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Objectives 
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 1.1 Introduction 

Idioms and 
Patterns 

As with any craft, programming contains an undeniable element of 
experience. We achieve mastery through long practice in solving the 
problems that inevitably arise in trying to apply technology to actual 
problem situations. In writing a book that examines the implementation of 
major AI algorithms in a trio of languages, we hope to support the reader’s 
own experience, much as a book of musical etudes helps a young musician 
with their own exploration and development. 

As important as computational theory, tools, and experience are to a 
programmer’s growth, there is another kind of knowledge that they only 
suggest. This knowledge comes in the form of pattern languages and 
idioms, and it forms a major focus of this book. The idea of pattern 
languages originated in architecture (Alexander et al. 1977) as a way of 
formalizing the knowledge an architect brings to the design of buildings 
and cities that will both support and enhance the lives of their residents.  In 
recent years, the idea of pattern languages has swept the literature on 
software design (Gamma, et al. 1995; Coplein & Schmidt 1995; Evans 
2003), as a way of capturing a master’s knowledge of good, robust program 
structure.  

A design pattern describes a typical design problem, and outlines an 
approach to its solution. A pattern language consists of a collection of 
related design patterns. In the book that first proposed the use of pattern 
languages in architecture, Christopher Alexander et al. (1977, page x) state 
that a pattern 

describes a problem which occurs over and over again in our environment, and 
then describes the core of the solution to that problem, in such a way that you 
can use this solution a million times over, without ever doing it the same way 
twice. 

Design patterns capture and communicate a form of knowledge that is 
essential to creating computer programs that users will embrace, and that 
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programmers will find to be elegant, logical, and maintainable. They 
address programming and languages, not in terms of Turing completeness, 
language paradigms, compiler semantics, or any of the other qualities that 
constitute the core of computer science, but rather as tools for practical 
problem solving. To a large extent, you can think of this book as 
presenting a pattern language of the core problems of AI programming, 
and examples – the patterns – of their solution. 

Idioms are a form and structure for knowledge that helps us bridge the 
differences between patterns as abstract descriptions of a problem and its 
solutions and an understanding of how best to implement that solution in a 
given programming language. A language idiom is the expression of a 
design pattern in a given language.  In this sense, design patterns + idioms = 
quality programs. 

Sample Design 
Patterns 

Consider, for example, the simple, widely used design pattern that we can 
call map that applies some operator O to every element of a list L.  We can 
express this pattern in a pseudo code function as follows: 

map(operator O, list L) 

{ 

 if (L contains no elements) quit; 

 h  the first element of L. 

 apply O to h; 

 map(O, L minus h); 

} 

This map function produces a stream of results: O applied to each element 
of the list L. As our definition of pattern specifies, this describes a solution 
to a recurring problem, and also fosters unlimited variations, depending on 
the type of the elements that make up the list L, and the nature of the 
operator, O. 

Now, let us consider a fragment of Lisp code that implements this same 
map pattern, where f is the mapped operator (in Lisp a function) and 
list is the list: 

(defun map (f list) 

 (cond ((null list) nil) 

  (t (cons (apply f (car list)) 

      (map f (cdr list))))))   

This function map, created by using the built-in Lisp defun function, not 
only implements the map pattern, but also illustrates elements of the Lisp 
programming idiom. These include the use of the operators car and cdr to 
separate the list into its head and tail, the use of the cons operator to place 
the results into a new list, and also the use of recursion to move down the 
list.  Indeed, this idiom of recursively working through a list is so central to 
Lisp, that compiler writers are expected to optimize this sort of tail 
recursive structure into a more efficient iterative implementation. 

Let us now compare the Lisp map to a Java implementation that 
demonstrates how idioms vary across languages: 
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public Vector map(Vector l) 

{ 

 Vector result = new Vector(); 

 Iterator iter = l.iterator(); 

 while(iter.hasNext()) 

 { 

  result.add(f(iter.next)); 

 } 

 return result; 

} 

The most striking difference between the Java version and the Lisp version 
is that the Java version is iterative. We could have written our list search in 
a recursive form (Java supports recursion, and compilers should optimize it 
where possible), but Java also offers us iterators for moving through lists. 
Since the authors of Java provide us with list iterators, and we can assume 
they are implemented efficiently, it makes sense to use them. The Java 
idiom differs from the Lisp idiom accordingly.  

Furthermore, the Java version of map creates the new variable, result. 
When the iterator completes its task, result will be a vector of 
elements, each the result of applying f to each element of the input list 
(vector). Finally, result must be explicitly returned to the external 
environment. In Lisp, however, the resulting list of mapped elements is the 
result of invoking the function map (because it is returned as a direct 
result of evaluating the map function). 

Finally, we present a Prolog version of map. Of course in Prolog, map will 
be a represented as a predicate. This predicate has three arguments, the 
first the function, f, which will be applied to every element of the list that 
is the second argument of the predicate. The third argument of the 
predicate map is the list resulting from applying f to each element of the 
second argument. The pattern [X|Y] is the Prolog list representation, 
where X is the head of the list (car in Lisp) and Y is the list that is the rest 
of the list (cdr in Lisp). The is operator binds the result of f applied to 
H to the variable NH. As with Lisp, the map relationship is defined 
recursively, although no tail recursive optimization is possible in this case. 
Further clarifications of this Prolog specification are presented in Part II. 

map(f, [ ], [ ]). 

map(f, [H|T], [NH|NT]):-  

    NH is f(H), map(f, T, NT). 

In the three examples above we see a very simple example of a pattern 
having different idioms in each language, the eval&assign pattern. This 
pattern evaluates some expression and assigns the result to a variable. In 
Java, as we saw above, = simply assigns the evaluated expression on its 
right-hand-side to the variable on its left. In Lisp this same activity requires 
the cons of an apply of f to an element of the list. The resulting 
symbol expression is then simply returned as part of the evaluated function 
map. In Prolog, using the predicate representation, there are similar 
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differences between assignment (based on unification with patterns such as 
[H|T] and =) and evaluation (using is or making f be a goal). 

Understanding and utilizing these idioms is an essential aspect of mastering 
a programming language, in that they represent expected ways the language 
will be used. This not only allows programmers more easily to understand, 
maintain, and extend each other’s code, but also allows us to remain 
consistent with the language designer’s assumptions and implementation 
choices. 

 1.2 Selected Examples of AI Language Idioms 

 We can think of this book, then, as presenting some of the most important 
patterns supporting Artificial Intelligence programming, and demonstrating 
their implementation in the appropriate idioms of three major languages. 
Although most of these patterns were introduced in this book’s companion 
volume, Artificial Intelligence: Structures and Strategies for Complex Problem Solving 
(Luger 2009), it is worthwhile to summarize a subset of them briefly in this 
introduction. 

Symbolic 
Computing:  

The Issue of 
Representation 

Artificial Intelligence rests on two basic ideas: first, representation or the use 
of symbol structures to represent problem solving knowledge (state), and 
second, search, the systematic consideration of sequences of operations on 
these knowledge structures to solve complex problems. Symbolic 
computing embraces a family of patterns for representing state and then 
manipulating these (symbol) structures, as opposed to only performing 
arithmetic calculations on states. Symbolic computing methods are the 
foundation of artificial intelligence: in a sense, everything in this book rests 
upon them.  The recursive list-handling algorithm described above is a 
fundamental symbolic computing pattern, as are the basic patterns for tree 
and graph manipulation. Lisp was developed expressly as a language for 
symbolic computing, and its s-expression representation (see Chapter 11) 
has proved general, powerful and long-lived. 

As we develop the examples of this book, pay close attention to how these 
simple patterns of list, tree, and graph manipulation combine to form the 
more complex, problem specific patterns described below. 

Search Search in AI is also fundamental and complementary to representation (as 
is emphasized throughout our book. Prolog, in fact, incorporates a form of 
search directly into its language semantics. In addition to forming a 
foundation of AI, search introduces many of its thorniest problems. In 
most interesting problems, search spaces tend to be intractable, and much 
of AI theory examines the use of heuristics to control this complexity. As 
has been pointed out from the very beginnings of AI (Feigenbaum and 
Feldman 1963, Newell and Simon 1976) support of intelligent search 
places the greatest demands on AI programming. 

Search related design patterns and problems we will examine in this book 
include implementations of the basic search algorithms (breadth-first, 
depth-first, and best-first), management of search history, and the recovery 
of solution paths with the use of those histories.   

A particularly interesting search related problem is in the representation 
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and generation of problem states.  Conceptually, AI search algorithms are 
general: they can apply to any search space. Consequently, we will define 
general, reusable search “frameworks” that can be applied to a range of 
problem representations and operations for generating new states.  How 
the different programming paradigms address this issue is illuminating in 
terms of their language-based idioms. 

Lisp makes no syntactic distinction between functions and data structures: 
both can be represented as symbol expressions (see s-expression, Chapter 
11), and both can be handled identically as Lisp objects. In addition, Lisp 
does not enforce strong typing on s-expressions. These two properties of 
the language allow us to define a general search algorithm that takes as 
parameters the starting problem state, and a list of Lisp functions, often 
using the map design pattern described earlier, for producing child states. 

Prolog includes a list representation that is very similar to lists in Lisp, but 
differs in having built-in search and pattern matching in a language 
supporting direct representation of predicate calculus rules.  Implementing 
a generalized search framework in Prolog builds on this language’s unique 
idioms. We define the operators for generating states as rules, using pattern 
matching to determine when these rules apply. Prolog offers explicit meta-
level controls that allow us to direct the pattern matching, and control its 
built-in search. 

Java presents its own unique idioms for generalizing search. Although Java 
provides a “reflection” package that allows us to manipulate its objects, 
methods, and their parameters directly, this is not as simple to do as in Lisp 
or Prolog.  Instead, we will use Java interface definitions to specify the 
methods a state object must have at a general level, and define search 
algorithms that take as states instances of any class that instantiates the 
appropriate interface (see Chapters 22-24). 

These three approaches to implementing search are powerful lessons in the 
differences in language idioms, and the way they relate to a common set of 
design patterns. Although each language implements search in a unique 
manner, the basic search algorithms (breadth-, depth-, or best-first) behave 
identically in each.  Similarly, each search algorithm involves a number of 
design patterns, including the management of problem states on a list, the 
ordering of the state list to control search, and the application of state-
transition operators to a state to produce its descendants. These design 
patterns are clearly present in all algorithms; it is only at the level of 
language syntax, semantics, and idioms that these implementations differ. 

Pattern 
Matching 

Pattern matching is another support technology for AI programming that 
spawns a number of useful design patterns. Approaches to pattern 
matching can vary from checking for identical memory locations, to 
comparing simple regular-expressions, to full pattern-based unification 
across predicate calculus expressions, see Luger (2009, Section 2.3).  Once 
again, the differences in the way each language implements pattern 
matching illustrate critical differences in their semantic structure and 
associated idioms. 

Prolog provides unification pattern matching directly in its interpreter: 
unification and search on Predicate Calculus based data structures are the 
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basis of Prolog semantics. Here, the question is not how to implement 
pattern matching, but how to use it to control search, the flow of program 
execution, and the use of variable bindings to construct problem solutions 
as search progresses.  In this sense, Prolog gives rise to its own very unique 
language idioms. 

Lisp, in contrast, requires that we implement unification pattern matching 
ourselves.  Using its basic symbolic computing capabilities, Lisp makes it 
straightforward to match recursively the tree structures that implicitly 
define predicate calculus expressions. Here, the main design problem 
facing us is the management of variable bindings across the unification 
algorithm.  Because Lisp is so well suited to this type of implementation, 
we can take its implementation of unification as a “reference 
implementation” for understanding both Prolog semantics, and the Java 
implementation of the same algorithm. 

Unlike Lisp, which allows us to use nested s-expressions to define tree 
structures, Java is a strongly typed language. Consequently, our Java 
implementation will depend upon a number of user-created classes to 
define expressions, constants, variables, and variable bindings.  As with our 
implementation of search, the differences between the Java and Lisp 
implementations of pattern matching are interesting examples of the 
differences between the two languages, their distinct idioms, and their 
differing roles in AI programming. 

Structured 
Types and 

Inheritance 
(Frames) 

Although the basic symbolic structures (lists, trees, etc.) supported by all 
these languages are at the foundation of AI programming, a major focus of 
AI work is on producing representations that reflect the way people think 
about problems.  This leads to more complex structures that reflect the 
organization of taxonomies, similarity relationships, ontologies, and other 
cognitive structures.  One of the most important of these comes from 
frame theory (Minsky 1975; Luger 2009, Section 7.1), and is based on 
structured data types (collections of individual attributes combined in a 
single object or frame), explicit relationships between objects, and the use of 
class inheritance to capture hierarchical organizations of classes and their 
attributes. 

These representational principles have proved so effective for practical 
knowledge representation that they formed the basis of object-oriented 
programming: Smalltalk, the CommonLisp Object System libraries 
(CLOS), C++, and Java. Just as Prolog bases its organization on predicate 
calculus and search, and Lisp builds on (functional) operations on symbolic 
structures, so Java builds directly on these ideas of structured 
representation and inheritance. 

This approach of object-oriented programming underlies a large number of 
design patterns and their associated idioms (Gamma, et al. 1995; Coplein & 
Schmidt 1995), as merited by the expressiveness of the approach.  In this 
book, we will often focus on the use of structured representations not 
simply for design of program code, but also as a tool for knowledge 
representation. 

Meta-Linguistic 
Abstraction 

Meta-linguistic abstraction is one of the most powerful ways of organizing 
programs to solve complex problems.  In spite of its imposing title, the 
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idea behind meta-linguistic abstraction is straightforward: rather than trying 
to write a solution to a hard problem in an existing programming language, 
use that language to create another language that is better suited to solving 
the problem.  We have touched on this idea briefly in this introduction in 
our mention of general search frameworks, and will develop it throughout 
the book (e.g., Chapters 5, 15, 26). 

One example of meta-linguistic abstraction that is central to AI is the idea 
of an inference engine: a program that takes a declarative representation of 
domain knowledge in the form of rules, frames or some other 
representation, and applies that knowledge to problems using general 
inference algorithms.  The commonest example of an inference engine is 
found in a rule-based expert system shell.  We will develop such a shell, 
EXSHELL in Prolog (Chapter 6), Lisp-shell in Lisp (Chapter 17), and an 
equivalent system in Java (Chapter 26), providing similar semantics in all 
three language environments. This will be a central focus of the book, and 
will provide an in-depth comparison of the programming idioms supported 
by each of these languages. 

Knowledge-
Level Design 

This discussion of AI design patterns and language idioms has proceeded 
from simple features, such as basic, list-based symbol processing, to more 
powerful AI techniques such as frame representations and expert system 
shells.  In doing so, we are adopting an organization parallel to the 
theoretical discussion in Artificial Intelligence: Strategies and Structures for 
Complex Problem Solving (Luger 2009). We are building a set of tools for 
programming at what Allen Newell (1982) has called the knowledge level. 

 

 
Figure 1.1 Levels of a Knowledge-Based System, adapted from Newell 

(1982). 

Allen Newell (1982) has distinguished between the knowledge level and the 
symbol level in describing an intelligent system. As may be seen in Figure 1.1 
(adapted from Newell, 1982), the symbol level is concerned with the 
particular formalisms used to represent problem solving knowledge, for 
example the predicate calculus. Above this symbol level is the knowledge 
level concerned with the knowledge content of the program and the way in 
which that knowledge is used. 

The distinction between the symbol and knowledge level is reflected in the 
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architectures of expert systems and other knowledge-based programs (see 
Chapters 6, 15, and 25). Since the user will understand these programs in 
terms of their knowledge content, these programs must preserve two 
invariants: first, as just noted, there must be a knowledge-level 
characterization, and second, there must be a clear distinction between this 
knowledge and its control. We see this second invariant when we utilize the 
production system design pattern in Chapters 6, 15, and 25. Knowledge level 
concerns include questions such as: What queries will be made of the 
system? What objects and/or relations are important in the domain? How 
is new knowledge added to the system? Will information change over time? 
How will the system need to reason about its knowledge? Does the 
problem domain include missing or uncertain information? 

The symbol level, just below the knowledge level, defines the knowledge 
representation language, whether it be direct use of the predicate calculus 
or production rules. At this level decisions are made about the structures 
required to represent and organize knowledge. This separation from the 
knowledge level allows the programmer to address such issues as 
expressiveness, efficiency, and ease of programming, that are not relevant 
to the programs higher level intent and behavior.  

The implementation of the algorithm and data structure level constitutes a still 
lower level of program organization, and defines an additional set of design 
considerations. For instance, the behavior of a logic-based or function-
based program should be unaffected by the use of a hash table, heap, or 
binary tree for implementing its symbol tables. These are implementation 
decisions and invisible at higher levels. In fact, most of the techniques used 
to implement representation languages for AI are common computer 
science techniques, including binary trees and tables and an important 
component of the knowledge-level design hypothesis is that they be hidden 
from the programmer. 

In thinking of knowledge level programming, we are defining a hierarchy 
that uses basic programming language constructs to create more 
sophisticated symbol processing languages, and uses these symbolic 
languages to capture knowledge of complex problem domains.  This is a 
natural hierarchy that moves from machine models that reflect an 
underlying computer architecture of variables, assignments and processes, 
to a symbolic layer that works with more abstract ideas of symbolic 
representation and inference.  The knowledge level looks beyond symbolic 
form to the semantics of problem solving domains and their associated 
knowledge relationships. 

The importance of this multi-level approach to system design cannot be 
overemphasized: it allows a programmer to ignore the complexity hidden 
at lower levels and focus on issues appropriate to the current level of 
abstraction. It allows the theoretical foundations of artificial intelligence to 
be kept free of the nuances of a particular implementation or programming 
language. It allows us to modify an implementation, improving its 
efficiency or porting it to another machine, without affecting its 
specification and behavior at higher levels. But the AI programmer begins 
addressing the problem-solving task from the programming language level. 
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In fact, we may characterize the programmer’s ability to use design patterns 
and their associated idioms as her ability to bridge and link the algorithms 
and data structures afforded by different language paradigms with the 
symbol level in the process of building expressive knowledge-intensive 
programs. 

To a large extent, then, our goal in writing this book is to give the reader 
the intellectual tools for programming at the knowledge level.  Just as an 
experienced musician thinks past the problems of articulating individual 
notes and chords on their instrument to the challenges of harmonic and 
rhythmic structure in a composition, or an architect looks beyond the 
layout of floor plans to ways buildings will interact with their occupants 
over time, we believe the goal of a programmer’s development is to think 
of computer programs in terms of the knowledge they incorporate, and the 
way they engage human beings in the patterns of their work, 
communication and relationships. Becoming the “master programmer” we 
mentioned earlier in this introduction requires the ability to think in terms 
of the human activities a program will support, and simultaneously to 
understand the many levels of abstraction, algorithms, and data structures 
that lie between those activities and the comparatively barren structures of 
the “raw” programming language 

 1.3   A Brief History of Three Programming Paradigms 

 We conclude this chapter by giving a brief description of the origins of the 
three programming languages we present. We also give a cursory 
description of the three paradigms these languages represent. These details 
are precursors of and an introduction to the material presented in the next 
three parts of this book. 

Logic 
Programming 

in Prolog 

Like Lisp, Prolog gains much of its power and elegance from its 
foundations in mathematics.  In the case of Prolog, those foundations are 
predicate logic and resolution theorem proving.  Of the three languages 
presented in this book, Prolog may well seem unusual to most 
programmers in that it is a declarative, rather than procedural, language. A 
Prolog program is simply a statement, in first-order predicate calculus, of 
the logical conditions a solution to a problem must satisfy. The declarative 
semantics do not tell the computer what to do, only the conditions a 
solution must satisfy. Execution of a Prolog program relies on search to 
find a set of variable bindings that satisfy the conditions stated in the 
particular goals required by the program. This declarative semantics makes 
Prolog extremely powerful for a large class of problems that are of 
particular interest to AI.  These include constraint satisfaction problems, 
natural language parsing, and many search problems, as will be 
demonstrated in Part II. 

A logic program is a set of specifications in formal logic; Prolog uses the 
first-order predicate calculus. Indeed, the name itself comes from 
programming in logic. An interpreter executes the program by 
systematically making inferences from logic specifications. The idea of 
using the representational power of the first-order predicate calculus to 
express specifications for problem solving is one of the central 
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contributions Prolog has made to computer science in general and to 
artificial intelligence in particular. The benefits of using first-order 
predicate calculus for a programming language include a clean and elegant 
syntax and a well-defined semantics.  

The implementation of Prolog has its roots in research on theorem proving 
by J.A. Robinson (Robinson 1965), especially the creation of algorithms for 
resolution refutation systems. Robinson designed a proof procedure called 
resolution, which is the primary method for computing with Prolog. For a 
more complete description of resolution refutation systems and of Prolog 
as Horn clause refutation, see Luger (2009, Chapter 14). 

Because of these features, Prolog has proved to be a useful vehicle for 
investigating such experimental programming issues as automatic code 
generation, program verification, and design of high-level specification 
languages. As noted above, Prolog and other logic-based languages support 
a declarative programming style—that is, constructing a program in terms 
of high-level descriptions of a problem’s constraints—rather than a 
procedural programming style—writing programs as a sequence of 
instructions for performing an algorithm. This mode of programming 
essentially tells the computer “what is true” and “what needs to be proven 
(the goals)” rather than “how to do it.” This allows programmers to focus 
on problem solving as creating sets of specifications for a domain rather 
than the details of writing low-level algorithmic instructions for “what to 
do next.”  

The first Prolog program was written in Marseille, France, in the early 
1970s as part of a project in natural language understanding (Colmerauer, 
Kanoui et al. 1973, Roussel 1975, Kowalski 1979). The theoretical 
background for the language is discussed in the work of Kowalski, Hayes, 
and others (Hayes 1977, Kowalski 1979, Kowalski 1979, Lloyd 1984). The 
major development of the Prolog language was carried out from 1975 to 
1979 at the Department of Artificial Intelligence of the University of 
Edinburgh. The people at Edinburgh responsible for the first “road 
worthy” implementation of Prolog were David H.D. Warren and Fernando 
Pereira. They produced the first Prolog interpreter robust enough for 
delivery to the general computing community. This product was built using 
the “C” language on the DEC-system 10 and could operate in both 
interpretive and compiled modes (Warren, Pereira, et al. 1979).  

Further descriptions of this early code and comparisons of Prolog with 
Lisp may be found in Warren et al. (Warren, Pereira, et al. 1977). This 
“Warren and Pereira” Prolog became the early standard. The book 
Programming in Prolog (Clocksin and Mellish 1984, now in its fifth edition) 
was created by two other researchers at the Department of Artificial 
Intelligence, Bill Clocksin and Chris Mellish. This book quickly became the 
chief vehicle for delivering Prolog to the computing community. We use 
this standard, which has come to be known as Edinburgh Prolog. In fact, 
all the Prolog code in this book may be run on the public domain 
interpreter SWI-Prolog (to find, Google on swi-prolog). 

Functional 
Programming 

in Lisp 

Lisp was arguably the first programming language to ground its semantics 
in mathematical theory: the theory of partial recursive functions (McCarthy 
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1960, Church 1941). In contrast to most of its contemporaries, which 
essentially presented the architecture of the underlying computer in a 
higher-level form, this mathematical grounding has given Lisp unusual 
power, durability and influence. Ideas such as list-based data structures, 
functional programming, and dynamic binding, which are now accepted 
features of mainstream programming languages can trace their origins to 
earlier work in Lisp. Meta-circular definition, in which compilers and 
interpreters for a language are written in a core version of the language 
itself, was the basis of the first, and subsequent Lisp implementations. This 
approach, still revolutionary after more than fifty years, replaces 
cumbersome language specifications with an elegant, formal, public, 
testable meta-language kernel that supports the continued growth and 
refinement of the language.  

Lisp was first proposed by John McCarthy in the late 1950s. The language 
was originally intended as an alternative model of computation based on 
the theory of recursive functions. In an early paper, McCarthy (McCarthy 
1960) outlined his goals: to create a language for symbolic rather than 
numeric computation, to implement a model of computation based on the 
theory of recursive functions (Church 1941), to provide a clear definition 
of the language’s syntax and semantics, and to demonstrate formally the 
completeness of this computational model. Although Lisp is one of the 
oldest computing languages still in active use (along with FORTRAN and 
COBOL), the careful thought given to its original design and the 
extensions made to the language through its history have kept it in the 
vanguard of programming languages. In fact, this programming model has 
proved so effective that a number of other languages have been based on 
functional programming, including SCHEME, SML-NJ, FP, and OCAML. 
In fact, several of these newer languages, e.g., SCHEME and SML-NJ, 
have been designed specifically to reclaim the semantic clarity of the earlier 
versions of Lisp. 

The list is the basis of both programs and data structures in Lisp: Lisp is an 
acronym for list processing. Lisp provides a powerful set of list-handling 
functions implemented internally as linked pointer structures. Lisp gives 
programmers the full power and generality of linked data structures while 
freeing them, with real-time garbage collection, from the responsibility for 
explicitly managing pointers and pointer operations.  

Originally, Lisp was a compact language, consisting of functions for 
constructing and accessing lists (car, cdr, cons), defining new functions 
(defun), detecting equality (eq), and evaluating expressions (quote, 
eval). The only means for building program control were recursion and a 
single conditional. More complicated functions, when needed, were 
defined in terms of these primitives. Through time, the best of these new 
functions became part of the language itself. This process of extending the 
language by adding new functions led to the development of numerous 
dialects of Lisp, often including hundreds of specialized functions for data 
structuring, program control, real and integer arithmetic, input/output 
(I/O), editing Lisp functions, and tracing program execution. These 
dialects are the vehicle by which Lisp has evolved from a simple and 
elegant theoretical model of computing into a rich, powerful, and practical 
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environment for building large software systems. Because of the 
proliferation of early Lisp dialects, the Defense Advanced Research 
Projects Agency in 1983 proposed a standard dialect for the language, 
known as Common Lisp.  

Although Common Lisp has emerged as the lingua franca of Lisp dialects, 
a number of simpler dialects continue to be widely used. One of the most 
important of these is SCHEME, an elegant rethinking of the language that 
has been used both for AI development and for teaching the fundamental 
concepts of computer science. The dialect we use throughout the 
remainder of our book is Common Lisp. All our code may be run on a 
current public domain interpreter built by Carnegie Mellon University, 
called CMUCL (Google CMUCL). 

Object-
Oriented 

Programming 
in Java 

Java is the third language considered in this book.  Although it does not 
have Lisp or Prolog’s long historical association with Artificial Intelligence, 
it has become extremely important as a tool for delivering practical AI 
applications. There are two primary reasons for this. The first is Java’s 
elegant, dynamic implementation of object-oriented programming, a 
programming paradigm with its roots in AI, that has proven its power for 
use building AI programs through Smalltalk, Flavors, the Common Lisp 
Object System (CLOS), and other object-oriented systems.  The second 
reason for Java’s importance to AI is that it has emerged as a primary 
language for delivering tools and content over the world-wide-web. Java’s 
ease of programming and the large amounts of reusable code available to 
programmers greatly simplify the coding of complex programs involving 
AI techniques. We demonstrate this in the final chapters of Part IV. 

Object-oriented programming is based on the idea that programs can be 
best modularized in terms of objects: encapsulated structures of data and 
functionality that can be referenced and manipulated as a unit. The power 
of this programming model is enhanced by inheritance, or the ability to 
define sub-classes of more general objects that inherit and modify their 
functionality, and the subtle control object-oriented languages provide over 
the scoping of variables and functions alike. 

The first language to build object-oriented representations was created in 
Norway in the 1960s. Simula-67 was, appropriately, a simulation language. 
Simulation is a natural application of object-oriented programming that 
language objects are used to represent objects in the domain being 
simulated. Indeed, this ability to easily define isomorphisms between the 
representations in an object-oriented program and a simulation domain has 
carried over into modern object-oriented programming style, where 
programmers are encouraged to model domain objects and their 
interactions directly in their code. 

Perhaps the most elegant formulation of the object-oriented model is in 
the Smalltalk programming language, built at Xerox PARC in the early 
1970s. Smalltalk not only presented a very pure form of object-oriented 
programming, but also used it as a tool for graphics programming. Many of 
the ideas now central to graphics interfaces, such as manipulable screen 
objects, event driven interaction, and so on, found their early 
implementation in the Smalltalk language. Other, later implementations of 
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object-programming include C++, Objective C, C#, and the Common 
Lisp Object System. The success of the model has made it rare to find a 
programming language that does not incorporate at least some object-
oriented ideas. 

Our first introduction of object-oriented languages is with the Common 
Lisp Object System in Chapter 18 of Part III. However, in Part IV, we 
have chosen Java to present the use of object-oriented tools for AI 
programming. Java offers an elegant implementation of object-orientation 
that implements single inheritance, dynamic binding, interface definitions, 
packages, and other object concepts in a language syntax that most 
programmers will find natural. Java is also widely supported and 
documented. 

The primary reason, however, for including Java in this book is its great 
success as a practical programming language for a large number and variety 
of applications, most notably those on the world-wide-web.  One of the 
great benefits of object-oriented programming languages is that the ability 
to define objects combining data and related methods in a single structure 
encourages the development of reusable software objects.  

Although Java is, at its core, a relatively simple language, the efforts of 
thousands of programmers have led to large amounts of high-quality, often 
open source, Java code. This includes code for networking, graphics, 
processing html and XML, security, and other techniques for programming 
on the world-wide-web. We will examine a number of public domain Java 
tools for AI, such as expert system rule engines, machine learning 
algorithms, and natural language parsers. In addition, the modularity and 
control of the object-oriented model supports the development of large 
programs. This has led to the embedding of AI techniques in larger and 
indeed more ordinary programs. We see Java as an essential language for 
delivering AI in practical contexts, and will discuss the Java language in this 
context. In this book we refer primarily to public domain interpreters most 
of which are easily web accessible. 

                1.4    A Summary of Our Task 

 We hope that in reading this introductory chapter, you have come to see 
that our goal in writing this book is not simply to present basic 
implementation strategies for major Artificial Intelligence algorithms. 
Rather, our goal is to look at programming languages as tools for the 
intellectual activities of design, knowledge modeling, and system 
development.   

Computer programming has long been the focus both for scientific theory 
and engineering practice. These disciplines have given us powerful tools 
for the definition and analysis of algorithms and for the practical 
management of large and small programming projects.  In writing this 
book, it has been our overarching goal to provide a third perspective on 
programming languages: as tools for the art of designing systems to 
support people in their thinking, communication, and work.  

It is in this third perspective that the ideas of idioms and patterns become 
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important. It is not our goal simply to present examples of artificial 
intelligence algorithms that can be reused in a narrow range of situations. 
Our goal is to use these algorithms – with all their complexity and 
challenges – to help programmers build a repertoire of patterns and idioms 
that can serve well across a wide range of practical problem solving 
situations. The examples of this book are not ends in themselves; they are 
only small steps in the maturation of the master programmer. Our goal is 
to see them as starting points for developing programmers’ skills. We hope 
you will share our enthusiasm for these remarkable artist’s tools and the 
design patterns and idioms they both enable and support. 

 

 


