defined
recursively, although no tail recursive optimization is possible in this case.
Further clarifications of this Prolog specification are presented in Part II.

map(f, [], []).

map(f, [H|T], [NH|NT]):-

 NH is f(H), map(f, T, NT).

In the three examples above we see a very simple example of a pattern
having different idioms in each language, the eval&assign pattern. This
pattern evaluates some expression and assigns the result to a variable. In
Java, as we saw above, = simply assigns the evaluated expression on its
right-hand-side to the variable on its left. In Lisp this same activity requires
the cons of an apply of f to an element of the list. The resulting
symbol expression is then simply returned as part of the evaluated function
map. In Prolog, using the predicate representation, there are similar

Part I: Language Idioms and the Master Programmer

6

differences between assignment (based on unification with patterns such as
[H|T] and =) and evaluation (using is or making f be a goal).

Understanding and utilizing these idioms is an essential aspect of mastering
a programming language, in that they represent expected ways the language
will be used. This not only allows programmers more easily to understand,
maintain, and extend each other’s code, but also allows us to remain
consistent with the language designer’s assumptions and implementation
choices.

 1.2 Selected Examples of AI Language Idioms

 We can think of this book, then, as presenting some of the most important
patterns supporting Artificial Intelligence programming, and demonstrating
their implementation in the appropriate idioms of three major languages.
Although most of these patterns were introduced in this book’s companion
volume, Artificial Intelligence: Structures and Strategies for Complex Problem Solving
(Luger 2009), it is worthwhile to summarize a subset of them briefly in this
introduction.

Symbolic
Computing:

The Issue of
Representation

Artificial Intelligence rests on two basic ideas: first, representation or the use
of symbol structures to represent problem solving knowledge (state), and
second, search, the systematic consideration of sequences of operations on
these knowledge structures to solve complex problems. Symbolic
computing embraces a family of patterns for representing state and then
manipulating these (symbol) structures, as opposed to only performing
arithmetic calculations on states. Symbolic computing methods are the
foundation of artificial intelligence: in a sense, everything in this book rests
upon them. The recursive list-handling algorithm described above is a
fundamental symbolic computing pattern, as are the basic patterns for tree
and graph manipulation. Lisp was developed expressly as a language for
symbolic computing, and its s-expression representation (see Chapter 11)
has proved general, powerful and long-lived.

As we develop the examples of this book, pay close attention to how these
simple patterns of list, tree, and graph manipulation combine to form the
more complex, problem specific patterns described below.

Search Search in AI is also fundamental and complementary to representation (as
is emphasized throughout our book. Prolog, in fact, incorporates a form of
search directly into its language semantics. In addition to forming a
foundation of AI, search introduces many of its thorniest problems. In
most interesting problems, search spaces tend to be intractable, and much
of AI theory examines the use of heuristics to control this complexity. As
has been pointed out from the very beginnings of AI (Feigenbaum and
Feldman 1963, Newell and Simon 1976) support of intelligent search
places the greatest demands on AI programming.

Search related design patterns and problems we will examine in this book
include implementations of the basic search algorithms (breadth-first,
depth-first, and best-first), management of search history, and the recovery
of solution paths with the use of those histories.

A particularly interesting search related problem is in the representation

 Chapter 1 Idioms, Patterns, and the Master programmer

7

and generation of problem states. Conceptually, AI search algorithms are
general: they can apply to any search space. Consequently, we will define
general, reusable search “frameworks” that can be applied to a range of
problem representations and operations for generating new states. How
the different programming paradigms address this issue is illuminating in
terms of their language-based idioms.

Lisp makes no syntactic distinction between functions and data structures:
both can be represented as symbol expressions (see s-expression, Chapter
11), and both can be handled identically as Lisp objects. In addition, Lisp
does not enforce strong typing on s-expressions. These two properties of
the language allow us to define a general search algorithm that takes as
parameters the starting problem state, and a list of Lisp functions, often
using the map design pattern described earlier, for producing child states.

Prolog includes a list representation that is very similar to lists in Lisp, but
differs in having built-in search and pattern matching in a language
supporting direct representation of predicate calculus rules. Implementing
a generalized search framework in Prolog builds on this language’s unique
idioms. We define the operators for generating states as rules, using pattern
matching to determine when these rules apply. Prolog offers explicit meta-
level controls that allow us to direct the pattern matching, and control its
built-in search.

Java presents its own unique idioms for generalizing search. Although Java
provides a “reflection” package that allows us to manipulate its objects,
methods, and their parameters directly, this is not as simple to do as in Lisp
or Prolog. Instead, we will use Java interface definitions to specify the
methods a state object must have at a general level, and define search
algorithms that take as states instances of any class that instantiates the
appropriate interface (see Chapters 22-24).

These three approaches to implementing search are powerful lessons in the
differences in language idioms, and the way they relate to a common set of
design patterns. Although each language implements search in a unique
manner, the basic search algorithms (breadth-, depth-, or best-first) behave
identically in each. Similarly, each search algorithm involves a number of
design patterns, including the management of problem states on a list, the
ordering of the state list to control search, and the application of state-
transition operators to a state to produce its descendants. These design
patterns are clearly present in all algorithms; it is only at the level of
language syntax, semantics, and idioms that these implementations differ.

Pattern
Matching

Pattern matching is another support technology for AI programming that
spawns a number of useful design patterns. Approaches to pattern
matching can vary from checking for identical memory locations, to
comparing simple regular-expressions, to full pattern-based unification
across predicate calculus expressions, see Luger (2009, Section 2.3). Once
again, the differences in the way each language implements pattern
matching illustrate critical differences in their semantic structure and
associated idioms.

Prolog provides unification pattern matching directly in its interpreter:
unification and search on Predicate Calculus based data structures are the

Part I: Language Idioms and the Master Programmer

8

basis of Prolog semantics. Here, the question is not how to implement
pattern matching, but how to use it to control search, the flow of program
execution, and the use of variable bindings to construct problem solutions
as search progresses. In this sense, Prolog gives rise to its own very unique
language idioms.

Lisp, in contrast, requires that we implement unification pattern matching
ourselves. Using its basic symbolic computing capabilities, Lisp makes it
straightforward to match recursively the tree structures that implicitly
define predicate calculus expressions. Here, the main design problem
facing us is the management of variable bindings across the unification
algorithm. Because Lisp is so well suited to this type of implementation,
we can take its implementation of unification as a “reference
implementation” for understanding both Prolog semantics, and the Java
implementation of the same algorithm.

Unlike Lisp, which allows us to use nested s-expressions to define tree
structures, Java is a strongly typed language. Consequently, our Java
implementation will depend upon a number of user-created classes to
define expressions, constants, variables, and variable bindings. As with our
implementation of search, the differences between the Java and Lisp
implementations of pattern matching are interesting examples of the
differences between the two languages, their distinct idioms, and their
differing roles in AI programming.

Structured
Types and

Inheritance
(Frames)

Although the basic symbolic structures (lists, trees, etc.) supported by all
these languages are at the foundation of AI programming, a major focus of
AI work is on producing representations that reflect the way people think
about problems. This leads to more complex structures that reflect the
organization of taxonomies, similarity relationships, ontologies, and other
cognitive structures. One of the most important of these comes from
frame theory (Minsky 1975; Luger 2009, Section 7.1), and is based on
structured data types (collections of individual attributes combined in a
single object or frame), explicit relationships between objects, and the use of
class inheritance to capture hierarchical organizations of classes and their
attributes.

These representational principles have proved so effective for practical
knowledge representation that they formed the basis of object-oriented
programming: Smalltalk, the CommonLisp Object System libraries
(CLOS), C++, and Java. Just as Prolog bases its organization on predicate
calculus and search, and Lisp builds on (functional) operations on symbolic
structures, so Java builds directly on these ideas of structured
representation and inheritance.

This approach of object-oriented programming underlies a large number of
design patterns and their associated idioms (Gamma, et al. 1995; Coplein &
Schmidt 1995), as merited by the expressiveness of the approach. In this
book, we will often focus on the use of structured representations not
simply for design of program code, but also as a tool for knowledge
representation.

Meta-Linguistic
Abstraction

Meta-linguistic abstraction is one of the most powerful ways of organizing
programs to solve complex problems. In spite of its imposing title, the

 Chapter 1 Idioms, Patterns, and the Master programmer

9

idea behind meta-linguistic abstraction is straightforward: rather than trying
to write a solution to a hard problem in an existing programming language,
use that language to create another language that is better suited to solving
the problem. We have touched on this idea briefly in this introduction in
our mention of general search frameworks, and will develop it throughout
the book (e.g., Chapters 5, 15, 26).

One example of meta-linguistic abstraction that is central to AI is the idea
of an inference engine: a program that takes a declarative representation of
domain knowledge in the form of rules, frames or some other
representation, and applies that knowledge to problems using general
inference algorithms. The commonest example of an inference engine is
found in a rule-based expert system shell. We will develop such a shell,
EXSHELL in Prolog (Chapter 6), Lisp-shell in Lisp (Chapter 17), and an
equivalent system in Java (Chapter 26), providing similar semantics in all
three language environments. This will be a central focus of the book, and
will provide an in-depth comparison of the programming idioms supported
by each of these languages.

Knowledge-
Level Design

This discussion of AI design patterns and language idioms has proceeded
from simple features, such as basic, list-based symbol processing, to more
powerful AI techniques such as frame representations and expert system
shells. In doing so, we are adopting an organization parallel to the
theoretical discussion in Artificial Intelligence: Strategies and Structures for
Complex Problem Solving (Luger 2009). We are building a set of tools for
programming at what Allen Newell (1982) has called the knowledge level.

Figure 1.1 Levels of a Knowledge-Based System, adapted from Newell

(1982).

Allen Newell (1982) has distinguished between the knowledge level and the
symbol level in describing an intelligent system. As may be seen in Figure 1.1
(adapted from Newell, 1982), the symbol level is concerned with the
particular formalisms used to represent problem solving knowledge, for
example the predicate calculus. Above this symbol level is the knowledge
level concerned with the knowledge content of the program and the way in
which that knowledge is used.

The distinction between the symbol and knowledge level is reflected in the

Part I: Language Idioms and the Master Programmer

10

architectures of expert systems and other knowledge-based programs (see
Chapters 6, 15, and 25). Since the user will understand these programs in
terms of their knowledge content, these programs must preserve two
invariants: first, as just noted, there must be a knowledge-level
characterization, and second, there must be a clear distinction between this
knowledge and its control. We see this second invariant when we utilize the
production system design pattern in Chapters 6, 15, and 25. Knowledge level
concerns include questions such as: What queries will be made of the
system? What objects and/or relations are important in the domain? How
is new knowledge added to the system? Will information change over time?
How will the system need to reason about its knowledge? Does the
problem domain include missing or uncertain information?

The symbol level, just below the knowledge level, defines the knowledge
representation language, whether it be direct use of the predicate calculus
or production rules. At this level decisions are made about the structures
required to represent and organize knowledge. This separation from the
knowledge level allows the programmer to address such issues as
expressiveness, efficiency, and ease of programming, that are not relevant
to the programs higher level intent and behavior.

The implementation of the algorithm and data structure level constitutes a still
lower level of program organization, and defines an additional set of design
considerations. For instance, the behavior of a logic-based or function-
based program should be unaffected by the use of a hash table, heap, or
binary tree for implementing its symbol tables. These are implementation
decisions and invisible at higher levels. In fact, most of the techniques used
to implement representation languages for AI are common computer
science techniques, including binary trees and tables and an important
component of the knowledge-level design hypothesis is that they be hidden
from the programmer.

In thinking of knowledge level programming, we are defining a hierarchy
that uses basic programming language constructs to create more
sophisticated symbol processing languages, and uses these symbolic
languages to capture knowledge of complex problem domains. This is a
natural hierarchy that moves from machine models that reflect an
underlying computer architecture of variables, assignments and processes,
to a symbolic layer that works with more abstract ideas of symbolic
representation and inference. The knowledge level looks beyond symbolic
form to the semantics of problem solving domains and their associated
knowledge relationships.

The importance of this multi-level approach to system design cannot be
overemphasized: it allows a programmer to ignore the complexity hidden
at lower levels and focus on issues appropriate to the current level of
abstraction. It allows the theoretical foundations of artificial intelligence to
be kept free of the nuances of a particular implementation or programming
language. It allows us to modify an implementation, improving its
efficiency or porting it to another machine, without affecting its
specification and behavior at higher levels. But the AI programmer begins
addressing the problem-solving task from the programming language level.

 Chapter 1 Idioms, Patterns, and the Master programmer

11

In fact, we may characterize the programmer’s ability to use design patterns
and their associated idioms as her ability to bridge and link the algorithms
and data structures afforded by different language paradigms with the
symbol level in the process of building expressive knowledge-intensive
programs.

To a large extent, then, our goal in writing this book is to give the reader
the intellectual tools for programming at the knowledge level. Just as an
experienced musician thinks past the problems of articulating individual
notes and chords on their instrument to the challenges of harmonic and
rhythmic structure in a composition, or an architect looks beyond the
layout of floor plans to ways buildings will interact with their occupants
over time, we believe the goal of a programmer’s development is to think
of computer programs in terms of the knowledge they incorporate, and the
way they engage human beings in the patterns of their work,
communication and relationships. Becoming the “master programmer” we
mentioned earlier in this introduction requires the ability to think in terms
of the human activities a program will support, and simultaneously to
understand the many levels of abstraction, algorithms, and data structures
that lie between those activities and the comparatively barren structures of
the “raw” programming language

 1.3 A Brief History of Three Programming Paradigms

 We conclude this chapter by giving a brief description of the origins of the
three programming languages we present. We also give a cursory
description of the three paradigms these languages represent. These details
are precursors of and an introduction to the material presented in the next
three parts of this book.

Logic
Programming

in Prolog

Like Lisp, Prolog gains much of its power and elegance from its
foundations in mathematics. In the case of Prolog, those foundations are
predicate logic and resolution theorem proving. Of the three languages
presented in this book, Prolog may well seem unusual to most
programmers in that it is a declarative, rather than procedural, language. A
Prolog program is simply a statement, in first-order predicate calculus, of
the logical conditions a solution to a problem must satisfy. The declarative
semantics do not tell the computer what to do, only the conditions a
solution must satisfy. Execution of a Prolog program relies on search to
find a set of variable bindings that satisfy the conditions stated in the
particular goals required by the program. This declarative semantics makes
Prolog extremely powerful for a large class of problems that are of
particular interest to AI. These include constraint satisfaction problems,
natural language parsing, and many search problems, as will be
demonstrated in Part II.

A logic program is a set of specifications in formal logic; Prolog uses the
first-order predicate calculus. Indeed, the name itself comes from
programming in logic. An interpreter executes the program by
systematically making inferences from logic specifications. The idea of
using the representational power of the first-order predicate calculus to
express specifications for problem solving is one of the central

Part I: Language Idioms and the Master Programmer

12

contributions Prolog has made to computer science in general and to
artificial intelligence in particular. The benefits of using first-order
predicate calculus for a programming language include a clean and elegant
syntax and a well-defined semantics.

The implementation of Prolog has its roots in research on theorem proving
by J.A. Robinson (Robinson 1965), especially the creation of algorithms for
resolution refutation systems. Robinson designed a proof procedure called
resolution, which is the primary method for computing with Prolog. For a
more complete description of resolution refutation systems and of Prolog
as Horn clause refutation, see Luger (2009, Chapter 14).

Because of these features, Prolog has proved to be a useful vehicle for
investigating such experimental programming issues as automatic code
generation, program verification, and design of high-level specification
languages. As noted above, Prolog and other logic-based languages support
a declarative programming style—that is, constructing a program in terms
of high-level descriptions of a problem’s constraints—rather than a
procedural programming style—writing programs as a sequence of
instructions for performing an algorithm. This mode of programming
essentially tells the computer “what is true” and “what needs to be proven
(the goals)” rather than “how to do it.” This allows programmers to focus
on problem solving as creating sets of specifications for a domain rather
than the details of writing low-level algorithmic instructions for “what to
do next.”

The first Prolog program was written in Marseille, France, in the early
1970s as part of a project in natural language understanding (Colmerauer,
Kanoui et al. 1973, Roussel 1975, Kowalski 1979). The theoretical
background for the language is discussed in the work of Kowalski, Hayes,
and others (Hayes 1977, Kowalski 1979, Kowalski 1979, Lloyd 1984). The
major development of the Prolog language was carried out from 1975 to
1979 at the Department of Artificial Intelligence of the University of
Edinburgh. The people at Edinburgh responsible for the first “road
worthy” implementation of Prolog were David H.D. Warren and Fernando
Pereira. They produced the first Prolog interpreter robust enough for
delivery to the general computing community. This product was built using
the “C” language on the DEC-system 10 and could operate in both
interpretive and compiled modes (Warren, Pereira, et al. 1979).

Further descriptions of this early code and comparisons of Prolog with
Lisp may be found in Warren et al. (Warren, Pereira, et al. 1977). This
“Warren and Pereira” Prolog became the early standard. The book
Programming in Prolog (Clocksin and Mellish 1984, now in its fifth edition)
was created by two other researchers at the Department of Artificial
Intelligence, Bill Clocksin and Chris Mellish. This book quickly became the
chief vehicle for delivering Prolog to the computing community. We use
this standard, which has come to be known as Edinburgh Prolog. In fact,
all the Prolog code in this book may be run on the public domain
interpreter SWI-Prolog (to find, Google on swi-prolog).

Functional
Programming

in Lisp

Lisp was arguably the first programming language to ground its semantics
in mathematical theory: the theory of partial recursive functions (McCarthy

 Chapter 1 Idioms, Patterns, and the Master programmer

13

1960, Church 1941). In contrast to most of its contemporaries, which
essentially presented the architecture of the underlying computer in a
higher-level form, this mathematical grounding has given Lisp unusual
power, durability and influence. Ideas such as list-based data structures,
functional programming, and dynamic binding, which are now accepted
features of mainstream programming languages can trace their origins to
earlier work in Lisp. Meta-circular definition, in which compilers and
interpreters for a language are written in a core version of the language
itself, was the basis of the first, and subsequent Lisp implementations. This
approach, still revolutionary after more than fifty years, replaces
cumbersome language specifications with an elegant, formal, public,
testable meta-language kernel that supports the continued growth and
refinement of the language.

Lisp was first proposed by John McCarthy in the late 1950s. The language
was originally intended as an alternative model of computation based on
the theory of recursive functions. In an early paper, McCarthy (McCarthy
1960) outlined his goals: to create a language for symbolic rather than
numeric computation, to implement a model of computation based on the
theory of recursive functions (Church 1941), to provide a clear definition
of the language’s syntax and semantics, and to demonstrate formally the
completeness of this computational model. Although Lisp is one of the
oldest computing languages still in active use (along with FORTRAN and
COBOL), the careful thought given to its original design and the
extensions made to the language through its history have kept it in the
vanguard of programming languages. In fact, this programming model has
proved so effective that a number of other languages have been based on
functional programming, including SCHEME, SML-NJ, FP, and OCAML.
In fact, several of these newer languages, e.g., SCHEME and SML-NJ,
have been designed specifically to reclaim the semantic clarity of the earlier
versions of Lisp.

The list is the basis of both programs and data structures in Lisp: Lisp is an
acronym for list processing. Lisp provides a powerful set of list-handling
functions implemented internally as linked pointer structures. Lisp gives
programmers the full power and generality of linked data structures while
freeing them, with real-time garbage collection, from the responsibility for
explicitly managing pointers and pointer operations.

Originally, Lisp was a compact language, consisting of functions for
constructing and accessing lists (car, cdr, cons), defining new functions
(defun), detecting equality (eq), and evaluating expressions (quote,
eval). The only means for building program control were recursion and a
single conditional. More complicated functions, when needed, were
defined in terms of these primitives. Through time, the best of these new
functions became part of the language itself. This process of extending the
language by adding new functions led to the development of numerous
dialects of Lisp, often including hundreds of specialized functions for data
structuring, program control, real and integer arithmetic, input/output
(I/O), editing Lisp functions, and tracing program execution. These
dialects are the vehicle by which Lisp has evolved from a simple and
elegant theoretical model of computing into a rich, powerful, and practical

Part I: Language Idioms and the Master Programmer

14

environment for building large software systems. Because of the
proliferation of early Lisp dialects, the Defense Advanced Research
Projects Agency in 1983 proposed a standard dialect for the language,
known as Common Lisp.

Although Common Lisp has emerged as the lingua franca of Lisp dialects,
a number of simpler dialects continue to be widely used. One of the most
important of these is SCHEME, an elegant rethinking of the language that
has been used both for AI development and for teaching the fundamental
concepts of computer science. The dialect we use throughout the
remainder of our book is Common Lisp. All our code may be run on a
current public domain interpreter built by Carnegie Mellon University,
called CMUCL (Google CMUCL).

Object-
Oriented

Programming
in Java

Java is the third language considered in this book. Although it does not
have Lisp or Prolog’s long historical association with Artificial Intelligence,
it has become extremely important as a tool for delivering practical AI
applications. There are two primary reasons for this. The first is Java’s
elegant, dynamic implementation of object-oriented programming, a
programming paradigm with its roots in AI, that has proven its power for
use building AI programs through Smalltalk, Flavors, the Common Lisp
Object System (CLOS), and other object-oriented systems. The second
reason for Java’s importance to AI is that it has emerged as a primary
language for delivering tools and content over the world-wide-web. Java’s
ease of programming and the large amounts of reusable code available to
programmers greatly simplify the coding of complex programs involving
AI techniques. We demonstrate this in the final chapters of Part IV.

Object-oriented programming is based on the idea that programs can be
best modularized in terms of objects: encapsulated structures of data and
functionality that can be referenced and manipulated as a unit. The power
of this programming model is enhanced by inheritance, or the ability to
define sub-classes of more general objects that inherit and modify their
functionality, and the subtle control object-oriented languages provide over
the scoping of variables and functions alike.

The first language to build object-oriented representations was created in
Norway in the 1960s. Simula-67 was, appropriately, a simulation language.
Simulation is a natural application of object-oriented programming that
language objects are used to represent objects in the domain being
simulated. Indeed, this ability to easily define isomorphisms between the
representations in an object-oriented program and a simulation domain has
carried over into modern object-oriented programming style, where
programmers are encouraged to model domain objects and their
interactions directly in their code.

Perhaps the most elegant formulation of the object-oriented model is in
the Smalltalk programming language, built at Xerox PARC in the early
1970s. Smalltalk not only presented a very pure form of object-oriented
programming, but also used it as a tool for graphics programming. Many of
the ideas now central to graphics interfaces, such as manipulable screen
objects, event driven interaction, and so on, found their early
implementation in the Smalltalk language. Other, later implementations of

 Chapter 1 Idioms, Patterns, and the Master programmer

15

object-programming include C++, Objective C, C#, and the Common
Lisp Object System. The success of the model has made it rare to find a
programming language that does not incorporate at least some object-
oriented ideas.

Our first introduction of object-oriented languages is with the Common
Lisp Object System in Chapter 18 of Part III. However, in Part IV, we
have chosen Java to present the use of object-oriented tools for AI
programming. Java offers an elegant implementation of object-orientation
that implements single inheritance, dynamic binding, interface definitions,
packages, and other object concepts in a language syntax that most
programmers will find natural. Java is also widely supported and
documented.

The primary reason, however, for including Java in this book is its great
success as a practical programming language for a large number and variety
of applications, most notably those on the world-wide-web. One of the
great benefits of object-oriented programming languages is that the ability
to define objects combining data and related methods in a single structure
encourages the development of reusable software objects.

Although Java is, at its core, a relatively simple language, the efforts of
thousands of programmers have led to large amounts of high-quality, often
open source, Java code. This includes code for networking, graphics,
processing html and XML, security, and other techniques for programming
on the world-wide-web. We will examine a number of public domain Java
tools for AI, such as expert system rule engines, machine learning
algorithms, and natural language parsers. In addition, the modularity and
control of the object-oriented model supports the development of large
programs. This has led to the embedding of AI techniques in larger and
indeed more ordinary programs. We see Java as an essential language for
delivering AI in practical contexts, and will discuss the Java language in this
context. In this book we refer primarily to public domain interpreters most
of which are easily web accessible.

 1.4 A Summary of Our Task

 We hope that in reading this introductory chapter, you have come to see
that our goal in writing this book is not simply to present basic
implementation strategies for major Artificial Intelligence algorithms.
Rather, our goal is to look at programming languages as tools for the
intellectual activities of design, knowledge modeling, and system
development.

Computer programming has long been the focus both for scientific theory
and engineering practice. These disciplines have given us powerful tools
for the definition and analysis of algorithms and for the practical
management of large and small programming projects. In writing this
book, it has been our overarching goal to provide a third perspective on
programming languages: as tools for the art of designing systems to
support people in their thinking, communication, and work.

It is in this third perspective that the ideas of idioms and patterns become

Part I: Language Idioms and the Master Programmer

16

important. It is not our goal simply to present examples of artificial
intelligence algorithms that can be reused in a narrow range of situations.
Our goal is to use these algorithms – with all their complexity and
challenges – to help programmers build a repertoire of patterns and idioms
that can serve well across a wide range of practical problem solving
situations. The examples of this book are not ends in themselves; they are
only small steps in the maturation of the master programmer. Our goal is
to see them as starting points for developing programmers’ skills. We hope
you will share our enthusiasm for these remarkable artist’s tools and the
design patterns and idioms they both enable and support.

